

Code of Practice for Pits in Alberta Application – REVISED

Mountain Ash Limited Partnership

Code of Practice for Pits in Alberta Application - Revised Summit Pit

SLR Project No: 212.06650.00007/8

Prepared by SLR Consulting (Canada) Ltd. 200, 708 – 11th Avenue SW Calgary, AB T2R 0E4

for

Mountain Ash Limited Partnership 35181 Big Hill Springs Road Rocky View County, AB T4C 3A2

May 15, 2023

Carolyn Carruthers
SLR Project Manager

Caroly Carnethers

Robert Till, M.Sc., P.Geo. Senior Hydrogeologist Alana-Rose Lynes, M.Sc., P. Biol. Senior Wetland Ecologist

Alana Lose Lynus

CONFIDENTIAL

Distribution: 1 copy – Mountain Ash Limited Partnership

1 copy – SLR Consulting (Canada) Ltd.

PREAMBLE

Alberta Environment and Protected Areas (EPA; also previously referred to as Alberta Environment and Parks), submitted three rounds of supplemental information requests (SIRs) for the Mountain Ash Limited Partnership (Mountain Ash), Summit Project. The first round of SIRs was completed by SLR and submitted September 23, 2022, and the second round submitted January 10, 2023.

In the third round of SIRs submitted to Mountain Ash April 28, 2023, EPA requested that all SIR content be provided within an updated Code of Practice for Pits (COP) application.

SLR Consulting (Canada) Ltd. (SLR), on behalf of Mountain Ash, submits this COP, which includes all EPA SIRs , that are directly relevant to the COP content. An addendum is provided to aid in tracking changes within the COP from the SIR process.

.

CONTENTS

PREAM	MBLE	l
1.0	INTRODUCTION	1
2.0	SITE OVERVIEW	1
3.0	PROJECT OVERVIEW	5
4.0	ACTIVITIES PLAN	6
4.1	What is Removed – Part 1(a)	6
4.2	Current Pit Size – Part 1(b)	6
4.3	Thickness of Topsoil, Subsoil, Overburden and Aggregate – Part 1(c)	6
	4.3.1 Topsoil and Subsoil	6
	4.3.2 Soil Handling and Soil Management	7
	4.3.3 Overburden and Aggregate	8
4.4	Erosion and Dust Control Techniques – Part 1(e)	8
	4.4.1 Erosion Control	8
	4.4.2 Dust Control	9
4.5	Local and Regional Air Monitoring Initiatives – Part 1(f)	10
4.6	Inactive Pit Plan – Part 1(g)	11
	4.6.1 Progressive Reclamation	11
	4.6.2 Monitoring Reclamation Success	12
4.7	Scale Drawings of Existing Pit Conditions and Proposed Sequence of Activity – Part 1(h)	12
	4.7.1 Modelling	12
4.8	Cross-section Drawings of Existing Pit Site Conditions – Part 1(i)	12
4.9	Maximum Pit Size – Part 2(a)	13
4.10	Depth to Groundwater – Part 2(b)	13
4.11	Pit Activities – Part 2(c)	16
	4.11.1 Wet Pit Excavation	16
	4.11.2 Use of Alternative Reclamation Materials	19
4.12	Mitigation Measures – Part 2(d)	19
4.13	Proposed Land Uses – Part 2(e)	
4.14	Release of Pit Water – Part 2(f)	22
	4.14.1 Stormwater Management Plan	22
	4.14.2 Release of Pit Water	23
4.15	Soil Replacement Depths – Part 2(g)	
4.16	Scale Drawing of Site Conditions After Reclamation – Part 2(h)	24
5.0	ADDITIONAL ACTIVITIES PLAN INFORMATION	
5.1	Inventories	
5.2	Undisturbed Buffer Zones	25

5.3		ouffer around undisturbed / avoided wetlands, pursuant to the Alberta Wetland Depth of Excavation	25		
•		ve Areas			
5.5					
5.6		quipment Type			
	5.6.1	Aggregate Extraction			
	5.6.2	Aggregate Processing and Recycling	35		
	5.6.3	Conveyor Drop	35		
	5.6.4	Loading and Unloading			
	5.6.5	Shipping	36		
6.0	SECUR	ITY ESTIMATE	37		
6.1	Propos	sal for the Amount of Security	37		
6.2	Propos	sal for the Form of Security	38		
7.0	REFER	ENCES	39		
8.0	STATE	MENT OF LIMITATIONS	41		
TAE	BLES				
Table	1:	Example Profile for Dunvargan Soil Series	7		
Table	2:	Example Profile for Dunvargan-GL Soil Series	7		
Table	3:	Estimated Volume of Material in Thousands of Cubic Metres, within Pit Extraction Boundary	8		
Table	4:	Mitigative Management Measures for Multiple Aspects	19		
Table	5:	Quantities of Materials used to Reclaim Site Post Mining	24		
Table	6:	Estimated Tonnage ('000 t) of Aggregate within Pit Extraction Boundary	25		
FIGI	URES				
Figure	1:	Regional Location	3		
Figure	2:	Site Plan	4		
Figure	3:	Conceptual Model of Summit Project	5		
Figure	4:	Schematic Cross-section (not to scale)	14		
Figure 5:		Cross-section of Mountain Ash Property	17		
Figure	6:	Schematic Cross-section	18		
Figure	7:	Phase 1			
Figure	8:	Phase 2	27		

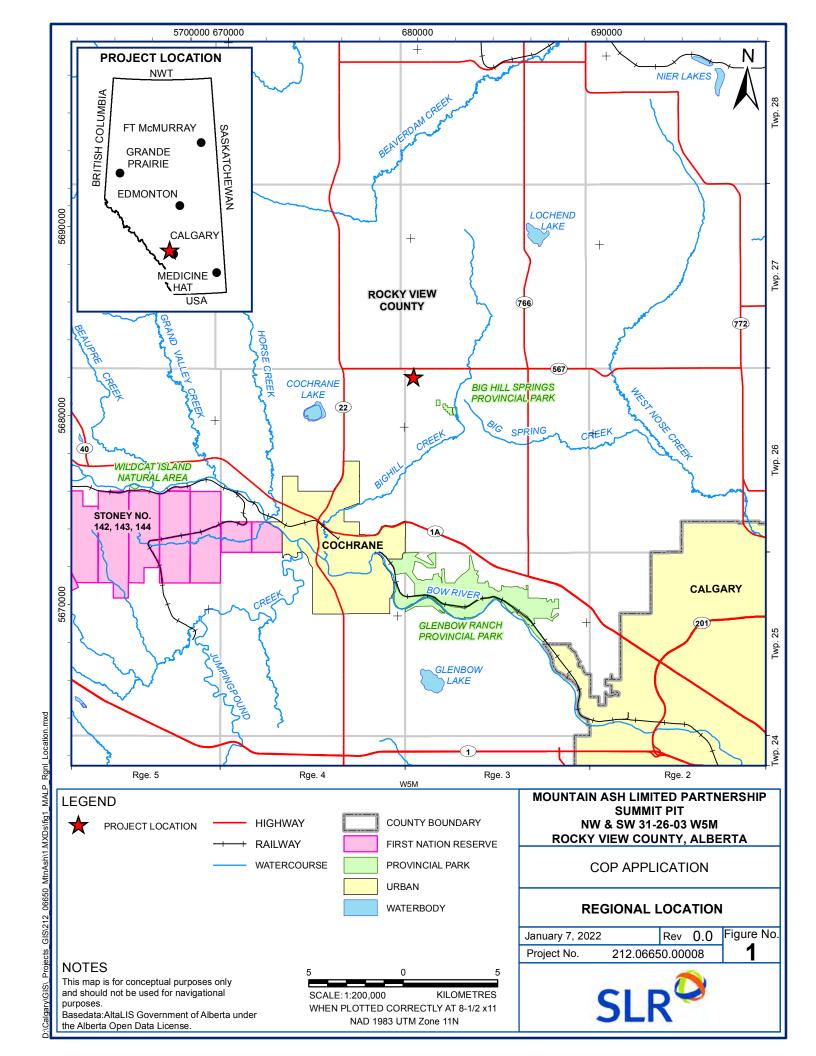
Figure 9:	Phase 3	28
Figure 10:	Phase 4	29
Figure 11:	Phase 5	30
Figure 12:	Phase 6	31
Figure 13:	Final Restoration	32
Figure 14:	Identified Waterbodies	33
APPENDI	CES	
Appendix A	Soil and Weed Management Plan	
Appendix B	Sediment and Erosion Control Plan	
Appendix C	Dust Control Plan	
Appendix D	Air Quality Monitoring Plan	
Appendix E	Post Mining Reclamation Plan	
Appendix F	Proposed Sequence of Activity	
Appendix G	Gravel Estimations	
Appendix H	Groundwater Monitoring Plan	
Appendix I	Hydrogeological Assessment Report	
Appendix J	Water Management Plan/Stormwater Management Plan	
Appendix K	Landscape and Visual Screening Plan	
Appendix L	Noise Monitoring Plan	
Appendix M	Stripping and Grading Plan	
Appendix N	Mining and Excavation Plan	
Appendix O	Security Estimate Deliverables	
Appendix P	Guide to COP Schedules/ Development Permit Approval	
Appendix Q	Soils Survey & Profiles by AECOM 2022	
Appendix R	Project Mitigation Measures	
Appendix S	Wetland Impact Assessment Report & Wetland Replacement Fee	
Appendix T	Wetland Monitoring Program	
Appendix U	Wildlife Protection Plan	
Appendix V	Supplemental Drawings	
Appendix W	Original Code of Practice Drawing Set	

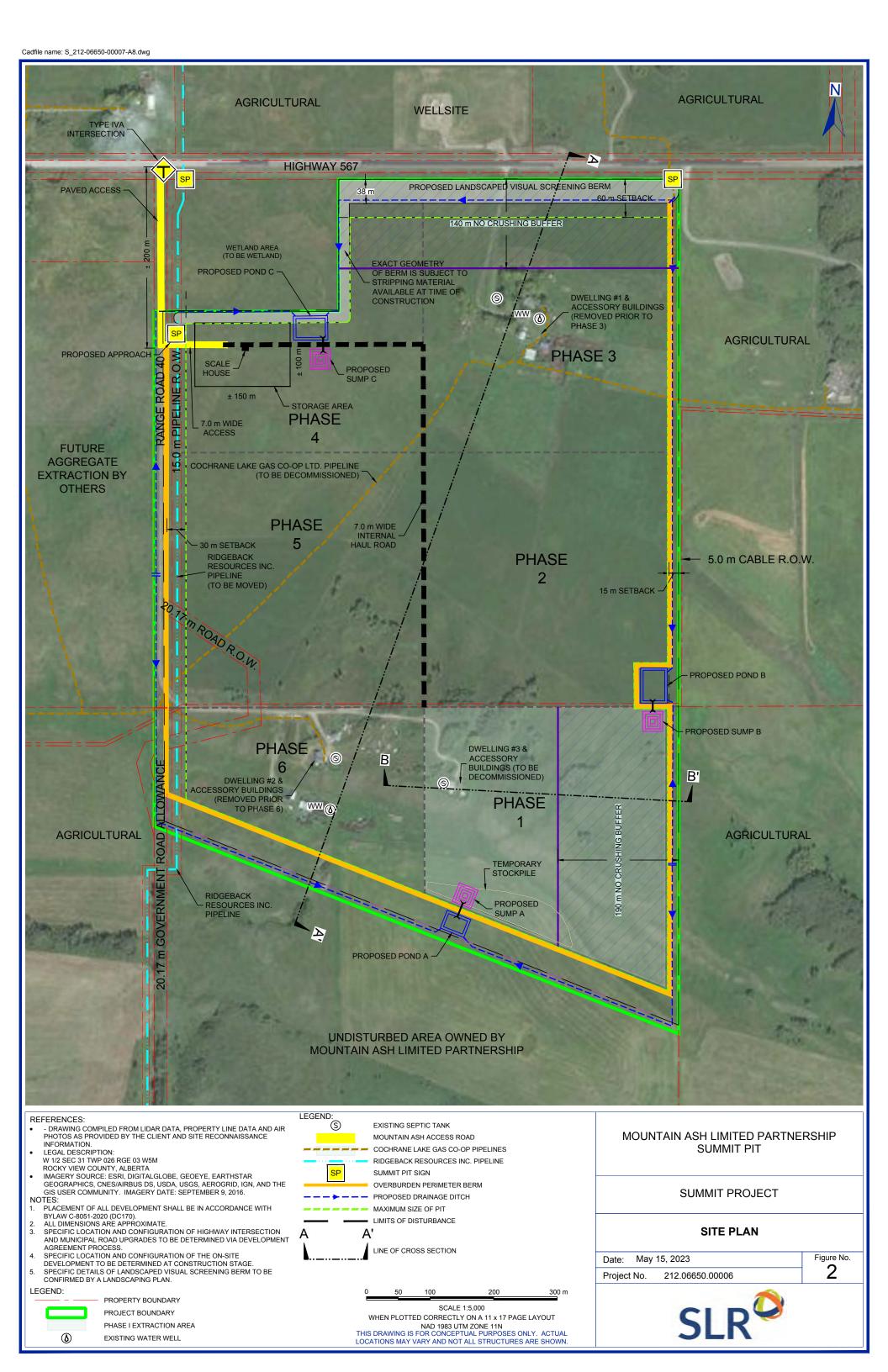
1.0 INTRODUCTION

Mountain Ash Limited Partnership (Mountain Ash) is planning to develop the Summit Pit (the Project) along Highway 567 within NW and SW 31-026-03 W5M, northeast of the Town of Cochrane, in Rocky View County (RVC), Alberta (Figure 1). The Project will be 208 acres (84 ha) in size. This land is currently owned by 1410266 Alberta Ltd. (a general partner of Mountain Ash). The Project received land use and a Master Site Development Plan (MSDP) approval on March 2, 2021, Bylaw C-8051-2020 from RVC.

As part of the ongoing permitting process, Mountain Ash is submitting the following document for the Project under the *Environmental Protection and Enhancement Act* (EPEA) through the Code of Practice (COP) for Pits (AENV 2004a) Registration which considers the overall environmental impacts of the Project on the environment. Mountain Ash has also applied to RVC for a Development Permit (DP) to operate an aggregate operation which received conditional approval on July 13, 2021 (Appendix P). No activity within wetlands will take place until a *Water Act* approval from the Alberta Environment and Protected Areas (EPA) is issued.

SLR Consulting (Canada) Ltd. (SLR) was appointed by Mountain Ash to compile the COP application. Alberta Environment and Protected Areas (EPA; also previously referred to as Alberta Environment and Parks), submitted three rounds of supplemental information requests (SIRs) for the Project. The first round of SIRs was completed by SLR and submitted September 23, 2022, and the second round submitted January 10, 2023. In the third round of SIRs submitted to Mountain Ash April 28, 2023, EPA requested that all SIR content be provided within an updated Code of Practice for Pits (COP) application. This application has been compiled following *the Guide to the Code of Practice for Pits* published by Alberta Environment dated October 2004 (AENV 2004b). A completed version of the forms/checklists found throughout schedules 1-3 in the Guide to the COP for Pits can be found in Appendix P. Figure 2 has been prepared to show the general attributes of the site.


2.0 SITE OVERVIEW


The following summary provides an overview of existing site conditions:

- Topography: The physiographic region coincides with the Foothills natural region which comprises dissected plateaus and rolling uplands with surficial geology comprising glacial till and abundant buried fluvial deposits. The site is located at an average elevation of approximately 1,280 metres above sea level (masl). The site slopes to the southeast from the topographic high to the north and hosts a low-relief valley feature running northwest to southeast across NW 31-026-03 W5M. In SW 31-026-03 W5M, the topography slopes steeply southwesterly into the valley running west-northwest to east-southeast which leads to Big Hill Springs Provincial Park which is approximately 1,300 m away.
- <u>Climate:</u> The climate in this natural sub-region is typically characterized by cool summers and cold winters but highly influenced by the periodic warm Chinook winds (Downing and Pettapiece 2006). Compared to the rest of the country, Alberta has relatively low precipitation in the lee of the mountains and total average annual rainfall in the area is 450 to 500 mm per year (Alberta Agriculture, Food and Rural Development 2000).
- Zoning and land use: The proposed site is zoned as a Direct Control (DC) district under Bylaw C-8051-2020 signed into law on March 2, 2021. Three dwellings are present in the Project area.

- <u>Flora:</u> Most of the vegetation in the Project area is either tame pasture or hay/treed areas. No rare plants or noxious weeds listed under the *Weed Control Act* were found in the Project area.
- <u>Fauna:</u> Provincially and federally listed species at risk and sensitive species have the potential to be present within the Project area. Three sensitive species, one of which is federally listed, were observed within the Project area including great blue heron, least flycatcher, eastern kingbird, and barn swallow.
- <u>Surface water:</u> The site lies approximately 1,300 m upstream of the Big Hill Springs Provincial Park and is located within the surface water catchment of an unnamed watercourse which forms a tributary to the larger Bighill Creek. Bighill Creek is considered of provincial environmental significance (GoA 2015) based on the presence of the natural springs that feed the perennial creek. No surface water bodies (streams or lakes) have been identified within the site itself; however, there are two large temporary graminoid marsh (M-G-II) wetlands in the northwest corner and a number of other, smaller wetlands mainly classified as Class I ephemeral water bodies that were farmed through wetlands.
- <u>Groundwater</u>: Groundwater in assessment boreholes is between 20 and 24 m below ground surface (mbgs) and above the bedrock. The wetlands are perched on the glacial till and are not groundwater fed. The Project is considered a Dry Pit; therefore, no excavation below or at the groundwater table (GWT) will occur.
- Heritage: A historical resource impact assessment was completed for Phase 1 and 6 of the pit, Phases 2-5 have all been cleared with a statement of justification issued File #: 1408-0192; HRO 14-047. Historical Resources Act approval (HRA number 4650-20-0008-002) was conditionally granted for Phases 1 and 6 on July 19, 2021. Mountain Ash is completing additional work, as required, prior to any disturbance.

3.0 PROJECT OVERVIEW

The Project will involve the development of a pit to extract sand and gravel in six phases starting at the southeast corner of the property. The final area will be 208 acres (84 ha), and the pit is expected to commence operations in 2023 with a 30-to-40-year operational life. Phase 1 comprises about 35.5 acres (14.4 ha) and is expected to take 6 to 8 years to deplete. This application is for Phase 1 through Phase 6; however, sand and gravel extraction will only occur in Phase 1 – initially.

The two wetlands in the northwest corner will be retained and Phase 4 will be developed on the lands south and east of them. Each phase, subsequent to Phase 1, is anticipated to take approximately 5 to 7 years to deplete. This is consistent with the development period term as per Bylaw C-8051-2020.

Based on drilling investigations at the site, there is 4 to 6 m of glacial till overburden overlying approximately 16 m to 20 m of sand and gravel. The till soils will be stripped and stockpiled for future use for post development- restoration. The sand and gravel is the target deposit for extraction and lies immediately above the underlying bedrock. The groundwater table lies at the bottom of the sand and gravel deposit, with only subtle seasonal shifts. Groundwater samples were collected in the Winter (Dec) of 2022 and following Spring 2023 (April) and are presented in the Groundwater Monitoring Plan (Appendix H).

The site will be excavated to no less than 1.0 m above the maximum recorded groundwater level (based on progressive monitoring locations as the pit develops) within the gravel deposit and will therefore be worked dry, with no requirement for operational or permanent dewatering. Actual depths will be determined with progressive investigation of water levels as the aggregate resource is developed.

Sand and gravel will be crushed and screened on-site and shipped to markets around Balzac, Calgary International Airport, and north Calgary growth areas.

Figure 3 is a schematic drawing that shows the setting and conceptual model for the site.

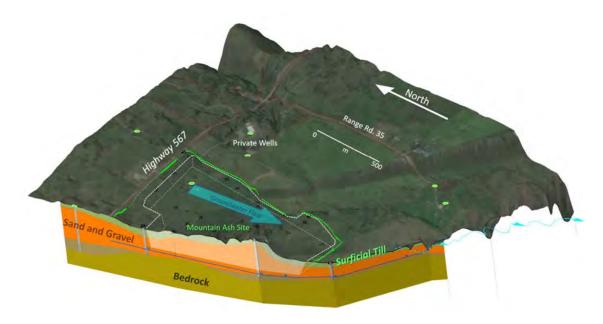


Figure 3: Conceptual Model of Summit Project

Mountain Ash have stated that mining will begin from the southwestern corner of Phase 1 as noted in SIR#2 C11-C12 Tech Memo response (SLR 2023a).

4.0 ACTIVITIES PLAN

4.1 What is Removed – Part 1(a)

Sand and gravel will be extracted and removed from the Summit Pit. Glacial till overburden will be temporarily stockpiled and used for temporary/permanent berm construction and/or stockpiled for progressive rehabilitation.

4.2 Current Pit Size – Part 1(b)

The site is currently unopened, and no historic excavation has taken place on the property. Therefore, there is no current pit size to report.

4.3 Thickness of Topsoil, Subsoil, Overburden and Aggregate – Part 1(c)

4.3.1 Topsoil and Subsoil

The AGRASID *Alberta Soil Information Viewer* was accessed to determine soils expected to be present in the Project area. The *Alberta Soil Names File (Generation 4) User's Handbook* (Alberta Soil Information Centre 2021) was also consulted. This document presents the authoritative suite of acceptable soil series names, with some of their defining attributes, for use in Alberta. The document outlines soil series name, characteristics such as order, great group, subgroup, and parent material type, and texture of soils that occur within a subject area (Alberta Soil Information Centre 2021).

Desktop review determined that underlying parent material in the Project area is moderately to strongly calcareous, mixed Continental and Cordilleran till (Alberta Soil Information Centre 2021). Fertile loam to clay loam Orthic Black Chernozemic soils are extensive, with Gleysolic soils present in poorly drained and lower slope positions expected at the Project (Alberta Agriculture and Forestry 2021). The Dunvargan soil series, a fertile, well-drained Orthic Black Chernozem formed on glacial till parent material, was identified across most of the Project area, with the gleyed variant (Dunvargan-GL) identified in depressional areas.

Soils were classified in the field in accordance with criteria established by the Soil Classification Working Group (1998). Soil inspection locations were completed to verify the desktop review and to help determine the presence or absence of wetlands on the landscape. Soil investigations were conducted on foot with a shovel and hand auger from July 2 to 4, 2020. The soils were investigated to a depth of 30 cm. Soil inspection locations (SILs) were advanced at a rate of approximately one location per 10 hectares (SLR 2022c) . Soil inspection location density was higher in areas where a distinct change was expected and around wetlands for a total of ten soil inspection locations. The depth of each soil horizon encountered at each SIL was recorded to determine best methods for soil handling and replacement. Soil map units have a certain range of properties or variability due to soil being a continuum. Consequently, the soil inspections were extrapolated using the principles of geomorphology and surficial geology in concert with the vegetation patterns to delineate individual soil map units. Soil map units identified in the field were correlated to the general soil series established in each unique ecosite identified within the proposed Project area.

In the field, upland soil inspection locations confirmed that the majority of the Project area consists of Orthic Black Chernozems of the Dunvargan soil series. Textures were loam to sandy clay loam. Wetlands

contained gleyed Dunvargan soil series, with mottling in the Bmgj and Ccag and Ckg horizons. Areas of soil disturbance were noted in the vicinity of the several residences in the Project area. Example profiles of Dunvargan and Dunvargan-GL soils are identified in Tables 1 and 2. These soils have low wind erosion risk and moderate water erosion risk.

		· ·			
Horizon	Depth (cm)	Colour	Field Texture	Structure	Consistence
Ap	p 0-19 black		Clay loam	granular	Friable
Bm	19-38 dark yellowish brown		Clay loam	prismatic	Firm
Cca	Cca 38-57 pale brown		Sandy clay loam	massive	Very Firm
Ck	Ck 57-100 yellowish brown		Sandy clay loam	massive	Very Firm

Table 1: Example Profile for Dunvargan Soil Series

Table 2: Example Profile for Dunvargan-GL Soil Series

Horizon	Horizon Depth (cm) Colour		Field Texture	Structure	Consistence
Ар	Ap 0-33 black		Clay loam	granular	Friable
Bmgj	33-52	3-52 brown Clay loam		prismatic	Firm
Ccag	Ccag52-59grayish brownClay loam		Clay loam	massive	Firm
Ckg	Ckg 59-100 yellowish brown		Sandy clay loam	massive	Firm

Appendix Q provides a second soil profiling survey conducted by AECOM in December 2022. Figure 1:Soil Survey, in Appendix Q, presents locations of additional soil plots, Table 1: Detailed Soil Profile Description presents details of soil profiles collected during the December 2022 soil survey. These were provided to EPA in SIR #2, D5 (SLR 2023b).

4.3.2 Soil Handling and Soil Management

During construction, best practices for erosion and sedimentation control will need to occur to prevent soil erosion once the vegetation is removed. Topsoil and upper subsoil will be salvaged and stockpiled separately for reclamation purposes. These soils are not susceptible to wind erosion; however, water erosion during spring melt or heavy rainfall events is a concern. Soil stockpiles will be vegetated with an appropriate seed mix to prevent water erosion.

Average topsoil depth onsite for upland areas is approximately 25 cm and approximately 30 cm in wetland areas. Approximately 20 cm of suitable subsoil is present. Soil series and subsoil will be further characterized onsite during stripping and grading. Soils will be appropriately managed under the direction of a qualified professional onsite. Unique or problem soils, if present, will be handled separately.

See Appendix A for the Soils Management Plan.

4.3.3 Overburden and Aggregate

Based on drilling investigations at the site, there is 4 to 6 m of glacial till overburden overlying the sand and gravels. These till soils will be stripped and stockpiled around the perimeter of the relevant extraction phases for screening purposes and ultimately for future use in the site restoration.

The sand and gravel is the target deposit for extraction and lies immediately above the underlying bedrock. Groundwater in assessment boreholes were noted between 20 and 24 mbgs and generally lies just above the bedrock. The site will be worked to 1.0 m above the maximum recorded groundwater level within the gravel deposit and will therefore be worked dry, with no requirement for operational or permanent dewatering. Actual depths will be determined with progressive investigation of water levels as the site is developed.

The volumes of material outlined in Table 3 were estimated within the constraints of the mine plan (e.g., side slopes and mine footprint). The external boundaries were sloped in the model assuming a 1 vertical to 0.15 horizontal slope which is based on local experience in this particular deposit (T.Brady, personal communication) as this reflects the cemented nature of this over-consolidated deposit. All buffers have been respected in the calculation and are not included. The internal boundary between each phase was modelled as being vertical if not separated by pit slopes. The volumes calculated are estimated based on the above assumptions, actual quantities may vary subtly.

Table 3: Estimated Volume of Material in Thousands of Cubic Metres, within Pit Extraction Boundary

	Mountain Ash Property
Subsurface Area	Side Slope Angle of 1V:0.15H
Estimated Volume of overburden	3,192
Estimated Volume of Aggregate between Top of Sand and Gravel and 1 m above Water Table	11,844
Estimated Volume of Remaining Aggregate between 1 m above Water Table and Top of Bedrock	1,559

4.4 Erosion and Dust Control Techniques – Part 1(e)

4.4.1 Erosion Control

The techniques to control and minimize the wind erosion of exposed stockpiles include:

- Extraction shall be reduced or suspended if the condition of the active extraction face is dry and dusty, and the wind is directed toward a receptor at a speed sufficient to cause widespread visible erosion of the open face.
- Water shall be applied to stockpile materials that are dry and dusty when the wind is directed toward a receptor at a speed sufficient to cause widespread visible emissions.
- Stockpiles shall be maintained to avoid steep sides or faces.
- Disturbance of storage piles shall be minimized where feasible. For active stockpiles, the disturbed area shall be minimized to the extent possible.

As an added advantage, it is our experience that the overburden, hauling, and remediation areas will be crusted or covered by vegetation or snow after overburden stripping and backfilling is complete. Crusting would occur if the area were not disturbed for a period of time, depending on aggregate soil types and moisture content. Any natural crusting of the surface binds the erodible material, thereby reducing the erosion potential (U.S. EPA 2006). Although not readily quantifiable, it is a mitigating feature.

Extraction shall be suspended if the condition of the extraction face of the overburden is dry and dusty, and the wind is sufficient to cause wide-spread visible erosion of the open face with plumes directed offsite.

Wind forecasts shall be monitored regularly for heavy winds during operations to anticipate the need for these measures and allow for next day planning.

See Appendix B for the Sediment and Erosion Control Plan.

4.4.2 Dust Control

The techniques to control or minimize fugitive dust during aggregate crushing and screening include:

- The crushers will not be within 190 m of the east site boundary and 140 m from the north boundary. Relaxation of crushing buffers are present for the west and south boundaries.
- Where the site foreman deems necessary, the processing plants shall be equipped with a water spray system. The actual water application rate shall vary, being adjusted as needed to reduce visible dust emission. Water will be purchased and trucked in if necessary. No water license is required in this instance.
- Water for the spray system will be provided from third -party water supplier.
- The spray-bars will be triggered whenever the site foreman or scale operator observes visible dust emissions.
- Where possible, the height of lifts and discharge distances to the top of the stockpile will be kept to a minimum, not exceeding a 1.5 m drop height above the known height of the pile.
- Conveyor drop heights shall be minimized to the extent possible to reduce spillage and provide windbreak. Conveyors onsite should be equipped with rubber shrouds to minimize drop height for dust control.
- Conveyor belts shall be cleaned periodically to remove entrained material.
- During extreme windy conditions, the operator will suspend operations until emissions can visibly be controlled.

Truck loading will be suspended if the site foreman or scale operator observes the material to be dry and dusty and the wind is sufficient to cause wide-spread visible emissions with plumes directed toward receptors. The highest point of the material loaded into a truck shall not exceed the vehicles tray walls unless it is covered.

The internal haul routes at the Summit Pit beyond the paved route are unpaved but treated with a Calcium Chloride (CaCl₂) or equivalent dust suppression treatment. The following measures shall be used to control and minimize fugitive dust from the internal unpaved roads:

• A truck or trailer-mounted tank will always be located onsite and shall be equipped with a spray bar to deliver dust suppressor evenly over the haul route surface.

- Dust suppressant supply (CaCl₂) shall be available to allow the tanker truck to fill and apply the full payload each hour, if necessary, during dry conditions.
- The actual application rate shall vary, depending on surface moisture conditions and traffic conditions, and shall be triggered whenever the site foreman or scale operator observes trucks producing a trailing cloud of dust greater than one third of a trailer length. A sample application manual of CaCl₂ is provided in Appendix C.
- Haul routes shall be maintained (i.e., graded) approximately monthly during April to October, to ensure that loose fine material on the haul route surface is minimized.
- Trucks and other mobile equipment shall reduce speed as necessarily to reduce trailing dust clouds. The maximum speed will be 35 km/hr.
- The internal roads shall be clearly delineated to limit traffic to the established haul roads that have been maintained. Limiting the trucks away from unmaintained areas of the site is intended to minimize disturbance of unmaintained areas.
- To prevent spillage and air entrainment during transport of aggregates, the trucks carrying aggregate loads shall be covered during transport on the paved and unpaved roads.
- Disturbed areas of unpaved roads shall be stabilized to the extent possible with rollers or other similar equipment.

The following measures shall be used to control and minimize fugitive dust from the paved Range Road 40:

- The Summit Pit will have one point of entry/exit, which will be paved and well-maintained during operations. The entry/exit point is on Range Road 40, approximately 200 m south of the Highway 567 intersection.
- The Summit Pit shall have the capability to sweep or spray water or other approved dust suppressants as deemed necessary by the site foreman on paved surfaces, as well as roads near the site entrance as needed.
- The actual dust suppressant application rate shall vary, depending on surface moisture conditions and traffic levels, and shall be triggered whenever the scale operator or site foreman observes trailers producing a trailing cloud of dust greater than one third of a trailer length.
- To prevent spillage and air entrainment during transport of aggregates, the aggregate loads shall be covered during transport on the internal unpaved roads.
- Any spillage or material deposited on the paved roads shall be removed promptly.
- Regular sweeping of the paved roads will be conducted as required, at the discretion of the site foreman, to ensure that visible loose fine material of the haul road surface is minimized.
- Trucks and other mobile equipment shall reduce speed as necessarily to reduce trailing dust clouds. The maximum speed will be 35 km/hr.

See Appendix C for the full Dust Control Plan.

4.5 Local and Regional Air Monitoring Initiatives – Part 1(f)

An air quality assessment was undertaken as part of the MSDP application to assess the potential air pollution from the Project operations in relation to sensitive receptors. Project operations will produce anthropogenic emissions and dust into the ambient air. Diesel combustion from engines on heavy trailer and haul trucks and other vehicles emit sulphur dioxide (SO_2), fine particulate matter with aerodynamic diameter below 2.5 micrometres ($PM_{2.5}$), carbon monoxide (CO), and oxides of nitrogen (NO_x). Additionally, fugitive dust emissions from wheel entrainment and pit operations produce suspended particulates (TSP). Since these emissions can pose potential negative effect to human health at high ambient ground-level concentrations, they are regulated and should not exceed their prescribed Alberta Ambient Air Quality Objectives (AAAQOs). As a requirement for the COP for Pits and DP applications, this report details the Ambient Air Quality Monitoring Plan (AQMP) in relation to the operation of the Summit Pit.

Following the *Air Quality Model Guideline* (AQMG), CALPUFF dispersion modelling was done to assess the effects of Project operations on AAAQOs. Modelling was completed for the three key pit operations defined as: overburden removal and backfill, aggregate mining/crushing, and hauling/trucking. Maximum Daily Emission and Annual Average Emission cases were estimated. The results at the Project boundary showed there were no predicted exceedances of AAAQOs for any modelled compounds and any averaging period when the Dust Control Plan is executed appropriately. The predicted maximum concentrations at residence receptors are all less than the AAAQOs for all modelling scenarios and all contaminants.

While Project operations are not expected to exceed ambient air quality objectives beyond the property boundary, Mountain Ash has committed to monitoring for PM_{2.5} and TSP at the property boundary, at two locations, to ensure dust suppression techniques are working. Although several pits have been proposed for the area, no additional pits have been approved with a DP that have the potential to add to the air emissions from Summit Pit operations at adjacent receptors. There is an agreement between future operators to ensure that a cumulative impacts mitigation management agreement is in place to minimize emissions from their respective operations with respect to cumulative effects. Mountain Ash will participate with those operations to address cumulative effects/impacts in the area prior to submitting future DP applications. All relative data captured will be made available to the public www.summitproject.ca Alternatively, interested parties wishing to obtain this information can contact the operator directly.

See Appendix D for the Air Quality Monitoring Plan.

4.6 Inactive Pit Plan – Part 1(g)

It is anticipated that the pit will remain active until the end of pit life. In the event the pit becomes inactive, the operator will ensure all banks are graded to a 3:1 slope.

4.6.1 Progressive Reclamation

As areas are no longer needed for operations, Mountain Ash will reclaim them in accordance with the best industry practices to ensure equivalent land capability can be achieved, in this case, rangeland. Reclamation of mined areas will occur concurrently with mining operations. This will limit the inactive pit area at any given time. Concurrent pit reclamation will also limit any additional soil handling and placement.

Subsoil will be de-compacted before topsoil placement. Subsoil will be recontoured to tie in with the surrounding landscape and create drainage patterns consistent with surrounding land use. Experienced reclamation specialist will supervise machinery to avoid final contours that may cause water ponding or any erosion issues.

Revegetation will occur within the same growing season when topsoil placement is completed to avoid any soil loss via erosion. A seed drill machine or standard farming equipment will be used for maximum germination success. Appropriate species mix, seeding rates, and composition will be based on reclamation criteria/requirements, seed availability, and landowner specifications likely consistent with current land use at the time. Currently, the land is used for tame pasture and hay.

Seed will be sourced from a reputable supplier and a professional agrologist will review seed germination tests, impurities, and presence of weed species in the seed mix. Seed certificates will be reviewed and kept on file.

4.6.2 Monitoring Reclamation Success

Reclamation success will be determined by a landscape that does not require any ongoing treatment or to be worked and provides equivalent land capability as it did prior to disturbance. Continuous monitoring of progressively reclaimed areas will guide further reclamation activities and help identify proper mitigation measures leading to a successful reclamation outcome.

In accordance with the current regulations, Mountain Ash will submit a report on disturbance and reclamation status to EPA, starting five years after registration and then every five years after that until the Final Reclamation Report is submitted and/or a reclamation certificate for the whole pit is received (AENV 2004a and 2004b).

See Appendix E for the Post-Mining Reclamation Plan.

4.7 Scale Drawings of Existing Pit Conditions and Proposed Sequence of Activity – Part 1(h)

There are no existing pit conditions. See Appendix F for Proposed Sequence of Activity and Appendix W for supporting supplemental drawings related to activities plan.

4.7.1 Modelling

Six pit designs were produced using two surface boundaries and three sidewall slope scenarios. To account for the volume of material to bedrock in either outline, the overall pit slope and ramp access needed to be included in the design. The ramp assumes a 20 m width and surface access off Range Road 40 to the northwest.

Figures in Appendix G visually represent the steps taken to produce itemized volumes. Appendix G Figure 1 displays surface boundaries with four working areas labelled accordingly. The areas shown in the figures are the modelled representations of those indicated in the tables.

See Appendix G for in depth methodology, figures, layers used for the modelling, and tables showing gravel estimations and site boundaries.

4.8 Cross-section Drawings of Existing Pit Site Conditions – Part 1(i)

Cross-section drawings of the existing site conditions is provided in Figures 4, 5, and 6. The land is presently used for agricultural purposes and no development has occurred to date. The section in Figure 4 shows existing conditions along a north south- cross--section. The glacial till overburden is shown in green and is slated for removal and temporary stockpiling. The aggregate deposit, shown in yellow will be mined to within 1.0 m of the maximum water table shown as a blue line. The pit will not go into the underlying Paskapoo Formation bedrock, and there will be no mining below the water table.

4.9 Maximum Pit Size – Part 2(a)

The maximum pit size (Phase 1 through 6) will be 208 acres (84 ha), the minable area will be 195 acres (79 ha). Area of each phase are as follows:

- Phase 1 36.9 acres (14.4 ha)
- Phase 2 39.0 acres (15.19 ha)
- Phase 3 39.0 acres (15.20 ha)
- Phase 4 30.0 acres (15.20 ha)
- Phase 5 41.0 acres (15.96 ha)
- Phase 6 21.6 acres (8.41 ha)
- Scale 0.4 acres (0.16 ha)

4.10 Depth to Groundwater – Part 2(b)

A comprehensive hydrogeological study was conducted on the property in support of the design of the planned aggregate pit. The Groundwater Monitoring Plan (GWMP) is found in Appendix H with the addition of a Hydrogeological Assessment Report (Appendix I) following.

The objective of the hydrogeological investigation was to provide a description of baseline hydrogeological conditions in the vicinity of the proposed Mountain Ash aggregate resource. The potential impacts of the development on groundwater quality and quantity were reviewed. Based on that, mitigation measures were provided to support the development and operation of the aggregate resource being conducted with minimal impact to existing local water users. This includes neighbouring domestic wells, nearby natural heritage features like Bighill Creek, and Big Hill Springs Provincial Park. As the reports in Appendices H and I identify, this will be successfully achieved.

As mentioned previously, the aggregate extraction pit will be worked in six counterclockwise phases starting in the southwest corner of Phase 1 as provided in the second round of SIRs #C11-C12, Drawing 10 (SLR 2023a). Overburden will be stripped, and the sand and gravel will be extracted under dry conditions. No dewatering of the underlying aquifer is planned. In this manner groundwater resources will be protected.

The hydrogeological report creates a picture of the regional setting of the area based on published sources of information such as published geological maps and water well records. Field investigations were undertaken to find local wells, and to drill and install monitoring wells on the site. The soils were scientifically logged for the geologic profile, and it was found that the site fit in well with the regional setting. From this, an examination of potential impacts was undertaken, and appropriate mitigation was identified. The report demonstrates that no adverse net impact of the operations on the hydrologic/hydrogeologic setting is expected.

The two large wetlands in the northwest corner of the site are to be retained on the landscape. No streams are located on, or flow from the site, and thus hydrologic impacts are not possible. The following schematic in Figure 4 illustrates the hydrogeologic profile found at the site. Given the distances involved, it has been vertically stretched to better show the individual layers and thus is not to scale.

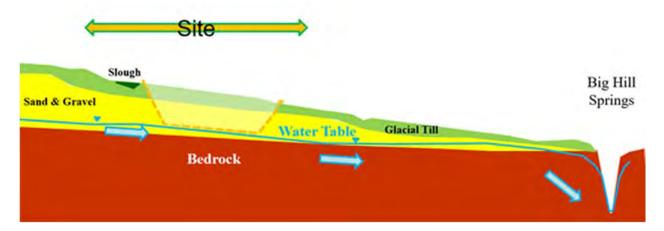


Figure 4: Schematic Cross-section (not to scale)

Hydrogeologically speaking, the northwest wetlands are surface water fed and perched on the 4 to 6 m thick blanket of dense glacial till which limits the leakage of water into the ground. Beneath the till lies the target sand and gravel deposit, which is 14 to 24 m thick and generally dry. The water table is close to the bottom of this deposit and sometimes in the underlying bedrock. This bedrock is the Paskapoo Formation bedrock composed of sandstone, siltstone, mudstone, and shale. Although not a very good aquifer, it is permeable enough to provide local water supply and is tapped by the few wells in the area. Groundwater flows towards the southeast and eventually discharges in Big Hill Springs at the Provincial Park. Appendix I identifies that this function will not be altered; there may be a slight increase in discharge when the pit is operating, due to the capture of rainfall directly into the sand and gravel. It was found that the natural groundwater quality in the sand and gravel and the bedrock is very similar to that in Big Hill Springs as well as that in local water supply wells.

The possibility of impacts from manmade sources such as fuels and solvents during the operational phase of the pit was considered, as well as natural sources such as suspended solids and turbidity from reworking of the material onsite. These potential effects will be mitigated by using best handling practices as outlined in the COP for Pits (AENV 2004a), other codes of best practice, and adhering to regulatory approval conditions. Regular groundwater quality monitoring will continue over the life of the pit with annual reporting to the municipality. In this way the operators will be able to react to unanticipated changes in water quality in the unlikely event they occur.

Under the current excavation scheme, the overall risk of any significant negative impacts on water resources as a result of the development are negligible. This is based on the fact that the aggregate resource will not be mined into the water table, and therefore changes to the groundwater flow system are extremely unlikely.

The following mitigation and design measures are planned to reduce effects on groundwater quality:

• Develop the site on a phased basis to minimize the working area and allow for progressive site restoration:

- Minimize the size of each working area to reduce the potential for generation of suspended sediment in storm water;
- Commission settlement ponds and surface infiltration features early in the scheme development and manage all runoff generated during operations onsite; and
- Implement the operational phase groundwater monitoring program detailed in Appendix H.

Control limits are provided in Section 8.2 of the GWMP. MALP conducted additional baseline sampling in spring of 2023 after thaw (April 2023). Results of the sampling are presented in Technical Memorandum SIR#3-C12 (SLR 2023a). May 2023 GWMP provided in Appendix H, includes all baseline monitoring completed for the Project.

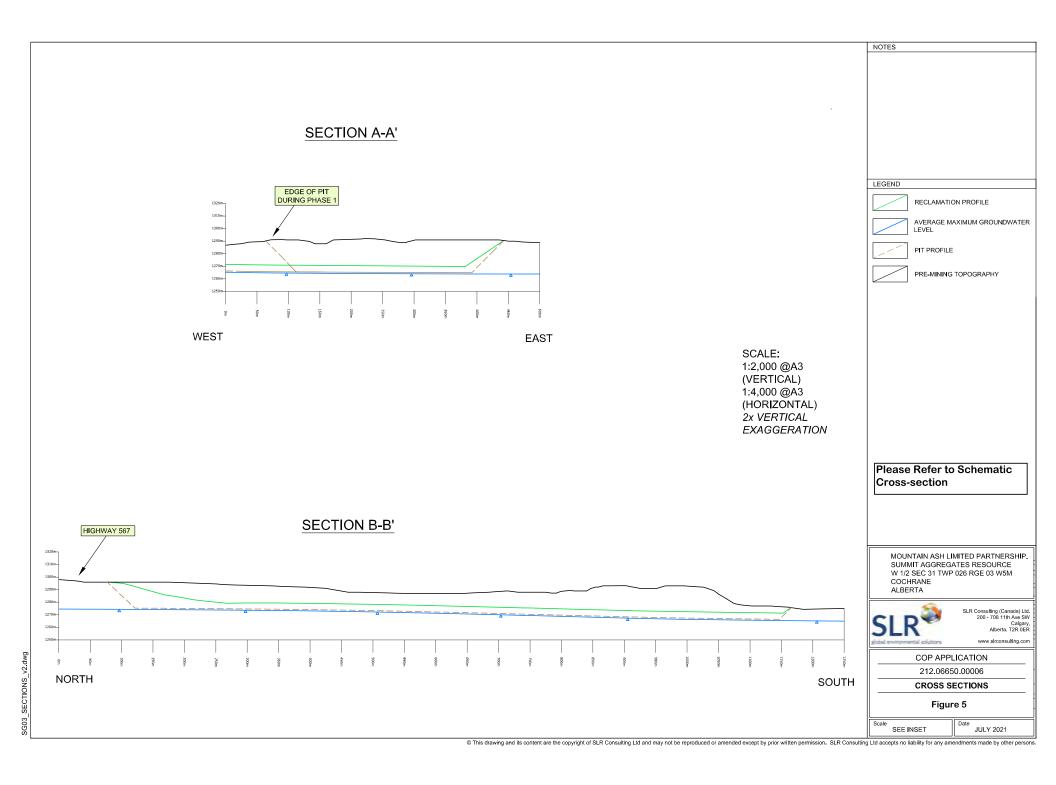
Once operational monitoring and sampling have begun, visual review or trend analysis of the post-baseline data series will be conducted. If the analysis indicates a potential increasing or decreasing trend which may eventually exceed a guideline or control limit, or a guideline or control limit is exceeded, the groundwater response plan outlined in Section 8 and Figure 7 of the GWMP would be implemented as summarized below:

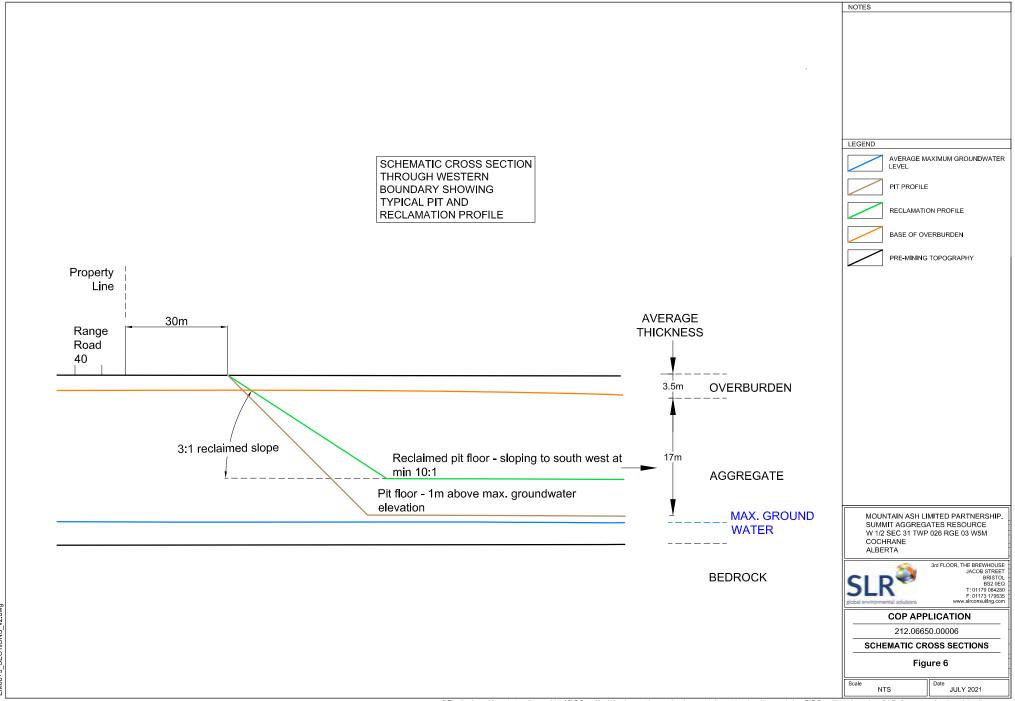
- 1. A potential rising or falling trend, or parameter exceedance is identified.
- 2. Resampling confirms the trend or parameter exceedance.
- 3. AEPA is informed of the potential issue and provided with an investigation plan to identify the source. This may include additional sampling, installation of monitoring wells or other measures as appropriate to identify the source and/or potential extent of the issue.
- 4. A risk management plan will be developed and submitted for the approval of the Director once an issue and its source have been identified as being related to the operation and if source removal is not feasible. The actions required within the risk management plan would include any and all items appropriate to the risks posed to all groundwater receptors. This could include, but not be limited to risk assessment, additional sampling, installation of monitoring wells, residential well investigation and rehabilitation, changes to operational practices or reporting. If risks cannot be managed or mitigated to the satisfaction of the Director, this may result in the cessation of operations and/or cancellation of the Registration as provided for in EPEA.

The effects of the development of this aggregate resource above the water table at this site will be minimal on the surface and groundwater regimes, particularly since the mitigation and design measures discussed above will be implemented. The hydrogeologic assessment report (Appendix I) predicts that there will be no adverse net impact of development at the site on surface water or groundwater users in the vicinity. Ten monitoring wells were installed onsite and were periodically monitored for groundwater depth from October 2014 to April 2023. Water table depths below existing grade range from 21 to 29 m below the high ground and between 12 and 16 m deep in the lower lying areas. The water table is typically in the sand and gravel or upper bedrock. Once approval is granted, the monthly water level monitoring program will begin.

Elevations of the water table at each monitoring location were determined based on topographical survey of the monitoring wells. Sand and gravel wells MW14-101 and MW14-103 and residential wells WW2 and WW4 have been recording continuous groundwater levels using data loggers since October 29, 2014. Groundwater hydrographs are provided in Appendix H and water table elevation data is summarized as follows (SLR 2020b):

- Groundwater elevations ranged from 1,274.87 masl (highest recording) in the sand and gravel in well MW14-101 on November 20, 2014, to 1,259.46 masl (lowest) in the sand and gravel deposits in the dry valley leading to Bighill Springs in well MW19-109 on July 3, 2019;
- Groundwater levels within the sand and gravel layer gradually fell between 2014 and 2019, with a drop of approximately 0.9 to 1.3 m during this period. This is due to a series of dry years with <400 millimetres (mm) of precipitation each year, based on Environment and Climate Change Canada data for the meteorological station at Calgary International Airport. (ECCC, 2022) Even an above average precipitation year (2016) with 520 mm of precipitation did not increase water levels, likely due to a high soil moisture deficit absorbing much of the surplus. Levels rebounded somewhat (0.2 m) in the months between July and September 2019 due to the higher-than-average rainfall totals (526 mm) in the area in spring and summer 2019. This was followed by an average precipitation year (424 mm) in 2020 which allowed soil moisture deficits to be reduced. The levels then gradually declined back to the pre-2019 levels in March 2020 before again rising approximately 0.3 to 0.4 m in the 2020 spring recharge event. Groundwater levels continued to slowly rise through 2020 and into the spring of 2021 due to the high precipitation in 2020 (554 mm) before they started to decline again to the end of the monitoring record; and</p>
- Minimal short-term fluctuation in the groundwater levels within the sand and gravel indicates no influence from pumping within residential wells completed in the bedrock in the area.


Groundwater monitoring will be ongoing to ensure that the base of the pit (and the infiltration areas) will be kept a minimum of 1.0 m above the maximum known or recorded groundwater table based on data obtained from the onsite monitoring wells since 2014.


Updates to the Groundwater Monitoring Plan are provided in Appendix H.

4.11 Pit Activities – Part 2(c)

4.11.1 Wet Pit Excavation

There will be no wet pit excavation. As previously mentioned, the site will be worked to 1.0 m above the maximum recorded groundwater level within the gravel deposit and will therefore be worked dry, with no requirement for operational or permanent dewatering. Temporary piezometers will be installed ahead of the extraction to final grade to document groundwater levels.

4.11.2 Use of Alternative Reclamation Materials

No alternative reclamation materials are needed nor will be used. Reclamation will be undertaken with native overburden from stockpiles, and/or from current overburden stripping operations. Topsoil will be added from previously stockpiled topsoil on an as needed basis. Where topsoil is brought in from outside sources to aid in reclamation it will be certified clean topsoil and fill only. This will be accomplished by offsite testing of source materials and manifest control of soil delivery and acceptance.

4.12 Mitigation Measures – Part 2(d)

Table 4 describes mitigation measures to be implemented. A set of supporting monitoring plans and more detailed management plans have been developed which are referenced in this table and provided in the appendices.

Table 4: Mitigative Management Measures for Multiple Aspects

Aspect	Management measures			
	Stripping and stockpiling	Limit the area of disturbance as far as practically possible, as outlined in an approved development permit. Implement the Soil/Weed Management Plan provided in Appendix A. Implement the Sediment and Erosion Control Plan provided in Appendix B.		
Soil	Contamination	Handle, use, and dispose of all potentially contaminating substances and waste in a manner to prevent soil contamination. Maintain all vehicles and equipment on designated onsite areas. Keep in good working order to prevent spills and leaks; inspect regularly. Contain and clean up spills and leaks immediately. Maintain spill kits (containing absorbent material) on site and train personnel how to use these kits. As necessary, implement spill response and containment measures. Treat contaminated soil in-situ where practical or remove from site and dispose of as hazardous materials.		
	Reclamation	Remove surface infrastructure and grade the ground surface as appropriate in accordance with the end land use and requirements at the time. Ameliorate soil if needed to meet end land use requirements. Monitor re-vegetation of the Project site to prevent soil erosion.		
Air quality	Dust	Limit the area of disturbance by earthworks as far as practically possible. Monitor and implement reduced vehicle speed limits or other speed control measures on the Project site based on daily conditions. Implement the Dust Control Plan provided in Appendix C. Implement the Air Quality Monitoring Plan provided in Appendix D.		
	Air emissions	Implement the Air Quality Monitoring Plan provided in Appendix D.		
Surface water	Surface runoff	Design and implement a stormwater management system to contain all surface runoff and allow clean water to be diverted away from the Project site. The Water Management Plan/Stormwater Management Plan is provided in Appendix J.		
	Wetlands	Demarcate and implement a buffer zone around all wetlands that will be left in place through construction in accordance with the <i>Water Act</i> Approval.		

Aspect	Management measures			
	Contamination	Provide proper wash and toilet facilities in site office, and portable toilets for remote parts of the site when the phasing is over 500 m from the site office. In designated areas, maintain all vehicles and equipment to function properly and efficiently to prevent spills and leaks; and inspect regularly. Handle, use, and dispose of all potentially contaminating substances and waste in a manner to prevent contamination of surface water. Implement spill and leak prevention management procedures during construction and normal operation. Contain and clean up spills and leaks immediately. Maintain spill kits on site and train personnel how to use these kits. Identify potential emergency situations that could pollute surface water resources; train personnel on appropriate prevention and response measures.		
Groundwater	Contamination	Design and implement a stormwater management system to manage water within the pit and runoff from infrastructure areas. The Water Management Plan/Stormwater Management Plan is provided in Appendix J. Handle, use, and dispose of all potentially contaminating substances and waste in a manner to prevent contamination of groundwater. In designated areas, maintain all vehicles and equipment to function properly and efficiently to prevent spills and leaks, and inspect regularly. Implement spill and leak prevention management procedures during construction and normal operation. Contain and clean up spills and leaks immediately. Maintain spill kits onsite and train personnel how to use these kits. Implement the Groundwater Monitoring Plan provided in Appendix H.		
	Water levels	Monitor groundwater levels to ensure that mining remains above the groundwater level as planned. Implement the Groundwater Monitoring Plan provided in Appendix H.		
	Vegetation clearing	Limit the area of disturbance as far as practically possible. Clear trees during mid to late winter to avoid the likelihood of encountering nesting birds, in accordance with direction from Alberta Environment and Parks.		
Flora	Harvesting	Prohibit the harvesting of any natural vegetation on the Project site by workers.		
	Invasive species	Implement weed control measures to prevent the spread of noxious weed species and to comply with the requirements of the Alberta <i>Weed Control Act</i> . The Soil/Weed Management Plan is provided in Appendix A.		
	Reclamation	Use only certified weed free seed mix where seeding is required. Monitor re-vegetation of the Project site and re-seed where necessary.		
Fauna	Vegetation clearing	Limit the area of disturbance as far as practically possible. Clear trees during mid to late winter to avoid the likelihood of encountering nesting birds.		
	Site access	Maintain the perimeter fence to deter wildlife accessing the Project site.		

Aspect	Management measures			
	Migratory birds	Avoid clearing from March 1 through August 31, in suitable habitat, to avoid disturbing early nesting birds. Avoid clearing from late-April to end of August to avoid potential nesting of migratory birds. Prevent vegetation from becoming established around the edges and perimeter of the stormwater ponds. This will prevent the development of suitable habitat for birds and other wildlife. Comply with federal and provincial legislation relating to migratory birds and designated species at risk (if presence is identified onsite) during Project construction.		
	Wildlife occurrence	Train workers to report wildlife incidents such as presence of wildlife on the construction site or during Project operation, or wildlife mortality via collision with a vehicle. Do not harass, hunt, trap, or feed wildlife or livestock on the Project site and surroundings. Manage dust and noise emissions to minimize disturbance to wildlife around the Project site.		
Visual impact	Landscape and visual screening	Implement the Landscape and Visual Screening Plan provided in Appendix K.		
Noise	Disturbing noise	Schedule operations to occur during daytime hours, whenever practical. Maintain equipment and machinery in good working order, including noise abatement equipment where applicable, to limit noise. Avoiding unnecessary vehicle and equipment idling. Implement the Noise Monitoring Plan provided in Appendix L.		
Historical resources	Chance discovery of a historic resource	Train workers on the tell-tale signs of historical or archaeological resources to enable the identification of a chance discovery. In the event that an unknown historic resource is found during the construction or operation of the Project, follow the requirements included in the Approval: Stop all work in the location of the find and contract Alberta Culture and Tourism; Take appropriate action in accordance with regulatory guidance; and Recommence work upon direction of the regulator.		

Additional wildlife, traffic, erosion, and sediment control, weed management, surface water and groundwater quality and quantity, wetlands, landscape, air quality/dust control, and noise control mitigative measures are provided in Appendix R (SLR 2022b).

4.13 Proposed Land Uses – Part 2(e)

The proposed land uses will be determined by assessing the surrounding lands during the time of reclamation. Currently, the land is used for tame pasture and hay. As of now, the future land use at the end of the mine lifecycle will be re-established to agricultural and tame pasture/hay.

4.14 Release of Pit Water – Part 2(f)

4.14.1 Stormwater Management Plan

The assessment of stormwater found in Appendix J confirms that the proposals to manage stormwater runoff are feasible, sustainable, and practical and are appropriate for the duration of the development. From the assessment, it can be seen that the following objectives can be met, and that stormwater runoff associated with the development can be managed using Rocky View County/Alberta Provincial stormwater management techniques and best practice guidance:

- 1. All stormwater runoff generated by incident rainfall on the site (and its immediate surrounds) is managed to prevent flooding downstream in the catchment and maintain "dry" working areas;
- 2. To provide suitable stormwater quality treatment and prevent potential pollution of the underlying aquifer and surface water bodies within the catchment;
- 3. To provide a passive or gravity stormwater management system that does not require routine pumping;
- 4. To achieve separation of "clean" (i.e., stormwater runoff from unworked land) and potentially "dirty" (i.e., runoff from overburden tips) stormwater runoff where practically possible; and
- 5. To provide stormwater management measures, which can be incorporated into the site development to prevent operational areas being impacted by stormwater runoff.

The site is located approximately 1,300 m upstream of Big Hill Springs and is located within the surface water catchment of an unnamed watercourse which forms a tributary to the larger Bighill Creek. No surface water bodies (streams or lakes) have been identified within the site area itself; however, there are two larger temporary graminoid marsh (M-G-II) wetlands in the northwest corner which are to be retained on the landscape. The other smaller wetlands and ephemeral water bodies scattered across the property where aggregate extraction will take place are not going to be retained.

The pit will be worked in six phases starting in the southeast corner of the property. As previously described, the site will be worked to 1.0 m above the maximum recorded groundwater level within the gravel deposit and will therefore be worked dry. No dewatering of the underlying aquifer or quarried voids is anticipated as groundwater will not be intercepted and incident rainfall on to workings areas will infiltrate into the unsaturated sand and gravels that will form the base of the extraction areas.

The stormwater management strategy is implemented over six Surface Water Management Phases and is presented in detail on Figures 3A to 3F in Appendix J. Generally, the surface water management measures for each stage are similar and include the following:

- Grassed / lightly vegetated Perimeter ditches (swales) will be installed at the outer foot of the screening berms / overburden stockpiles to route "dirty" runoff (initial treatment) from the mounds to appropriately sized settlement/attenuation ponds (secondary treatment). Shallower longitudinal gradients in the swales will encourage longer residence times, lower velocities, and thus improve treatment effectiveness. The perimeter ditches are identified with blue dashed lines and the ponds as blue rectangles on Figure 2 and Figures 3A to 3F in Appendix J.
- A locally created sump excavated into the underlying sands and gravels accepts the "treated" outflow from the pond where the runoff will locally form groundwater recharge (via infiltration through the sands and gravels thus providing a tertiary level of surface water treatment) and reduction in surface water volumes. Sumps are to be connected to the outer settlement ponds by a culvert/pipe beneath the perimeter berm. The infiltration sumps are identified as magenta squares on Figure 2 and Figures 3A to 3F in Appendix J.

- Interception ditches are proposed upslope of the Surface Water Management Phases to prevent stormwater runoff from the up-gradient catchment entering the extraction areas. This water is considered "clean" and therefore does not require treatment; instead, it is routed around the Surface Water Management Phases via diversion ditches and allowed to disperse overland (via a series of shallow excavated diffusion channels). This provides hydrological continuity between the upslope and downslope of the relevant Surface Water Management Phases. The diversion ditches are identified with orange dashed lines on Figure 2 and Figures 3A to 3F in Appendix J.
- Temporary, locally created, sump excavated within the extraction area to collect clean runoff upslope of the Surface Water Management Phases during the development of Phases 2, 3, and 4 (see orange square on Figure 2 and Figures 3B to 3D, Appendix J). Prior to Phase 4 extraction, the temporary sump will also collect water from Pond C during the Phase 3 extraction operation (Figure 3C, Appendix J). The temporary sump is to be located in a low topographic spot within the extraction area and is required due to topographic constraints that impede gravity flow of clean water away from the extraction area (see direction of diversion ditches discharging to the temporary sump). Water collected in the temporary sump will be infiltrated back into the ground.
- Surface water management features (i.e., swales/settlement ponds/sumps) have been designed to accommodate the design 1:100 -year rainfall event (as required by Provincial/County guidance). A conservative approach has been undertaken by providing freeboard allowances and modelling "worst case" scenarios.

Potential maintenance schedules for the stormwater management features have been outlined in Appendix J and their implementation is fundamental to ensure the efficiency of the surface water management measures.

All surface water infrastructure will be located within the Project boundary as explained in the first round of SIRs, and provided in Appendix J.

4.14.2 Release of Pit Water

There will be no release of pit water for the following reasons. Mountain Ash plans to excavate material to 1.0 m above the maximum recorded groundwater level within the gravel deposit. Therefore, no groundwater accumulation is expected within the pit.

A Stormwater Management Plan (SWMP) has been developed which addresses water management within the pit as follows (Appendix J).

- The pit will be divided into quadrants and then into individual cells with a maximum of approximately four cells "open" at any given time.
- Incident rainfall onto the extraction areas within the glacial till horizon will be locally managed and directed to a dedicated sump with proposed minimum dimensions of [5 m (W) × 5 m (L) × 1 m (D)] = 25 m³.
- Numerical calculations (for the design 1:100-year 24-hour storm event) shows limited accumulation of runoff within the extraction areas when glacial till is exposed. For a maximum of four cells (total area of= 40,000 m²), the flood depth spread over the extraction base area is equivalent to less than 10 cm of water depth during the design storm event. It should be noted that typical storm events will result in much less runoff than the design storm. The exposure of the till during excavations will be temporary until the underlying sands and gravels are reached.

• Once the excavation enters the sand and gravel, incident rainfall (for the design 1:100-year 24-hour storm event) will readily infiltrate, therefore no management of precipitation within the extraction areas will be required at that stage.

4.15 Soil Replacement Depths – Part 2(g)

Table 5 has been taken from the Stripping and Grading plan found in Appendix M.

Subsoil and totals have been updated based on the 2022 soils field program completed by AECOM, December 29 and 30, 2022, addressed in SIR #2 (SLR 2023b) and found in Appendix Q.

Table 5: Quantities of Materials used to Reclaim Site Post Mining

Phase	Surface Area (m)	Topsoil (m²)	Subsoil (m²)	Overburden & Rejects (@15% Gravel) (m²)	Total (m³)
1	128,424	32,106	32,106	556,573	620,785
2	151,720	37,930	37,930	749,523	825,383
3	151,989	37,997	37,997	1,093,980	1,169,974
4	116,171	29,043	29,043	675,215	733,301
5	158,236	39,559	39,559	770,145	849,263
6	83,430	20,857	20,857	408,136	449,850
Total	789,970	197,492	197,492	4,253,571	4,609,058

4.16 Scale Drawing of Site Conditions After Reclamation – Part 2(h)

Scale drawings of the phased approach Mountain Ash is taking with the mining and reclamation plan have been provided in Figures 7 to 13.

24

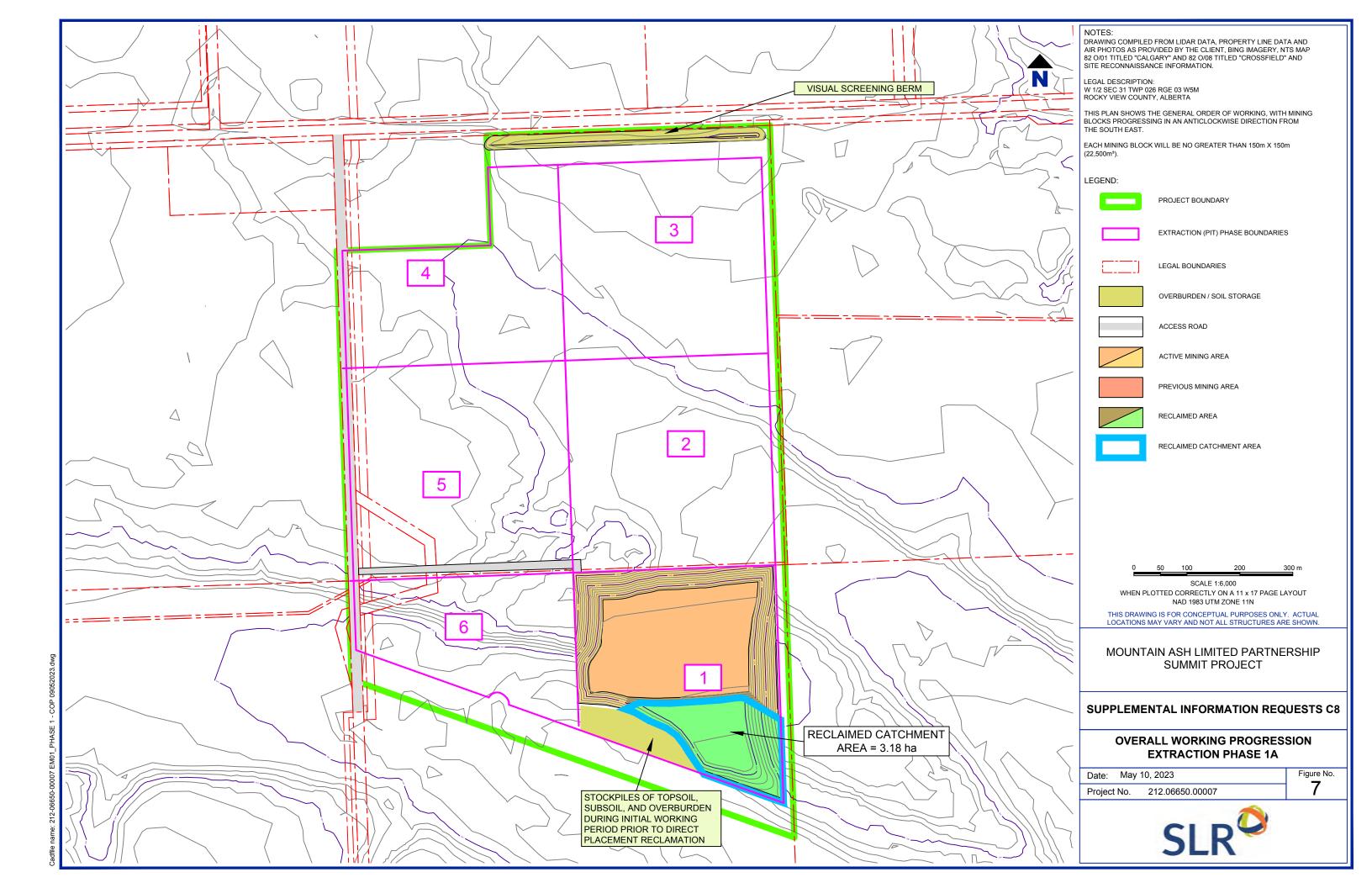
5.0 ADDITIONAL ACTIVITIES PLAN INFORMATION

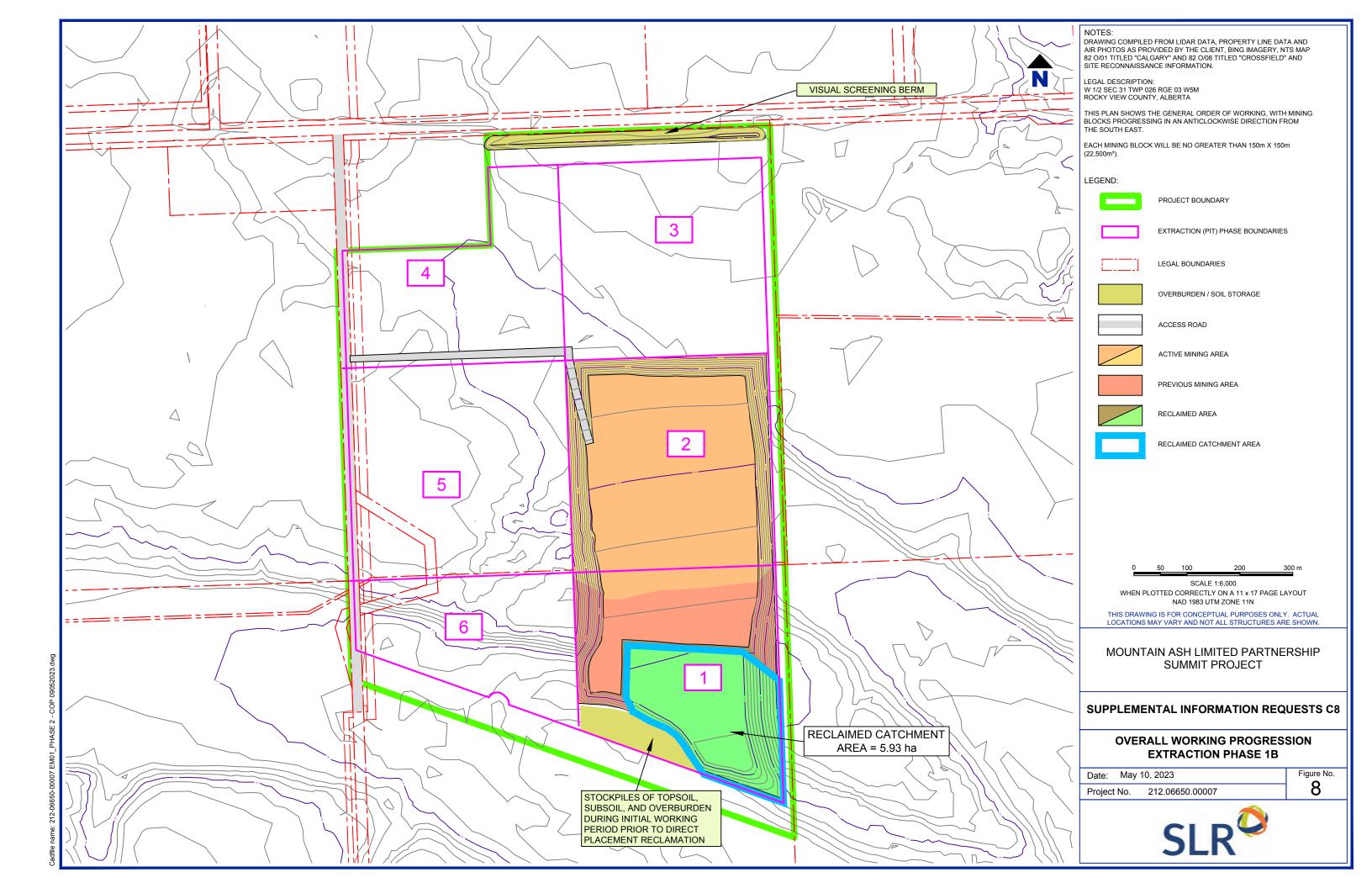
5.1 Inventories

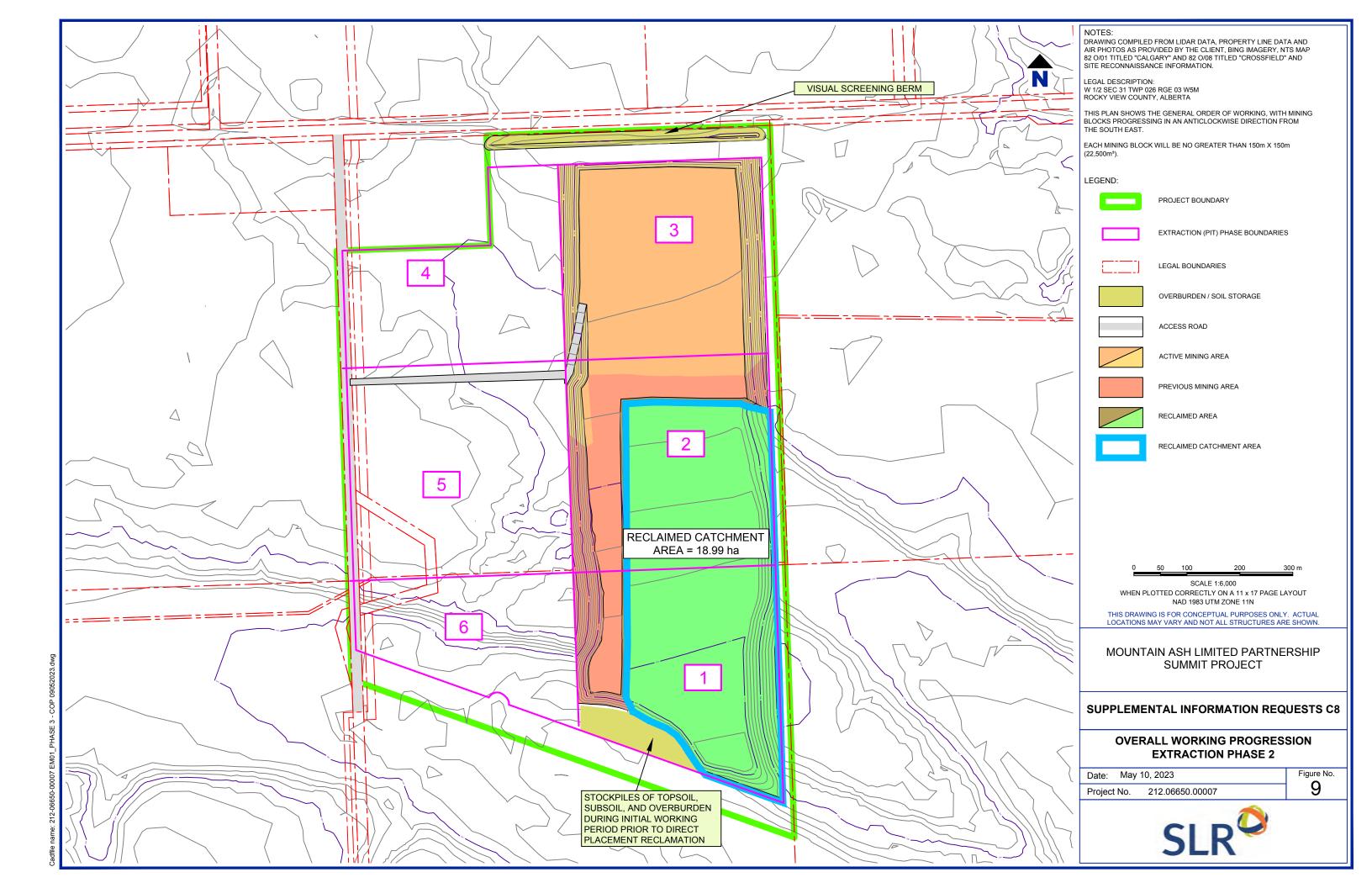
Table 6 includes the estimated tonnage of aggregate based on an anticipated density of 2.0 t/m³.

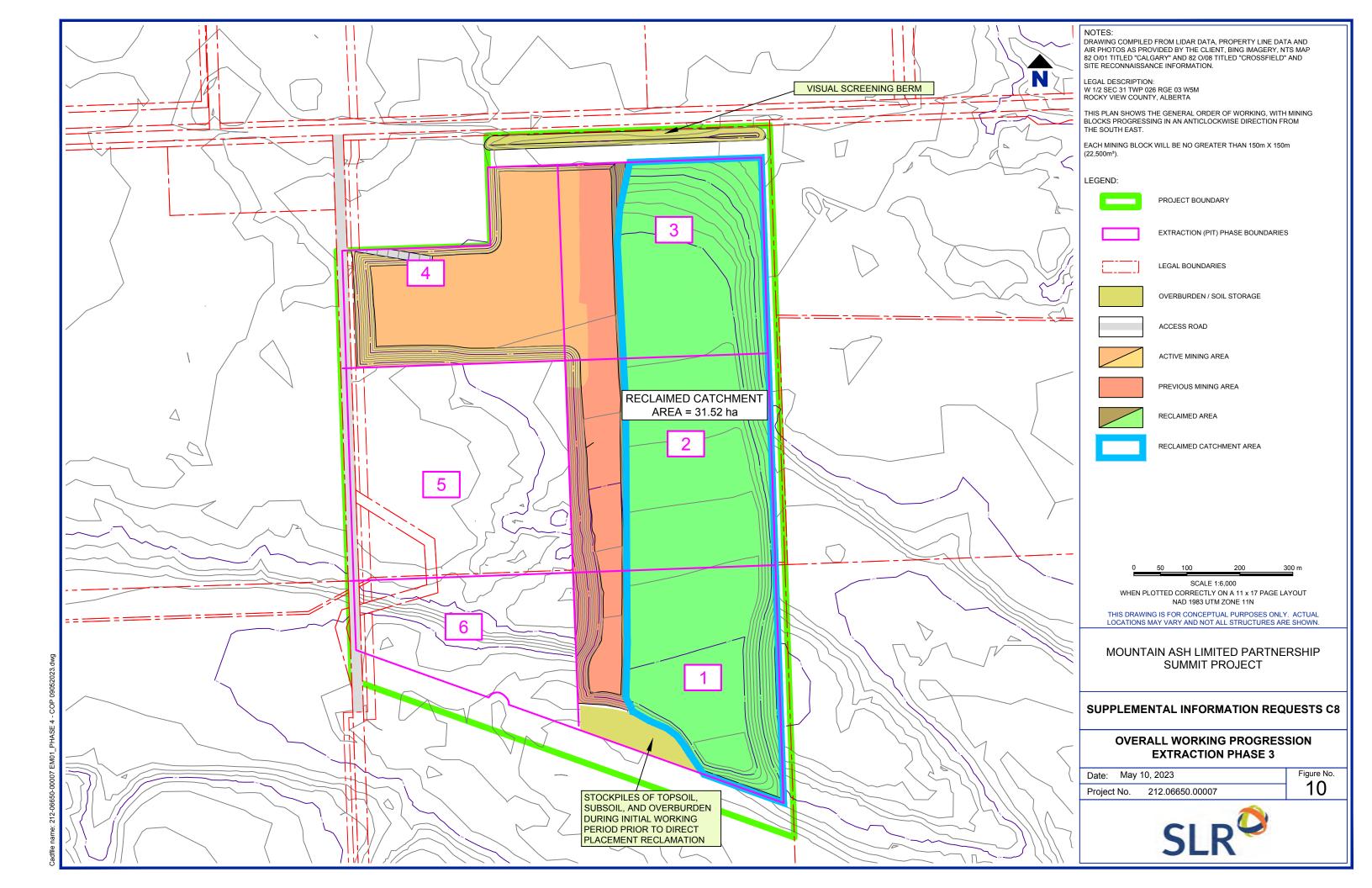
Table 6: Estimated Tonnage ('000 t) of Aggregate within Pit Extraction Boundary

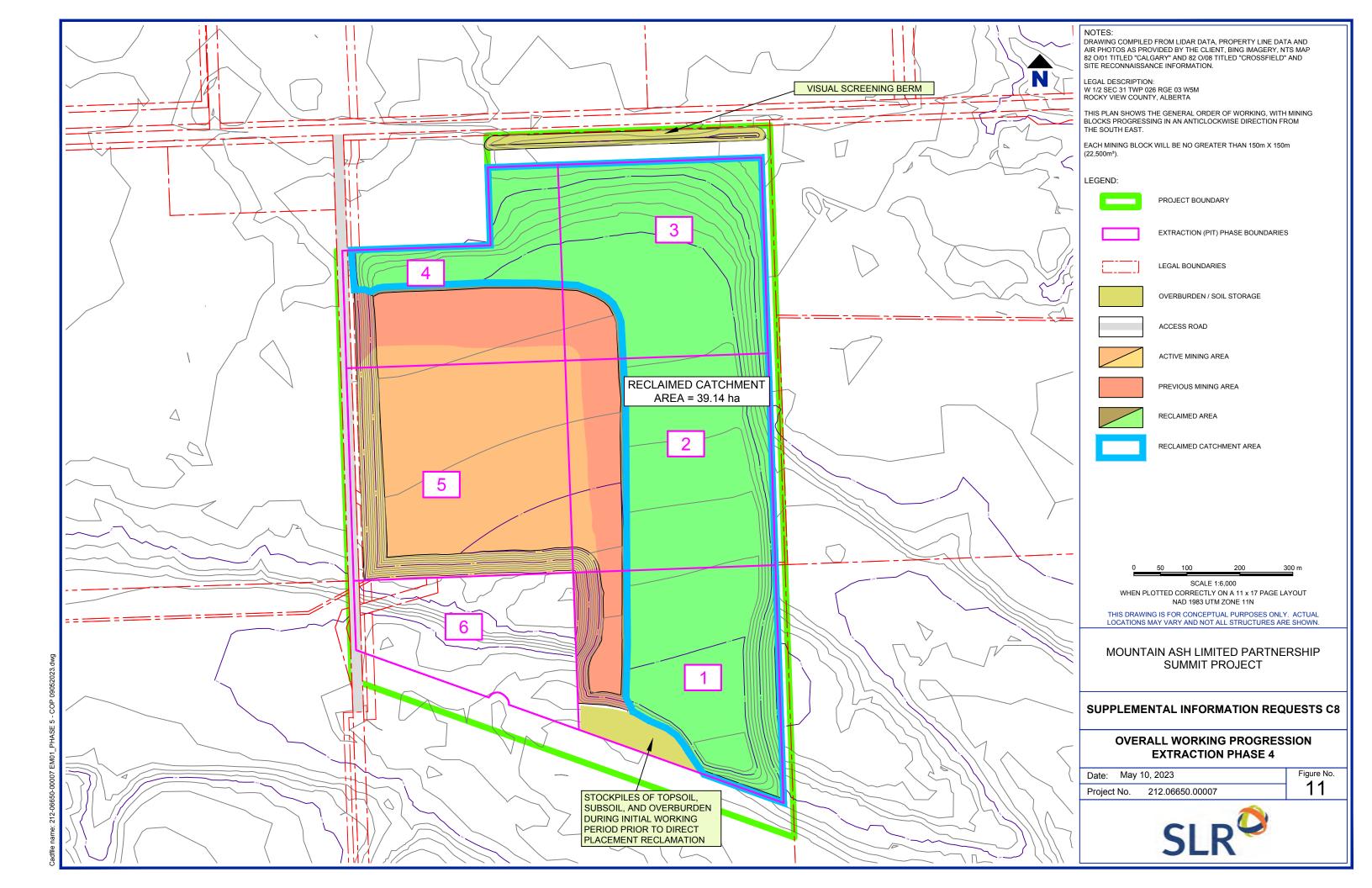
	Mountain Ash Property
Subsurface Area	
Estimated Volume of overburden	5,904
Estimated Volume of Aggregate between Top of Sand and Gravel and 1 m above Water Table ('000 t)	21,913
Estimated Volume of Remaining Aggregate between 1 m above Water Table and Top of Bedrock	2,885

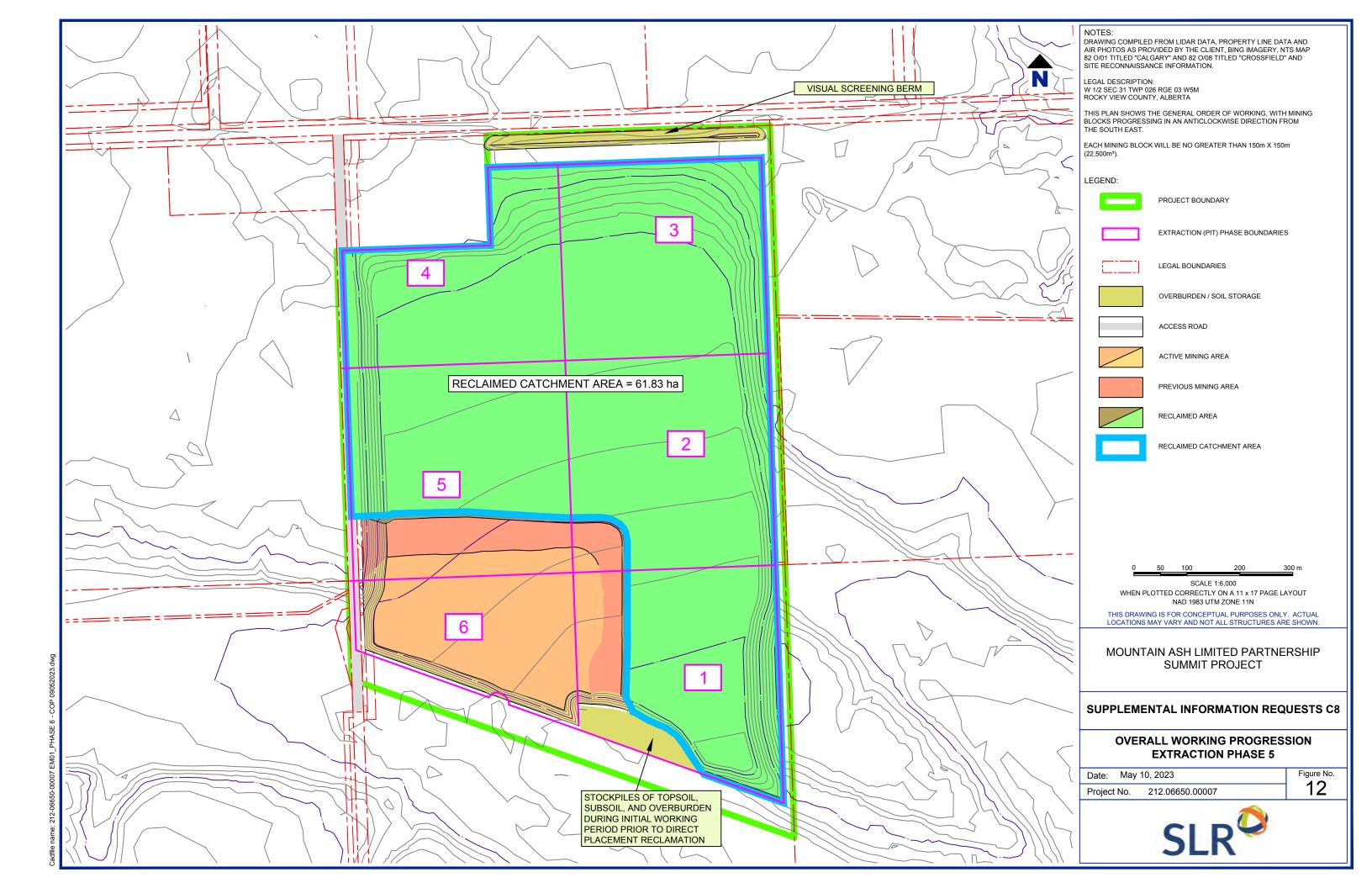

5.2 Undisturbed Buffer Zones

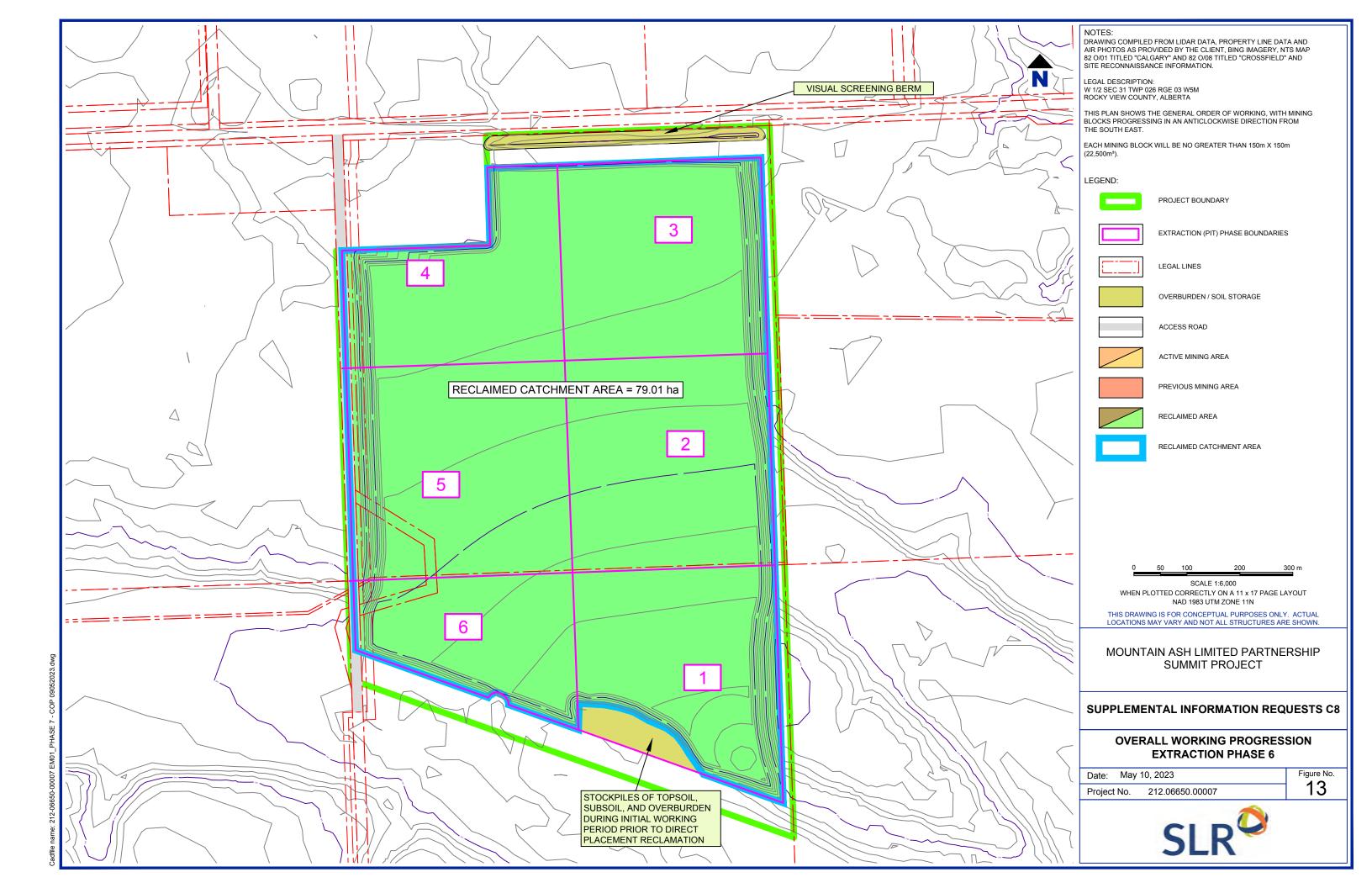

With respect to undisturbed buffer zones, the following will be implemented:


- approximately 140 acres (56.7 ha) along the south boundary owned by Mountain Ash
- 3 m "EPA" undisturbed buffer zone adjacent to all property lines as per the Code of Practice for Pits in Alberta
- 60 m Alberta Transportation ("AT") setback, containing an approximate 38 m permanent landscaped berm, which parallels Highway 567, up to the avoided wetland area in the northwest corner of the Property
- 30 m municipal setback from the Property Boundary to Range Road 40 (western boundary)
- 15 m municipal setback along the Property Boundary to the Extraction Area (eastern boundary)
- 190 m "no crushing" setback from the east property boundary
- 140 m "no crushing" setback from the north property boundary and


5.3 10 m buffer around undisturbed / avoided wetlands, pursuant to the Alberta Wetland Policy. Depth of Excavation


Depth to excavation, including overburden removal and aggregate extraction, is 14 to 24 m and is detailed for each phase in the mining and excavation plan found in Appendix N.





PROJECT NO: 212.06650.00007

DATE: May 8, 2023

5.4 Sensitive Areas

A total of 23 water bodies were assessed as part of this WAIR. Nineteen water bodies were identified as partially or fully within the Project Boundary, including 7 wetlands. Four water bodies fall outside of the Project Boundary but are within the Project Area, including 3 wetlands. Fifteen of the water bodies will be partially or fully removed, including 7 wetlands, and 8 water bodies, including 3 wetlands, will be avoided.

There were no shallow open water wetlands identified other than a man-made dugout excavated at the location of an historical wetland. Wetlands were classified as follows (Appendix S: WAIR, SLR 2023c):

- One permanent graminoid marsh (M-G-III) wetland
- Eight temporary graminoid marsh (M-G-II) wetlands
- Fourteen Class I ephemeral water bodies, including one identified as a man-made dugout.

At the time of the assessment, the ephemeral water bodies and temporary wetlands were farmed through, being identified within cultivated hay fields or tame pasture in the Project area.

Based on a study of groundwater conditions in the Project area, the wetlands are all surface water fed, with no permanent groundwater source (SLR 2020c). Technical Memorandum B8 & B9 from the third round of SIRs (SLR, 2023c), and Appendix T provides the Wetland Monitoring Program for the Project.

5.5 Wildlife Considerations

Five provincially sensitive species listed under the current *General Status of Alberta's Wild Species* (GoA 2017) have been observed within a 1,000 m buffer of and including the Project area. Of the five species identified, the barn swallow is also listed as Threatened under the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) and under Schedule 1 of *Species at Risk Act* (SARA; GoC 2019). The following species were found within the Alberta Fisheries and Wildlife Management Information System (FWMIS) search area (SLR 2020c):

- Great blue heron
- Sora
- Least flycatcher
- Eastern kingbird
- Barn swallow

Of the five bird species listed above, four species were observed during point counts or incidentally within the Project area. Two active barn swallow nests were observed under the eave troughs of two of the residences present in the Project area. The least flycatcher and eastern kingbird were heard singing in aspen stands at a few locations in the Project area. A single great blue heron was observed flying over the Project and no evidence of nesting was found. Sora, the fifth provincially sensitive species, were not observed during field surveys; and specific habitat for sora was not present.

The potential for grass nesters and tree nesters to use the Project area for nesting habitat is high as both nesting types of birds were observed during the point count surveys and as incidental observations. No active grassland nests were observed; however, a small unoccupied stick nest was observed in the southeast part of the Project area. Nest boxes were observed along the access roads leading to one of the dwellings. One nest box was occupied by a pair of mountain blue birds. Vegetation and tree clearing activities will therefore need to be undertaken during mid to late winter to avoid the likelihood of encountering nesting birds, in accordance with direction from AEP.

No obvious use of wetlands by larger wildlife was observed. Cliff swallows and northern rough-winged swallows were observed around Wetland 5 (dugout).

Cliff swallows were observed collecting mud from the dugout walls and transporting it back to the mud nests under the eavestroughs of one of the dwellings onsite. Wetlands 19 and 20 have been heavily used by cattle and hoof shear was very prominent. No indication of other hoofed mammals was observed, although deer and elk scat and a red fox were observed in the Project area. These mammals may be using water from wetlands when present, although it is unlikely due the temporary water permanence and other less disturbed habitat, such as the Bighill Creek valley to the south.

Mammals observed include elk, mule deer, and red fox (SLR 2020c). Cattle graze within tame pasture lands around the site.

A Wildlife Protection Plan is provided in Appendix U, and were responded to in the first round of SIRs, #D3 (SLR 2022a).

5.6 Equipment Type

The primary operations at the Summit Pit will consist of aggregate extraction, crushing, screening, stockpiling, and offsite shipping.

5.6.1 Aggregate Extraction

Extraction will take place from Phases 1 to 6. Excavation will occur by stripping the deposit with a scraper, dozer, grader, rock trucks, or excavator. There will be no blasting on the site.

5.6.2 Aggregate Processing and Recycling

Aggregate processing can include crushing, screening, and conveyor transferring to drop points. No recycling has been considered in this registration application. Crushing plants can consist of primary and secondary crushers, and screening plants can consist of primary and secondary screeners. Ground dust will be controlled via watering the area around the aggregate processing and loading site. Water is supplied through third-party- vendors and does not require a license.

5.6.3 Conveyor Drop

Conveyors will be included in operation. There will be one or more stack conveyors depending on the phase of operation, which will transfer aggregate from crushers to stockpiles. Typically, the final conveyor is a telescopic stacker to the stockpile. The drop height is set to a maximum of 1.5 m to reduce dust emissions.

Mountain Ash Limited Partnership | Code of Practice for Pits in Alberta Application – REVISED

5.6.4 Loading and Unloading

Mountain Ash will sell aggregate from the Summit Pit throughout the year; however, most sales will likely be focused over the spring, summer, and early fall period. During this activity, aggregate will be loaded from the stockpiles onto trucks and transported offsite.

5.6.5 Shipping

Trucks are weighed at the scale house before leaving the Summit Pit. There is one entrance to the Summit Pit which is paved and is located off Range Road 40. The internal haul road from the entrance will be unpaved with dust suppression applied on the remainder of the internal routes.

6.0 SECURITY ESTIMATE

Full cost security has been calculated based on the total lands disturbed and the total volume of material being stripped. The total estimated cost of reclamation has been calculated to be \$735,116.79. Mountain Ash has included a 10% contingency to capture additional costs above which have been identified in the attached full-cost security calculation. of \$73,511.68. The total security proposed to be provided is \$808,628.47 which was determined subsequent to the soil survey completed in December 2022 at the request of the department (SLR 2023b). Please refer the attached Soil Survey found in Appendix Q, activities plan drawings found in Appendix W. Costs are detailed as Appendix O. In calculating these amounts, the following was taken into consideration:

- The security proposed reflects the first 5 years of development for phase 1 and is based on 7.6 ha of disturbed area (area's A, B, C and D; see Appendix O)
- Nature of the pit operations Dry shallow pit
- Reclamation plan Progressive reclamation is being proposed (see Appendices E and F)
- Reclamation remaining As this is a new pit no outstanding reclamation
- Potential sources of contamination No current contamination onsite and none anticipated as this will be a dry pit producing aggregate only with no secondary processing occurring onsite
- Location of pit Equipment, soil, and hauling costs are based on local standard costs in the Calgary area. Costs were confirmed with contractors in the area.
- Type and amount of equipment Mountain Ash has provided a detailed list and associated costs that are confirmed with both environmental staff and contractors
- Costs of securing the site for safety Part of contingency amounts
- Need for updated Plans Part of contingency amount

Several other considerations were part of the security estimate that are not detailed in the COP for Pits or the Guide to the COP; these are as follows:

- Exclusion of extraction setbacks onsite Extraction setbacks are not included in the proposed activities plan in order to avoid sterilizing gravel. Minable areas will be high walled and reclaimed slopes rebuilt to 3:1 or flatter.
- Rejects Upon submission of the 5--year report, Mountain Ash will provide a surveyed quantity
 of materials that are unsuitable for use or sale in order to secure reject material to be used in
 future reclamation.
- Staging area and haul road Topsoil and overburden from the staging area and haul road will be
 utilized to construct the permanent screening berms along the north property line, as such,
 material volumes from these areas have been omitted from the security calculation.

As described above, in Section 4.6 and Appendix E, Mountain Ash is proposing to complete progressive reclamation as the pit is developed. This will minimize the total area of open pit operations at any time and reduce the overall environmental impact of the pit.

6.1 Proposal for the Amount of Security

Provided under separate cover, see Appendix O.

Mountain Ash Limited Partnership | Code of Practice for Pits in Alberta Application – REVISED

6.2 Proposal for the Form of Security

A Letter of Credit ("LOC") provided by an approved financial institution will be provided to the Government of Alberta as the form of security for the pit.

7.0 REFERENCES

- Alberta Agriculture and Forestry. 2021. *AGRASID Alberta Soil Information Viewer*. https://soil.agric.gov.ab.ca/agrasidviewer/
- Alberta Agriculture, Food and Rural Development. 2000. Annual Total Precipitation, 1971 to 2000.
- Alberta Environment (AENV). 2004a. *Code of Practice for Pits*. Made under the Environmental Protection and Enhancement Act, RSA 2000, cE-12, as amended and Conservation and Reclamation Regulation (AR 115/93), as amended. September 1, 2004.
- AENV. 2004b. *Guide to the Code of Practice for Pits*. Alberta Environment. Edmonton, Alberta. 84 pp. https://open.alberta.ca/dataset/03ec9cc3-ecf7-4370-8af2-b20997b29428/resource/9993ab67-d62b-4392-96cb-b304139afc59/download/2004-GuideCodePracticePits-2004.pdf
- Alberta Soil Information Centre. 2021. Alberta Soil Names File (Generation 4) Users Handbook.
- Environment and Climate Change Canada (ECCC) 2022. Available online: Historical Data Climate Environment and Climate Change Canada (weather.gc.ca) Assessed on December 15, 2022
- Natural Regions Committee 2006. *Natural Regions and Subregions of Alberta*. Compiled by D.J. Downing and W.W. Pettapiece. Government of Alberta. Pub. No. T/852.
- Government of Alberta (GoA). 2015. *Map of Environmentally Significant Areas of Alberta, updated to November 10, 2015.* https://open.alberta.ca/dataset/4a10ab02-0297-4a29-84a5-1e687978d5a6/resource/f83decf5-0912-4277-b425-cb5f7f9bdbe8/download/1997-esa-provincial-overview.pdf
- GoA. 2017. *General Status of Alberta's Wild Species*. Government of Alberta. 2021. https://extranet.gov.ab.ca/env/wild-species-status/default.aspx
- Government of Canada (GoC). 2019. *Species at Risk Act (SARA)*. Government of Canada. Justice Laws Website. 2021. https://laws.justice.gc.ca/eng/acts/S-15.3/page-17.html#h-435647
- Land Canada Inventory 2021. Available online: https://sis.agr.gc.ca/cansis/nsdb/cli/index.html . Assessed on April 16, 2021.
- SLR Consulting (Canada) Ltd. (SLR). 2020a. *Mountain Ash Limited Partnership Aggregate Operation NW and SW 31-26-03 W5M, Rocky View County, Alberta Hydrogeological Assessment Report*. Prepared for Mountain Ash Limited Partnership. Calgary, AB. January 14, 2020
- SLR. 2023. Mountain Ash Limited Partnership Aggregate Operation NW and SW 31-26-03 W5M, Rocky View County, Alberta Conceptual Stormwater Management Plan. Prepared for Mountain Ash Limited Partnership. Calgary, AB. May, 2023
- SLR. 2020c. Mountain Ash Limited Partnership Aggregate Operation NW and SW 31-26-03 W5M, Rocky View County, Alberta Biophysical Impact Assessment Report. Prepared for Mountain Ash Limited Partnership. Calgary, AB. January 14, 2020
- SLR 2022a. SLR September 22, 2022. SIR Response D3 FINAL 20220922.pdf
- SLR 2022b. SLR September 22, 2022. SIR Response C1 FINAL_20220922.pdf
- SLR 2022c. SLR September 22, 2022.SIR Response C5 FINAL_20220922.pdf
- SLR 2022d. SLR September 23, 2022. SIR Response C2 FINAL_20220923.pdf

Mountain Ash Limited Partnership | Code of Practice for Pits in Alberta Application – REVISED

SLR 2023a. SIR#2 Responses for Mountain Ash Limited Partnership Summit Pit 12 Jan 2023. TM C11-C12, Drawing 10 provided by Badke Consulting Ltd.

SLR 2023b. SIR#2 Responses for Mountain Ash Limited Partnership Summit Pit 12 Jan 2023. TM D5-D6.

SLR 2023c. 2023_5_10 SLR Cover Letter to AEP FINAL.pdf. TM B8-B9

SLR 2023d. 2023_5_10 SLR Cover Letter to AEP FINAL.pdf. TM C12

Soil Classification Working Group. 1998. *The Canadian System of Soil Classification*. 3rd ed., 187 p. Ottawa, Ontario. Agriculture and Agri-Food Canada Publication 1646 (Revised).

United States Environmental Protection Agency (USEPA). 2006. National Ambient Air Quality Standards (NAAQS) for Particulate Matter (PM_{2.5}). Effective December 18, 2006.

8.0 STATEMENT OF LIMITATIONS

This report has been prepared and the work referred to in this report has been undertaken by SLR Consulting (Canada) Ltd. (SLR) for Mountain Ash Ltd., hereafter referred to as the "Client". The report has been prepared in accordance with the Scope of Work and agreement between SLR and the Client. It is intended for the sole and exclusive use of Mountain Ash. Other than by the Client and as set out herein, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted unless payment for the work has been made in full and express written permission has been obtained from SLR.

This report has been prepared for specific application to this site and site conditions existing at the time work for the report was completed. Any conclusions or recommendations made in this report reflect SLR's professional opinion.

Information contained within this report may have been provided to SLR from third party sources. This information may not have been verified by a third party and/or updated since the date of issuance of the external report and cannot be warranted by SLR. SLR is entitled to rely on the accuracy and completeness of the information provided from third party sources and no obligation to update such information.

Nothing in this report is intended to constitute or provide a legal opinion. SLR makes no representation as to the requirements of compliance with environmental laws, rules, regulations or policies established by federal, provincial or local government bodies. Revisions to the regulatory standards referred to in this report may be expected over time. As a result, modifications to the findings, conclusions and recommendations in this report may be necessary.

41

Appendix A

Soil and Weed Management Plan

Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership

SLR Project No: 212.06650.00007/8

Mountain Ash Limited Partnership Summit Pit

SLR Project No: 212.06650.00006

April 2021

Soil and Weed Management Plan

Mountain Ash Limited Partnership Rocky View County, Alberta SLR Project No: 212.06650.00006

Prepared by SLR Consulting (Canada) Ltd. 200 - 708 11th Ave SW Calgary, Alberta, T2R 0ER

for

Mountain Ash Ltd. Partnership 1945 Briar Crescent NW Calgary, AB, T2N 3V6

April 2021

This document has been prepared by SLR Canada. The material and data in this report were prepared under the supervision and direction of the undersigned.

Prepared by:

But Shate

Reviewed by:

Katrina Sharko, B.Sc., P.Ag.

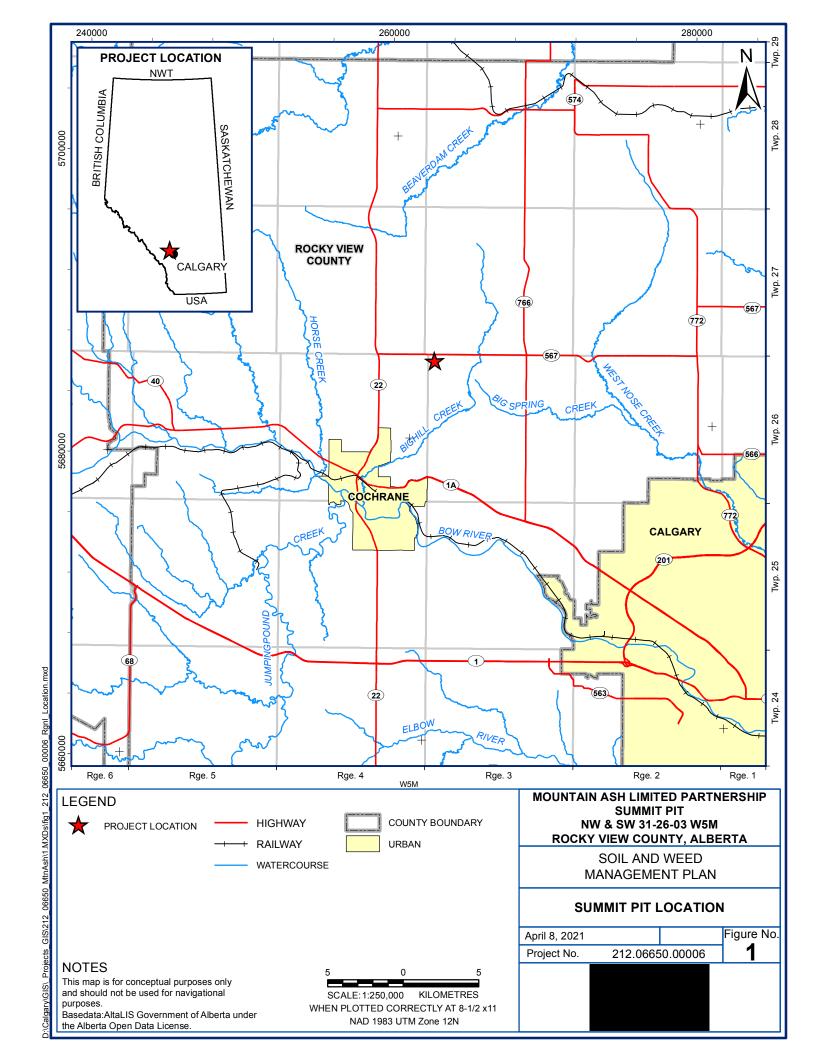
Soil Scientist and Vegetation Ecologist

Rick Lauzon, P.Biol., R.P.Bio. Principal Environmental Consultant

Distribution: 1 copy (PDF) – Mountain Ash Limited Partnership

1 copy - SLR Consulting (Canada) Ltd.

Table of Contents


1.0	INTRO	DDUCTION	. 1
2.0		ASSESSMENT	
	2.1	Soil Handling and Soil Management	. 4
3.0	WEE	MANAGEMENT PLAN	. 4
	3.1	Weed Survey	
	3.2	Weed Control Methods	. 5
4.0	REFEI	RENCES	. 5
5.0	STATI	EMENT OF LIMITATIONS	. 5
TAB	LES		
Table 1		Example Profile for Dunvargan Soil Series	. 4
Table 2		Example Profile for Dunvargan-gl Soil Series	
FIGL	JRES		
Figure :	1	Summit Pit Location	. 2

1.0 INTRODUCTION

Mountain Ash Limited Partnership (Mountain Ash) is planning to develop the Summit Pit (the Project) along Highway 567 within NW and SW 31-026-03 W5M, northeast of the Town of Cochrane, in Rocky View County (RVC), Alberta (Figure 1). The Project will encompass approximately 208 acres (84 ha) excluding existing road rights-of-way. Mountain Ash is applying for Phase 1 of a six-phase mining plan. This land is currently owned by 1410266 Alberta Ltd. (a general partner of Mountain Ash). Summit Pit received land use and a master site development plan (MSDP) approval on March 2, 2021 (Land Use Bylaw C-8051-2020).

A biophysical impact assessment was undertaken as part of the MSDP application to assess baseline conditions for soils, vegetation and wildlife and to provide an impact and cumulative effects assessment on these resources. As a requirement for the Code of Practice (COP) for Pits and Development Permit (DP) applications, this report details the Soil Management Plan (SMP) and Weed Management Plan (WMP) in relation to the operation of the Summit Pit. This is also consistent with a condition required as part of the land re-designation and MSDP.

2.0 SOIL ASSESSMENT

The AGRASID Alberta Soil Information Viewer (Alberta Agriculture and Forestry 2021) was accessed to determine soils expected to be present in the proposed Project area. The Alberta Soil Names File (Generation 4) User's Handbook (Alberta Soil Information Centre 2021) was also consulted. This document presents the authoritative suite of acceptable soil series names, with some of their defining attributes, for use in Alberta. The document outlines soil series name, characteristics such as order, great group, subgroup and parent material type and texture of soils that occur within a subject area (Alberta Soil Information Centre 2021).

Desktop review determined that underlying parent material in the Project area is moderately to strongly calcareous, mixed Continental and Cordilleran till (Alberta Soil Information Centre 2016). Fertile loam to clay loam Orthic Black Chernozemic soils are extensive, with Gleysolic soils present in poorly drained and lower slope positions expected at the Project (Alberta Agriculture and Forestry 2016). The Dunvargan soil series, a fertile, well-drained Orthic Black Chernozem formed on glacial till parent material, was identified across the majority of the Project area, with the gleyed variant (Dunvargan-GL) identified in depressional areas

Soils were classified in the field in accordance with criteria established by the Soil Classification Working Group (1998). Soil inspection locations were completed to verify the desktop review and to help determine the presence or absence of wetlands on the landscape. Soil investigations were conducted on foot with a shovel and hand auger from July 2 to 4, 2020. The soils were investigated to a depth of approximately 1 m at all test hole locations unless auger refusal was encountered. Soil inspection locations (SILs) were advanced at a rate of approximately one to two locations per hectare for a total of 10 soil inspection locations. The depth of each soil horizon encountered at each SIL was recorded to determine best methods for soil handling and replacement. Soil map units have a certain range of properties or variability due to soil being a continuum. Consequently, the soil inspections were extrapolated using the principles of geomorphology and surficial geology in concert with the vegetation patterns to delineate individual soil map units. Soil map units identified in the field were correlated to the general soil series established in each unique ecosite identified within the proposed Project area.

Further soil field work will be completed prior to or in conjunction with site stripping to guide soil storage and stripping practices onsite.

In the field, upland soil inspection locations confirmed that the majority of the Project area consists of Orthic Black Chernozems of the Dunvargan soil series. Textures were loam to sandy clay loam. Wetlands contained gleyed Dunvargan soil series, with mottling in the Bmgj and Ccag and Ckg horizons. Areas of soil disturbance were noted in the vicinity of the several residences in the Project area. Example profiles of Dunvargan and Dunvargan-GL soils are identified in Tables 1 and 2. These soils have low wind erosion risk and moderate water erosion risk.

Table 1: Example Profile for Dunvargan Soil Series

HORIZON	DEPTH (CM) COLOUR		FIELD TEXTURE	STRUCTURE	CONSISTENCE	
Ар	0-19	black	Clay loam	granular	Friable	
Bm	Bm 19-38 dark yellowish brown		Clay loam prismatic		Firm	
Cca	38-57 pale brown		Sandy clay loam	massive	Very Firm	
Ck	57-100 yellowish brow		Sandy clay loam	massive	Very Firm	

Table 2: Example Profile for Dunvargan-gl Soil Series

HORIZON	DEPTH (CM)	COLOUR	FIELD TEXTURE	STRUCTURE	CONSISTENCE	
Ар	0-33	black	Clay loam	granular	Friable	
Bmgj	33-52	33-52 brown Clay loam		prismatic	Firm	
Ccag	52-59	grayish brown	Clay loam	massive	Firm	
Ckg	59-100	yellowish brown	Sandy clay loam	massive	Firm	

2.1 Soil Handling and Soil Management

During construction, best practices for erosion and sedimentation control will need to occur to prevent soil erosion once the vegetation is removed. Topsoil and upper subsoil will be salvaged and stockpiled separately for reclamation purposes. These soils are not susceptible to wind erosion; however, water erosion during spring melt or heavy rainfall events is a concern. Soil stockpiles will be vegetated with an appropriate seed mix to prevent water erosion.

Average topsoil onsite for upland areas is approximately 25 cm and approximately 30 cm in wetland areas. Approximately 20 cm of suitable subsoil is present. Soil series and subsoil will be further characterized onsite during stripping and grading. Soils will be appropriately managed under the direction of a qualified professional onsite. Unique or problem soils, if present, will be handled separately.

3.0 WEED MANAGEMENT PLAN

Weed species and weed control fall under both provincial and municipal legislation. Provincial legislation (i.e., the *Weed Control Act*), is enforced by municipalities, which may have additional bylaws or policies that they also enforce. Under the *Weed Control Act*, exotic or alien plant species are listed as either prohibited noxious or noxious (GoA 2010). According to the *Weed Control Act*, prohibited noxious weeds need to be destroyed, which means "to kill all growing parts or to render reproductive mechanisms nonviable". Noxious weeds need to be controlled, which means "to inhibit their growth or spread or to destroy".

3.1 Weed Survey

A weed survey was conducted as part of the biophysical assessment in June 2019 and no weeds were identified. Professionals supporting the site through construction will assess and monitor stockpiles for noxious and invasive weed species. This includes the list of invasive species provided by RVC and species listed under the *Weed Control* Act.

3.2 Weed Control Methods

Since no specific species of weeds have been identified onsite, general weed control methods are presented in this section. Mountain Ash will implement weed control as part of their regular operating practices that will cover construction, operation and reclamation.

Weed control methods may include a combination of or any one of the following:

- Chemical (e.g., herbicides)
- Mechanical (e.g., mowing prior to flowering)
- Manual (e.g., hand pulling prior to seed set)
- Grazing and/or cultivation (may be limited due to landuse)

Herbicide spraying is conducted in early spring, late fall or throughout the growing season depending on weeds treated, for example, late fall application is effective on Canada thistle; whereas, early spring application is effective for downy brome. Mechanical weed control may include mowing scentless chamomile prior to flowering to reduce seed spread. Manual methods would be hand pulling weeds prior to seed set for species such as nodding thistle, scentless chamomile and purple loosestrife. Weed management should optimize control methods with timing of construction.

Onsite staff during the initial stripping and grading phases will identify different types of weeds and develop a map indicating weed species, no spray zones (i.e., water including a buffer area) and different control methods.

4.0 REFERENCES

Alberta Agriculture and Forestry. 2021. AGRASID Alberta Soil Information Viewer. https://soil.agric.gov.ab.ca/agrasidviewer/

Alberta Soil Information Centre. 2021. Alberta Soil Names File (Generation 4) User's Handbook.

Alberta Weed Control Regulations. 2010. https://www.qp.alberta.ca/documents/Regs/2010 019.pdf

5.0 STATEMENT OF LIMITATIONS

This report has been prepared and the work referred to in this report has been undertaken by SLR for Mountain Ash Limited Partnership., hereafter referred to as the "Client". The report has been prepared in accordance with the Scope of Work and agreement between SLR and the Client. It is intended for the sole and exclusive use of the Client. Other than by the Client and as set out herein, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of SLR.

This report has been prepared for specific application to this site and site conditions existing at the time work for the report was completed. Any conclusions or recommendations made in this report reflect SLR's professional opinion.

Information contained within this report may have been provided to SLR from third party sources. This information may not have been verified by a third party and/or updated since the date of issuance of the external report and cannot be warranted by SLR. SLR is entitled to rely on the accuracy and completeness of the information provided from third party sources and no obligation to update such information.

Nothing in this report is intended to constitute or provide a legal opinion. SLR makes no representation as to the requirements of compliance with environmental laws, rules, regulations, or policies established by federal, provincial, or local government bodies. Revisions to the regulatory standards referred to in this report may be expected over time. As a result, modifications to the findings, conclusions, and recommendations in this report may be necessary.

Appendix B Sediment and Erosion Control Plan

Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership

SLR Project No: 212.06650.00007/8

Mountain Ash Limited Partnership Summit Pit

SLR Project No: 212.06650.00006

April 2021

Revision 1, November 2021

Erosion and Sediment Control Plan for Summit Pit (Revised)

Mountain Ash Limited Partnership Rocky View County, Alberta SLR Project No: 212.06650.00006

Prepared by: Erosion Control Central Ltd. 2333 18 Ave NE #24 Calgary, AB T2E 8T6

for

Mountain Ash Ltd. Partnership 1945 Briar Crescent NW Calgary, AB, T2N 3V6

November 2021

This document has been prepared by SLR Canada. The material and data in this report were prepared under the supervision and direction of the undersigned.

Prepared by:

CPESC No.3055

David Dinu, CPESC, MEDesSenior Erosion and Sedimentation Control
Professional – Erosion Control Central

Reviewed by:

Jesse Dirom B.Sc., MBA, CESCP Senior Consultant – SLR Consulting

Distribution: 1 copy (PDF) – Mountain Ash Limited Partnership

1 copy - SLR Consulting (Canada) Ltd.

Table of Contents

1.0	INTRODUCTION	1
1.1	Soil Description	
1.2	Surface Conditions	
1.3	Drainage Patterns	
2.0	EROSION AND SEDIMENT CONTROL	1
2.1	Stormwater Management During Operations	1
2.2	Temporary Erosion and Sediment Control Measures	
2.3	Dust Control	4
2.4	Stockpile Stabilization	4
2.5	Permanent Erosion and Sediment Control Measures	4
2.6	Revised Universal Soil Loss Equation (RUSLE) Evaluation	4
2.7	Best Management Practices	6
2.8	Monitoring	7
3.0	REFERENCES	8
4.0	STATEMENT OF LIMITATIONS	8

FIGURES

Figure 1: ESC Plan Before Development

Figure 2: ESC Plan Phase 1 – During Operations

Figure 3: ESC Plan Construction Notes and Details

APPENDICES

APPENDIX A SCOUR STOP SPECIFICATIONS AND INSTALLATION GUIDE

APPENDIX B RUSLE SUPPORTING DOCUMENTS

1.0 INTRODUCTION

Mountain Ash Limited Partnership (Mountain Ash) is planning to develop the Summit Pit (the Project) along Highway 567 within NW and SW 31-026-03 W5M, northeast of the Town of Cochrane, in Rocky View County (RVC), Alberta (Figure 1). The Project will encompass approximately 208 acres (84 ha) excluding existing road rights-of-way. Mountain Ash is applying for Phase 1 of a six-phase mining plan. This land is currently owned by 1410266 Alberta Ltd. (a general partner of Mountain Ash). Summit Pit received land use and a master site development plan (MSDP) approval on March 2, 2021 (Land Use Bylaw C-8051-2020).

1.1 Soil Description

Soils across the Project area are loam to clay loam Orthic Black Chernozemics of the Dunvargan soil series, with Gleysolic soils present in poorly drained wetland areas (SLR 2020). These soils have low wind erosion risk and moderate water erosion risk (SLR 2020). No sensitive soils were observed (SLR 2020).

1.2 Surface Conditions

The Project is located within the Foothills Parkland Natural Subregion where hay or feed crops are dominant. Vegetation communities are primarily non-native hay crop, tame pasture and non-native species associated with the residences (SLR 2020). Some native pasture remains, and pockets of aspen trees were found in the south half of the site (SLR 2020).

1.3 Drainage Patterns

The Project area slopes southeast from a topographic high to the north, with a low-relief valley feature running northwest to southeast across the NW ¼ section (SLR 2020). The SW ¼ section slopes steeply south-westerly into a valley running west-northwest to east-southeast, leading to Bighill Creek (SLR 2020).

2.0 EROSION AND SEDIMENT CONTROL

The primary objectives of Erosion and Sediment Control (ESC) are to prevent offsite sedimentation into adjacent vegetated lands and specifically into any adjacent permanent or ephemeral watercourses/wetlands.

2.1 Stormwater Management During Operations

During operations, a series of conveyance ditches will be placed to capture onsite drainage/stormwater and transport it to a series of settlement ponds. The intent is to install these stormwater control measures around the entire site, encompassing all 6 phases. For the purposes of this plan, only controls associated with Phase 1 will be considered and constructed at this time. See Figure 2 for locations of diversion and conveyance ditches and settlement ponds.

See section 2.2.1 for recommended ESC measures for these conveyance ditches.

2.2 Temporary Erosion and Sediment Control Measures

Temporary ESC measures are necessary during construction and will be installed in specified work areas as required. In post-construction, when areas are suitably stabilized, temporary sediment control measures will be removed.

Temporary ESC measures are summarized below and shown on Figure 2.

- temporary sediment control (perimeter silt fence) primarily along south and east boundaries of phase 1
- temporary sediment control (silt fence) along haul route adjacent to wetland preservation area
- temporary sediment control (v-ditch/berm with check dams) to provide some runoff storage in unprotected areas
- temporary erosion control (hydro-mulch/tackifier) to provide temporary cover (e.g., hydro-mulch/tackifier) on bare soil in all disturbed areas
- run-on control (diversion ditch) along west and north boundaries to intercept drainage from upslope areas
- stormwater controls (conveyance ditches and settlement ponds) to convey runoff to ponds to allow sediments to settle
- temporary erosion control (rolled erosion control product) in diversion and conveyance ditches to prevent erosion and reduce potential for downslope sedimentation
- temporary sediment control (check dams) in diversion and conveyance ditches to reduce runoff velocity
- temporary erosion control (hydro-mulch/tackifier) on all overburden areas and other disturbed areas that need to be stabilized beyond the short-term
- good housekeeping (gravel access pad) to reduce dirt/mud tracking onto adjacent paved roadways
- dust control applications, namely Calcium Chloride used on internal haul routes and potentially other gravel surfaces that accommodate common vehicle movements and traffic during operations

2.2.1 Extraction Area and Overburden

Diversion Ditch

- Diversion ditches will be built along north and west boundaries of phase 1 to capture runoff from upslope areas and direct it away from active extraction area.
- To prevent erosion and reduce downstream sedimentation, conveyance ditches will be covered with a Rolled Erosion Control Product (RECP). In most areas, a straw-coconut erosion control blanket will suffice to handle sheer stress velocity and prevent erosion. However, in steeper areas, a more durable RECP such as turf reinforcement matting (TRM) may have to be used to handle a higher runoff velocity. To prevent undermining by runoff, the top or leading edge of RECP is trenched in and covered with soil and an adequate number of staples are used.

- Installation will be per manufacturer's specifications and instructions. See construction detail on Figure 3.
- To further reduce runoff velocity in ditches, check dams (e.g., sediment logs, Geo-Ridges) will be installed, especially in steeper areas. In very steep areas, rock check dams will be installed to ensure durability during storm events. See construction detail for rock check dam in Figure 3.

Conveyance Ditch

Conveyance ditch around perimeter of the site is still in conceptual mode. Final design of conveyance ditch may not be exactly as shown in Figure 2. Still, same measures for cover (i.e., RECP) and runoff velocity reduction (i.e., check dams) will apply to conveyance ditch.

Silt Fence

- Before construction, trench in silt fence i) along east and south boundaries of phase 1, ii) along south boundary and around southwest corner of overburden to the west of phase 1, and iii) along east side of access road at north end, adjacent to wetland preservation area. Locations are shown in Figure 2. See construction detail on Figure 3 for silt fence installation and maintenance instructions. J-hooks will be installed at least every 30 m, and even closer together in steeper areas.
- Silt fence not keyed in properly or otherwise not installed per manufacturer's recommendations must be removed and re-installed.
- Silt fence will be repaired as soon as damaged and sediment build-up removed when it reaches half of fence height
- All silt fencing will be removed once upslope areas have been vegetated or upon project completion.

V-ditch/Berm with Check Dams

- To provide for temporary detainment of runoff, v-ditch/berm with check dams along south boundary between west overburden area and south end of diversion ditch will be installed. Location is shown in Figure 2. ditch will be dug with tilting blade bulldozer, backhoe with articulating bucket or skid steer. Track pack or bucket-pack berms and check dams. Check dams will be installed at minimum intervals of 10 m and below the height of the ditch. See construction detail on Figure 3 for installation instructions.
- Water will be pumped out of ditches when half full to restore storage capacity. Water will be pumped to sediment ponds that do not drain to environmentally sensitive areas.
- Any breaches in ditches or check dams will be repaired. When accumulated sediment reaches one third the depth of the ditch, excess sediment will be removed and spread in an area that will not flow to environmentally sensitive areas.

Slope Track-Packing (Surface Roughening)

• Disturbed (bare) slopes will be track-packed, running machinery up and down slope – not along slope. See construction detail on Figure 3.

2.2.2 Access Road

Access road (Range Road 40), off Highway 567 is paved, and starting in northwest corner of overall site and extending southwards for approximately 200 m and then eastwards to the scale house (Figure 2).

Temporary internal haul road, within site, will be graded and surfaced with a gravel base and treated with Calcium Chloride for dust control. During operations, the north access point will be paved. If temporary stabilization is needed before paving, install gravel pad to help reduce offsite dirt tracking and dust. See construction detail scale area in Figure 3.

2.3 Dust Control

Dust emissions during construction activities will be controlled, as necessary. Water truck will be used on disturbed areas and haul routes, especially during dry, windy conditions.

For comprehensive account of dust control measures, refer to SLR's Dust Control Plan for Summit Pit (April 2021) written for the development permit application.

2.4 Stockpile Stabilization

Stripped materials during the development of Phase 1 will be placed in three stockpiles: topsoil, subsoil and overburden. Overburden removed from the south portion of Phase 1 will be placed along south boundary of Phase 1, and overburden taken from north portion of Phase 1 will be directly placed into the reclamation zone created in the south portion of Phase 1.

Before excavation, silt fence will be installed along the south boundary, downslope of these proposed overburden areas, to address and mitigate the potential for sediment transfer to adjacent areas.

Once overburden areas are in place, hydro-mulch/tackifier will be applied in these areas to provide temporary stabilization until final reclamation occur (See Figure 2). Before stabilization, watering of stockpiles may be necessary to suppress dust. All stockpiles will be vegetated and maintained to prevent soil erosion and stockpile loss.

2.5 Permanent Erosion and Sediment Control Measures

Final reclamation plan for Phase 1 has not yet been completed. The ESC objective is to return all disturbed areas, including overburdens, to a vegetated state.

Ultimately, a 15 m wide berm will be built along the entire east boundary. It will be vegetated, including a row of trees planted along the top of the berm.

2.6 Revised Universal Soil Loss Equation (RUSLE) Evaluation

RUSLE is a tool that provides guidance in choosing appropriate ESC measures to maximize erosion protection and minimize offsite sedimentation. The resulting A-value represents potential sediment delivery from any given slope. Per Section 1200 of Rocky View County's Servicing Standards, all slopes must have an A-value (sediment delivery) of under 2.00 tonnes/hectare/year (Rocky View County 2013).

2.6.1 Annual Rainfall Analysis (R-Value)

R-value is based on average rainfall for the Calgary area, which is represented by City of Calgary default R-value (320) from City of Calgary ESC Guidelines (The City of Calgary 2017).

2.6.2 Site Soil Analysis (K-Value)

Since there is no site-specific soil sieve analysis, The City of Calgary default K-value of 0.079 (The City of Calgary 2017) is used in RUSLE calculations.

2.6.3 Pond Table – During Operations

Per Figure 2, some runoff storage (i.e., v-ditch/berm with check dams) will be placed onsite during operations. Depending on v-ditch/berm storage capacity, corresponding P-value is used for RUSLE calculations. P-value is derived from The City of Calgary Sediment Containment Systems – P-Value Updates (June, 2016 – see Appendix B). Table 1 contains onsite runoff storage information

Table 1: Onsite Runoff Storage During Operations

LS Slope	I Pond Identitier		V-ditch Volume* (m³) = Length of v ditches (m) x 2.5 m²	Drainage Area (ha)	Storage Capacity (m³/ha)	P-Value
6	V-ditch/berm with check dams	214	535	0.6	892	0.3

^{*}Formula for v-ditch volume is based on construction detail on ESC3 figure

2.6.4 RUSLE Table – During Operations

The following RUSLE table shows potential sediment delivery totals (A-values) in areas that are either not in an active extraction zone or where overburden material will be stockpiled.

Table 2: RUSLE Calculations During Operations

LS Slope	Slope and Slope Length	R-Value	K-Value	LS- Value	Description of Control Practices	C-Value	P-Value	A-Value (Tonnes/ ha/yr)
1	46 m @ 26.3%	320	0.079	6.70	C - hydro-mulch/tackifier (Flexterra® HP-FGM) P - surface roughening	0.01	0.900	1.52
2	21 m @ 11.4%	320	0.079	1.35	C - hydro-mulch/tackifier (Flexterra® HP-FGM) P - surface roughening	0.01	0.900	0.31
3	26 m @ 7.3%	320	0.079	0.90	C - hydro-mulch/tackifier (Flexterra® HP-FGM) P - surface roughening	0.01	0.900	0.20
4	78 m @ 4.9%	320	0.079	1.14	C - hydro-mulch/tackifier (Flexterra® HP-FGM) P - surface roughening	0.01	0.900	0.26
5	22 m @ 8.6%	320	0.079	0.94	C - hydro-mulch/tackifier (Flexterra® HP-FGM) P - silt fence = 0.6 and surface roughening = 0.9	0.01	0.540	0.13
6	45 m @ 2.4%	320	0.079	0.39	C – none P - silt fence = 0.6 v-ditch berm with check dams = 0.3 and surface roughening = 0.9	1.00	0.162	1.60
7	64 m @ 2.8%	320	0.079	0.54	C - hydro-mulch/tackifier (Flexterra® HP-FGM) P - silt fence = 0.6 and surface roughening = 0.9	0.01	0.540	0.07

2.7 Best Management Practices

2.7.1 Before Construction

- Clearly stake out work area with flagging tape to minimize disturbance of existing vegetation.
- Locate all laydown areas on flat terrain. If necessary, install containment measures (e.g., sediment logs, containment berms) around these areas.
- Install perimeter ESC measures (e.g., silt fence) before earthworks and placement of overburden starts.
- Install stabilized access point into site to reduce potential of dirt/mud tracking onto adjacent roadways.

2.7.2 During Construction

- Install additional ESC measures, as needed, to ensure onsite runoff is dealt with and not leading to offsite sedimentation.
- Provide enough watering or other approved dust control measures (e.g., calcium chloride) to minimize dust on haul roads, stockpiles and any other loose soil onsite, especially during dry windy conditions.
- Complete an erosion and sediment control inspection and report weekly and after a significant or prolonged rainfall event or snowmelt. A significant rainfall event is typically defined as greater than 12 mm of rainfall during a 24-hour period. See Section 2.7.

2.7.3 Post Construction

- Restore/reclaim all disturbed areas as soon as practical and where possible.
- Re-use salvageable subsoil for backfill and remove all other excavated material
- To minimize slope erosion, apply topsoil and regionally approved native grass seed mix.
- Remove and dispose all temporary sediment control measures when no longer needed.
- Remove all unused materials from site and dispose construction debris at an approved waste transfer facility.

2.7.4 General Mitigation Measures

- Ensure all vehicles and equipment brought onsite are free of debris, grease, oil, mud or leaks.
- Conduct cleaning, fueling and servicing of all equipment at a safe distance (preferably 100 m) away from watercourses, wetlands or environmentally sensitive areas. If necessary, conduct these activities in a contained area that is lined and bermed.
- Halt work during heavy rains/snowfall.
- Site-specific spill response plan that includes emergency contact numbers and outlines measures to contain, control, report and clean-up spills and releases of deleterious substances. At a minimum, if a release or spill occurs, immediately notify the Site Construction Supervisor; estimate the volume of fluid released and cease operations to assess the need for and extent of containment measures.
- Report all environmental emergencies and/or releases to:
- Alberta 24 Hour Spill Reporting Line: 1.800.222.6514; and/or
- DFO Emergency Response Line: 1.800.889.8852
- Keep a copy of ESC Plan and all regulatory approvals onsite during construction activity.

2.8 Monitoring

Regular supervision and environmental monitoring during construction process is required, to ensure regulatory compliance, oversee implementation of works in accordance with design plans, minimize site disturbances, limit seepage into work areas and apply preventative control measures.

All erosion and sediment control measures will be continually monitored. A formal inspection and report will be conducted weekly and after a heavy or prolonged rainfall event or snowmelt. A heavy rainfall event is typically defined as greater than 12 mm of rainfall during a 24 hour period.

ESC inspection report will be a written including a photographic record of ESC measures and maintenance requirements. Digital photos will confirm that erosion and sediment control measures were installed and will identify requirements for remedial actions. Each photo will be dated and identified by a photo number.

A copy of each inspection report will be kept onsite. Maintenance must be carried out in timely and diligent manner, ideally within 48 hours of discovering any damaged installation.

Erosion and sediment control inspection reports will be made available to all government regulators on request. In addition, all other regulatory approvals will be kept onsite during construction.

If there is a temporary work stoppage, inspection and maintenance of erosion and sediment control measures must continue.

3.0 REFERENCES

Rocky View County. 2013. County Servicing Standards. May 28, 2013.

SLR Consulting (Canada) Ltd. 2020. Mountain Ash Limited Partnership Aggregate Operation NW and SW 31-26-03 W5M, Rocky View County, Alberta Biophysical Impact Assessment Report. January, 2020. Calgary, Alberta.

The City of Calgary. 2017. The City of Calgary Water Resources Erosion and Sediment Control Guidelines, 2017. Calgary.

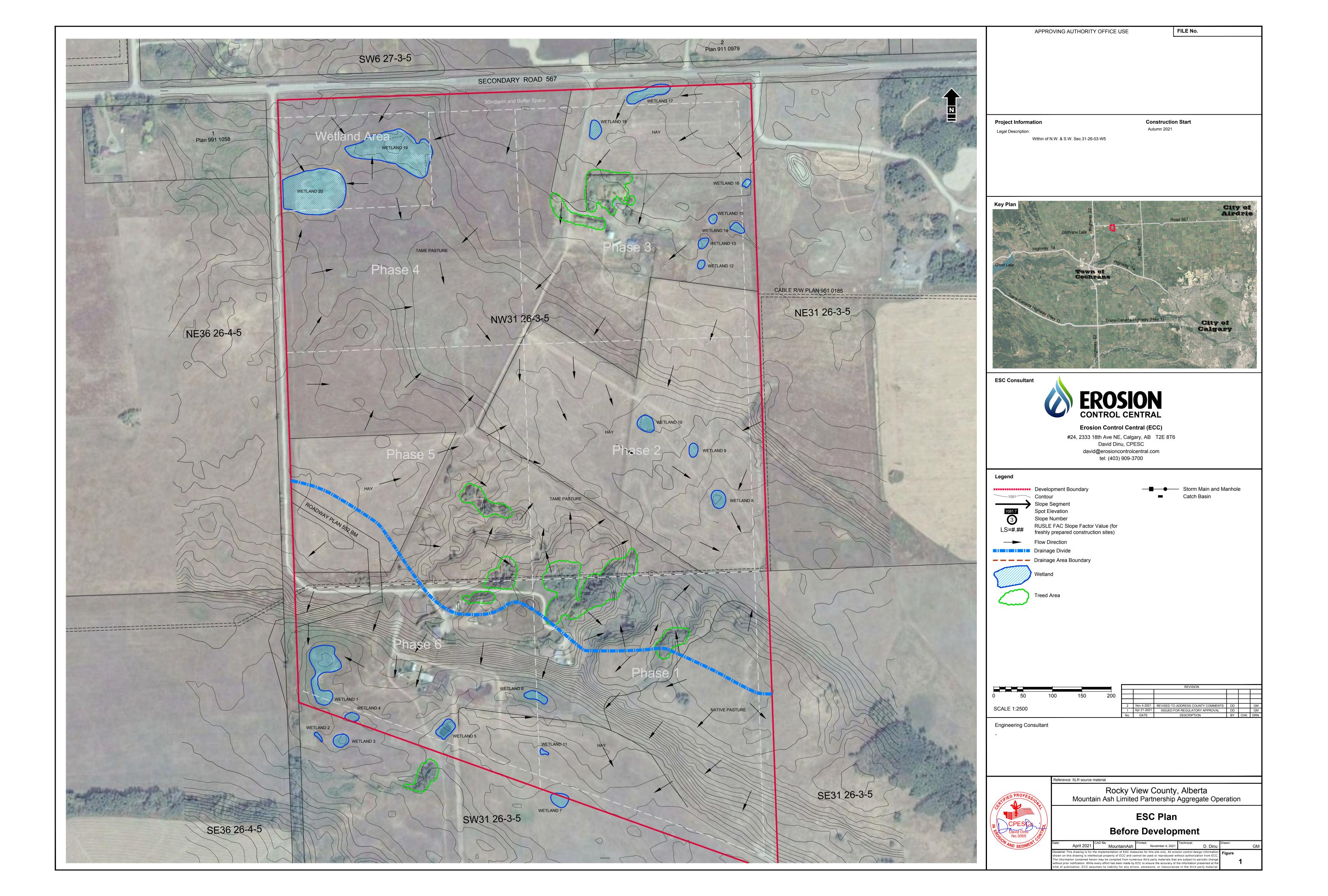
4.0 STATEMENT OF LIMITATIONS

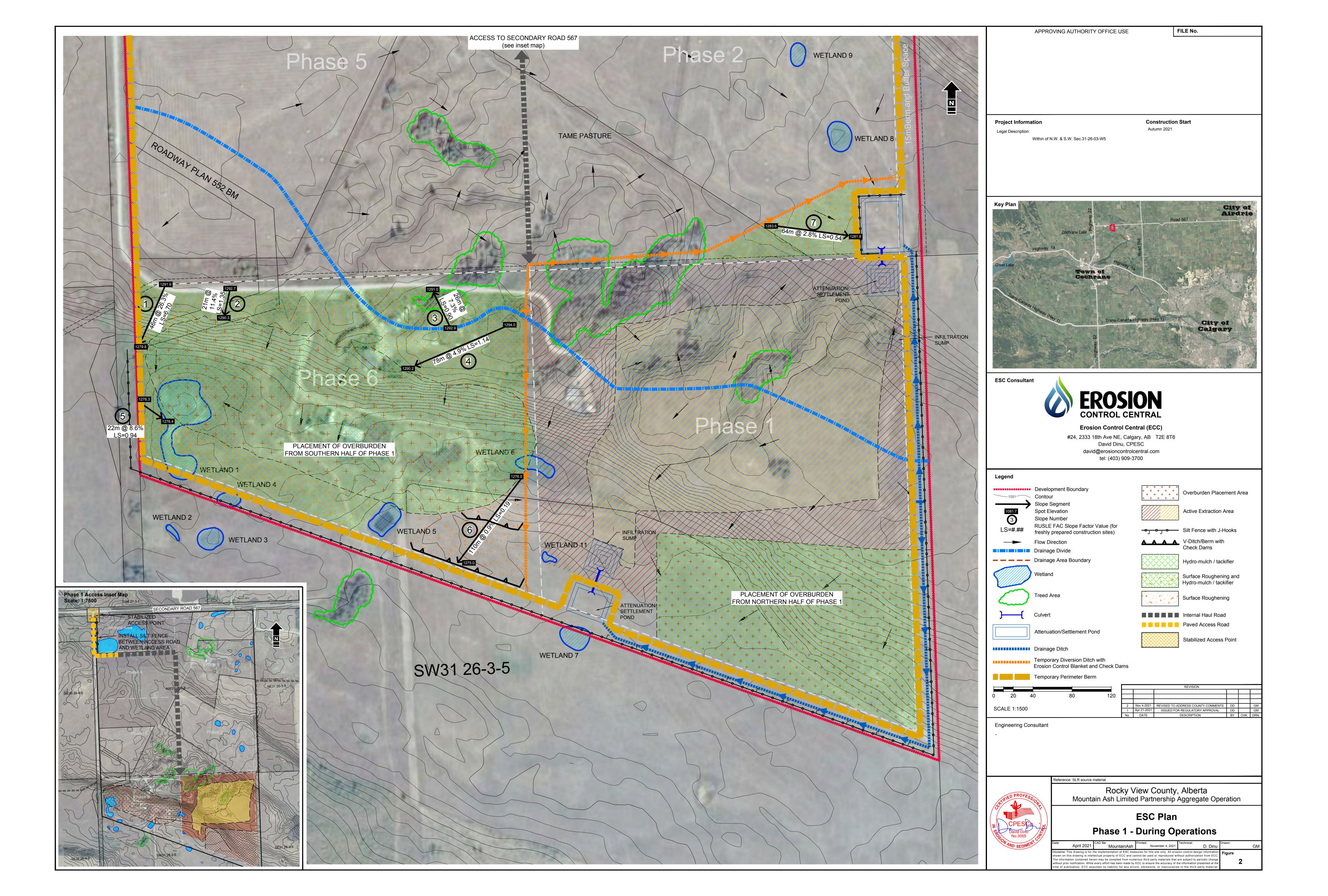
This report has been prepared and the work referred to in this report has been undertaken by SLR for Mountain Ash Limited Partnership., hereafter referred to as the "Client". The report has been prepared in accordance with the Scope of Work and agreement between SLR and the Client. It is intended for the sole and exclusive use of the Client. Other than by the Client and as set out herein, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of SLR.

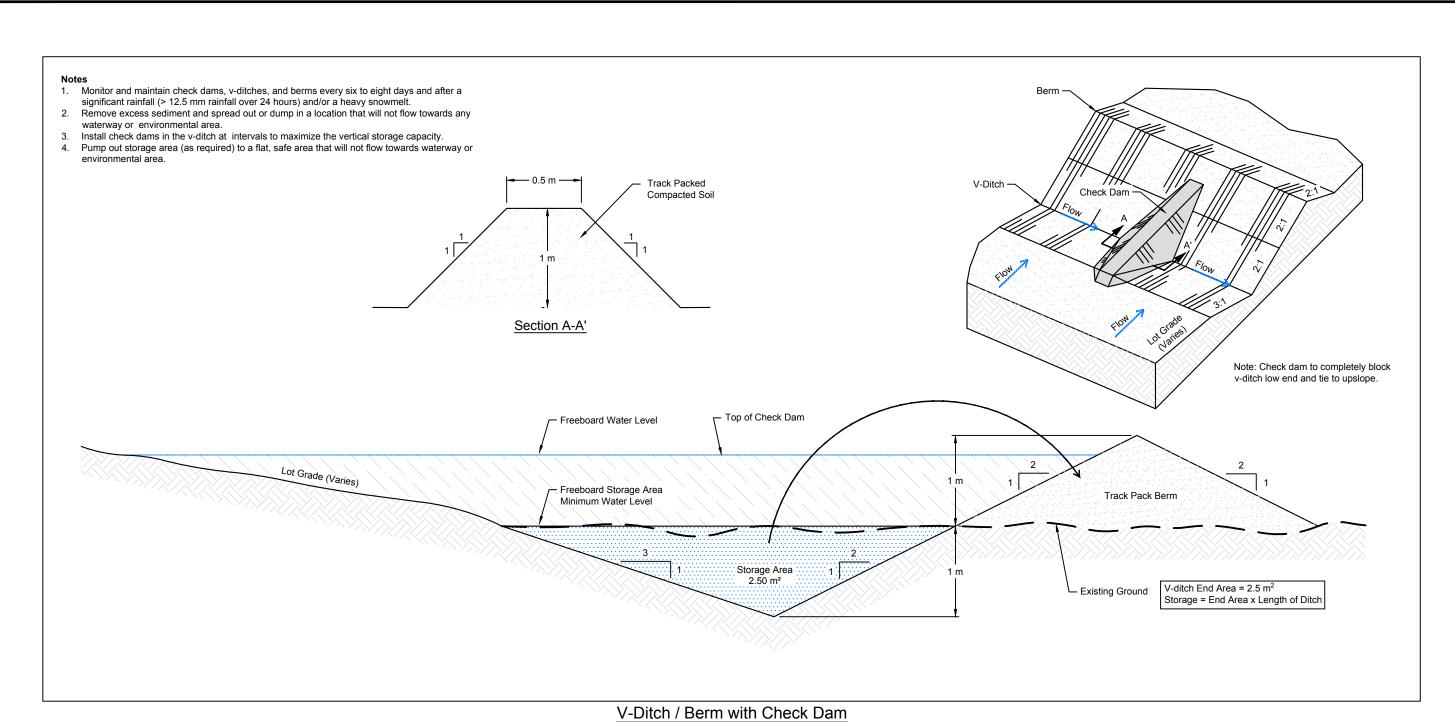
This report has been prepared for specific application to this site and site conditions existing at the time work for the report was completed. Any conclusions or recommendations made in this report reflect SLR's professional opinion.

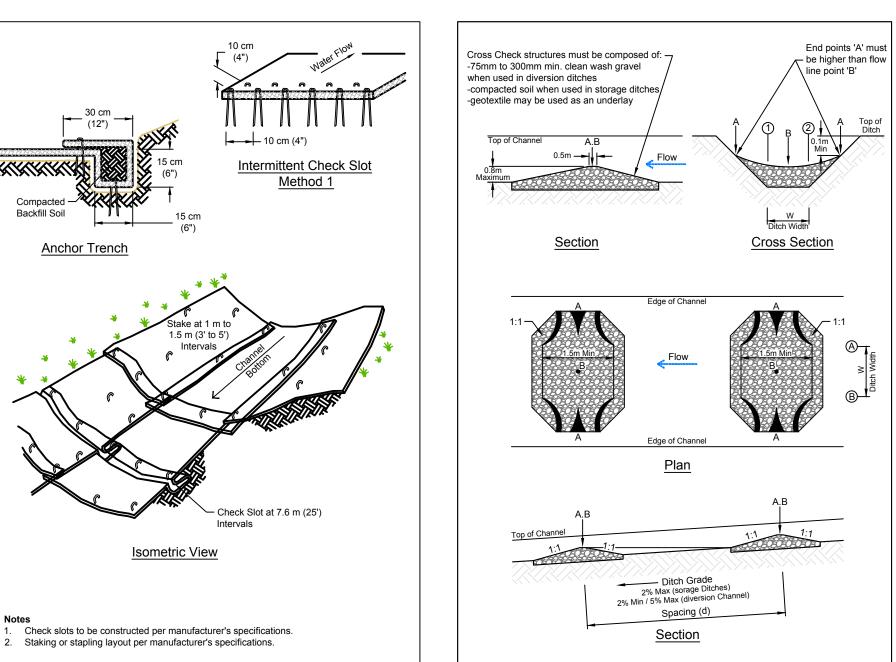
Information contained within this report may have been provided to SLR from third party sources. This information may not have been verified by a third party and/or updated since the date of issuance of the external report and cannot be warranted by SLR. SLR is entitled to rely on the accuracy and completeness of the information provided from third party sources and no obligation to update such information.

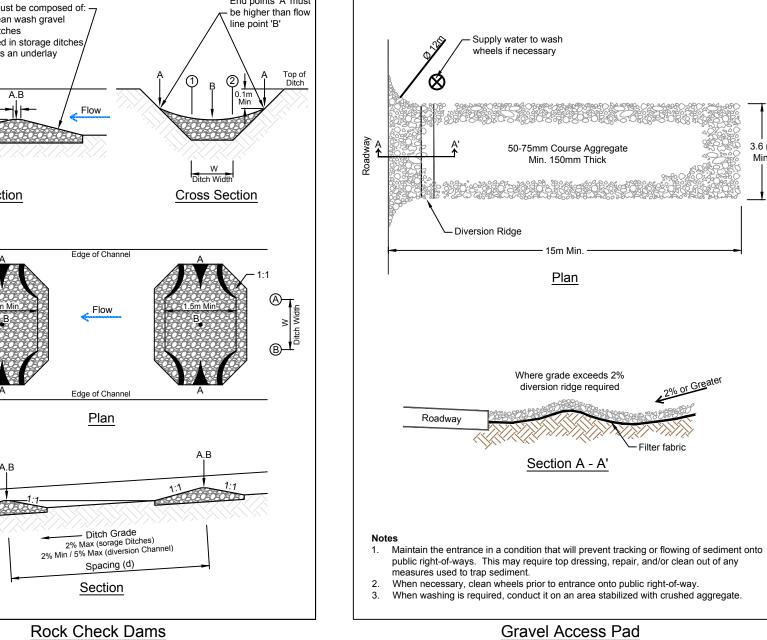
Nothing in this report is intended to constitute or provide a legal opinion. SLR makes no representation as to the requirements of compliance with environmental laws, rules, regulations, or policies established by federal, provincial, or local government bodies. Revisions to the regulatory standards referred to in this report may be expected over time. As a result, modifications to the findings, conclusions, and recommendations in this report may be necessary.

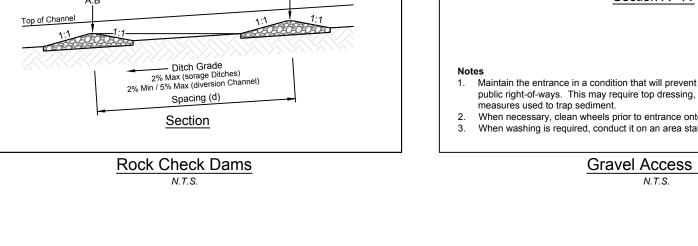


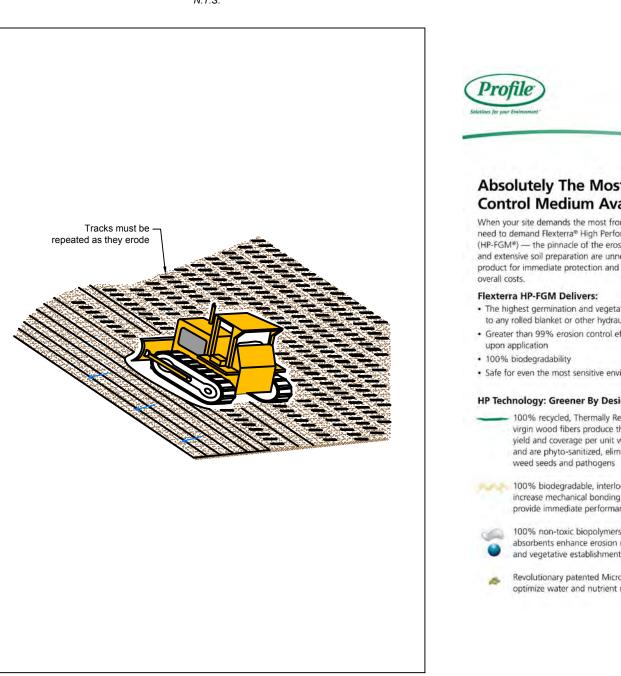

Erosion and Sediment Control Plan


Mountain Ash Limited Partnership Summit Pit


SLR Project No: 212.06650.00006







Erosion Blanket Channel Installation


Track-packing on slope

Backfill Soil

	TEST METHOD	UNITS	TESTED VALUE	FOR SOUTHWARE PRINTED.
PHYSICAL PROPERTIES*				Green Design Engineering* is a
Mass/Unit Area	ASTM D65661	g/m² (oz/yd²)	≥ 390 (11.6)	holistic approach that combines
Thickness	ASTM 06525	mm (in)	≥ 5.6 (0.22)	agronomic and engineering
Ground Cover	ASTM D65671	%	a 99	expertise with advanced technology
Water-Holding Capacity	ASTM D7367	76	≥ 1,700	to provide cost-effective and
Material Color	Observed	1168	Green	earth-friendly solutions. Profile str
ENVIRONMENTAL PROPERTIES*				to deliver Green Design Engineering
Biodegradability	ASTM 05338	n/a	Yes	across our team of consulting
Ecotoxicity	EPA 2021:0	%	48-hr LC _{III} > 100%	professionals, innovative products
Effluent Turbidity	Large Scale	NTU.	< 250	and educational resources
PERFORMANCE PROPERTIES*				
Cover Factor/	Large Scale ¹	n/a	≤ 0.01	3
Percent Effectiveness	Large Scale ⁵	76	≥99	
Functional Longevity®	ASTM D5338	months-	≤ 18	PROFILE SOIL SOLUTIONS
Cure Time	Observed	hours	0-2	SOFTWARE
Vegetation Establishment	ASTM D73221	96	≥ 800	PS ¹ is a free, comprehensive 24/7 only
PRODUCT COMPOSITION			TYPICAL VALUE	resource you can use to design a proje
Thermally Processed® (within a pressurized	vessell 100% Recycled Virgin W	ood Fibers	80%	and select the right products that add
Wetting agents (including high-viscosity calls and water absorbents)	nidal polysaccharides, cross-linker	d biopolymers,	10%	both the physical and agronomic need your site. It will help you develop holis
Crimped Biodegradable Interlocking Fibers			5%	sustamable solutions for cost-effective
Micro-Pore Granules			5%	erosion control, vegetation establishm

750 W. Lake Cook Road • Suite 440 Buffalo Grove, IL 60089 profileproducts.com

© 2019 PROFILE Products LLC.
All rights reserved.

 Extra Strength Filter Fabric Needed Without Wire Steel or Wood Post Mesh Support Attach Filter Fabric -Securely to Upstream Side 3 m Max. Spacing with Wire Support Fence (1.8 m Max Spacing Without Wire Support Fence) Steel or Wood Post -1 m High (Max.) with Compacted Backfill Place silt fence on slope contours to maximize ponding efficiency. 2. Inspect and repair silt fence every six to eight days and after each storm event (>12.5 mm rainfall over 24 hours) and/or after significant snow melt event. Remove sediment when accumulated silt reaches half of fence height or 225 mm. 4. Place sediment build-up in an area that does not contribute to offsite sedimentation.

General Construction ESC Notes:

- 1) Keep the following information on site and available upon request::
 - a. The Erosion and Sediment Control (ESC) Drawing(s), including all amendments; and,
- b. Weekly documentation (including photos and up-to-date written records) detailing implementation, inspection and maintenance of ESC
- 2) Complete and document inspections of all ESC measures weekly and at critical times when erosion or sediment releases could occur after heavy and/or prolonged rainfall and rapid snowmelt (defined as >12 mm precipitation within any 24 hour period or snowmelt on wet or thawing
- 3) Update approved ESC Report and/or Drawing(s) when there are changes to the erosion and sediment control measures or implementation. 4) Promptly address deficiencies documented during inspection of ESC measures and document the maintenance. Immediately report off-site
- releases of sediment-laden water or other contaminants to the environment. Contact Alberta 24 Hour Spill Reporting Line: 1.800.222.6514 5) Cover or stabilize longer term stockpiles (in place more than 30 days) with mulch and tackifier, vegetation cover or other suitable measures. Place stockpiles on site so material will not be eroded to off-site areas. Where necessary, install sediment control measures (silt fence, sediment logs, etc.) on the down-gradient side of stockpiles.
- 6) Where necessary, control dirt tracking at all site access points during construction, by means of a stabilized, well-maintained entrance/exit. 7) Should all or part of the site be left in a state where active construction is not occurring for a period greater than six months, the following
- a. Maintain the inspection frequency listed in #2 unless there is written approval from Rockyview County that states otherwise; and,
- b. Keep pertinent documentation onsite. Documentation may be kept at an alternate specified location via an amendment. 8) Conduct a pre-winter inspection to note any ESC deficiencies that need to be addressed before freeze-up.

Specific Site ESC Notes:

- 1) Before construction, trench in silt fence i) along east and south boundaries of phase 1, ii) along south boundary and around southwest corner of overburden - to the west of phase 1, and iii) along east side of access road at north end, adjacent to wetland preservation area. Locations are shown in Figure 2. See construction detail on Figure 3 for silt fence installation and maintenance instructions. Ensure j-hooks are installed at least every 30 m, and even closer together in steeper areas.
- 2) During operations, the north access point will be paved. If temporary stabilization is needed before paving, install gravel pad to help reduce offsite dirt tracking. See construction detail for gravel pad in Figure 3.
- 3) To provide for temporary detainment of runoff, install v-ditch/berm with check dams along south boundary between west overburden area and south end of diversion ditch. Location is shown in Figure 2. Dig ditch with tilting blade bulldozer, backhoe with articulating bucket or skid steer. Track pack or bucket pack berms and check dams. Install check dams at minimum intervals of 10 m and below the height of the ditch. See construction detail on Figure 3 for installation instructions.
- 4) To prevent erosion and reduce downstream sedimentation, conveyance ditches will be covered with a Rolled Erosion Control Product (RECP). In most areas, a straw-coconut erosion control blanket will suffice to handle sheer stress velocity and prevent erosion. However in steeper areas, a more durable RECP such as turf reinforcement matting (TRM) may have to be used to handle a higher runoff velocity. To prevent undermining by runoff, ensure that the top or leading edge of RECP is trenched in and covered with soil and that enough staples are used. Always install per manufacturer's specifications and instructions. See construction detail on Figure 3.
- 5) To further reduce runoff velocity in ditches, check dams (e.g. sediment logs, Geo-Ridges) should be installed, especially in steeper areas. In very steep areas, rock check dams should be installed to ensure durability during storm events. See construction detail for rock check dams in Figure 3.
- 6) To prevent erosion at exit points of diversion ditches into surrounding natural environment, install ScourStop™ (or equivalent product) at exit points. Locations are shown in Figure 2. Once ditch is in place install, ScourStop™ per manufacturer's specifications. See Appendix A for ScourStop™ design and installation guide.
- 7) Dust emissions during construction activities will be controlled as necessary. Water truck should be used on disturbed areas and haul routes, especially during dry, windy conditions. In addition, for haul routes, an approved dust suppressant (e.g. calcium chloride) may be used to keep dust down. Developer is responsible for dust control twenty-four hours a day, seven days a week throughout the duration of the project.
- 8) Once overburden areas are in place, hydro-mulch/tackifier will be applied in these areas to provide temporary stabilization until final reclamation efforts occur. See Figure 2. Before stabilization, watering of stockpiles may be necessary to suppress dust.

9) Promptly clean any dirt/mud tracked onto adjacent roadways.

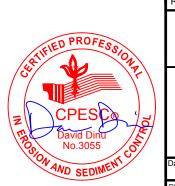
APPROVING AUTHORITY OFFICE USE

Construction Start

FILE No.

Project Information Legal Description:

Within of N.W. & S.W. Sec.31-26-03-W5



ESC Consultant

Erosion Control Central (ECC)

#24, 2333 18th Ave NE, Calgary, AB T2E 8T6 David Dinu, CPESC david@erosioncontrolcentral.com tel: (403) 909-3700

erence: SLR source material

Rocky View County, Alberta Mountain Ash Limited Partnership Aggregate Operation

ESC Plan Construction Notes and Details

April 2021 CAD file: Printed: November 4, 2021 Technical: D. Dinu on on this drawing is intellectual property of ECC and cannot be used or reproduced without authorization from EC information contained herein may be compiled from numerous third party materials that are subject to periodic chanat prior notification. While every effort has been made by ECC to ensure the accuracy of the information presented of publication, ECC assumes no liability for any errors, omissions, or inaccuracies in the third party materials.

APPENDIX A SCOUR STOP SPECIFICATIONS AND INSTALLATION GUIDE

Erosion and Sediment Control Plan

Mountain Ash Limited Partnership Summit Pit

SLR Project No: 212.06650.00006

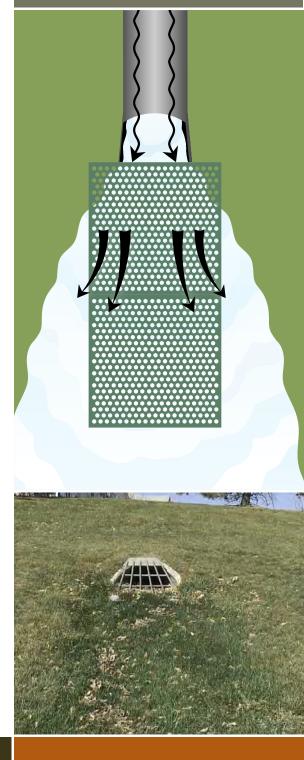
ScourStop® **DESIGN GUIDE Circular Culvert Outlet Protection**

why use the

SCOURSTOP SYSTEM?

ScourStop transition mats protect against erosion and scour at culvert outlets with a vegetated solution in areas traditionally protected with rock or other hard armor.

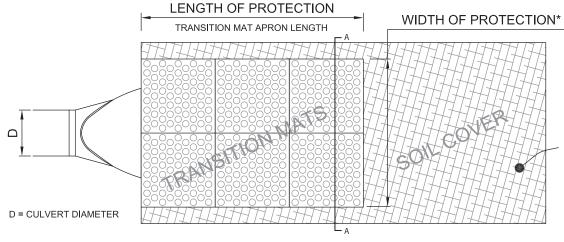
ScourStop is part of a system that includes semi-rigid transition mats installed over sod or turf reinforcement mats. Each 4' x 4' x $^{1}/_{2}$ " mat is made of high-density polyethylene and secured tightly to the ground with anchors.


Circular Culvert Outlet Protection

PIPE	VELOCITY ≤	10 FT/SEC	10 < VELOCITY < 16 FT/SEC		
DIAMETER	TRANSITION MAT W x L	QUANTITY OF MATS	TRANSITION MAT W x L	QUANTITY OF MATS	
12"	4' x 4'	1	4' x 8'	2	
24"	8' x 8'	4	8' x 12'	6	
36"	8' x 12'	6	12' x 20'	15	
48"	12' x 16'	12	12' x 24'	18	
60"	12' x 20'	15	16' x 32'	32	
72"	16' x 24'	24	20' x 36'	45	

These are minimum recommendations. More ScourStop protection may be needed depending upon site and soil conditions, per project engineer.

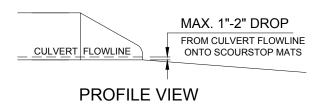
- If velocity is greater than 16 fps, contact manufacturer for design assistance.
- ScourStop mats have been shown to at least double the effectiveness of turf reinforcement mats.
- ScourStop fully vegetated channel (2:1 slope): velocity = 31 fps, shear stress = 16 psf.



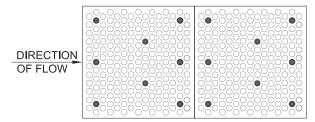
ScourStop® **Installation Recommendations**

- 1. ScourStop mats must be installed over a soil cover: sod, seeded turf reinforcement mat (TRM), geotextile, or a combination thereof.
- 2. For steep slopes (>10%) or higher velocities (>10 ft/sec), sod is the recommended soil cover.
- 3. Follow manufacturer's ScourStop Installation Guidelines to ensure proper installation.
- 4. Install ScourStop mats at maximum 1-2" below flowline of culvert or culvert apron. (No waterfall impacts onto ScourStop mats.)
- 5. Performance of protected area assumes stable downstream conditions.

Transition mat apron protects culvert outlet.

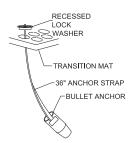

*Width of protection:

Bottom width of channel and up both side slopes to a depth at least half the culvert diameter.


Protect bare/disturbed downstream soils from erosion with appropriate soil cover.

Use normal-depth calculator to compute for downstream protection.

CULVERT OUTLET PROTECTION - PLAN VIEW

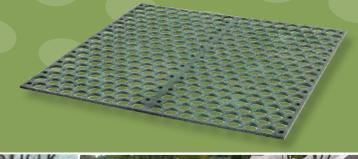


ANCHOR PATTERN

Abut transition mats to end of culvert or culvert apron. Adjacent mats abut together laterally and longitudinally. Minimum 8 anchors per mat.

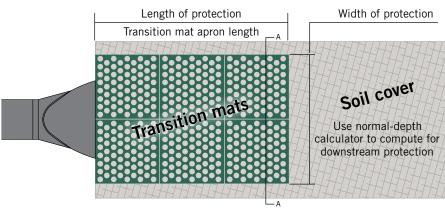
Extra anchors as needed for loose or wet soils. Extra anchors as needed for uneven soil surface.

ANCHOR ILLUSTRATION

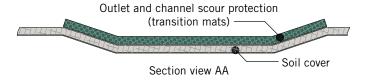

Install anchors per **ScourStop Installation Guidelines**. Minimum depth 24" in compacted, cohesive soil. Minimum depth 30" in loose, sandy, or wet soil. Extra anchors as needed to secure mat tightly over soil cover.

A LEADER in the GEOSYNTHETIC and EROSION CONTROL industries Learn more about our products at: **HanesGeo**.com | 888.239.4539

ScourStop® **INSTALLATION GUIDELINES**



ScourStop may be used in many applications: culvert outlets, curb outfalls, spillways, overflow structures, stream banks, slopes, etc. The details in this example are for typical culvert outlet protection. Project engineer shall determine the limits of soil cover and ScourStop.


Downstream:

Continue soil cover beyond outlet apron area to properly protect downstream channel and prevent head-cutting.

Width: Install soil cover wider than proposed ScourStop protection (recommend soil cover full width of channel – across bottom and up both slopes).

Culvert outlet protection - plan view

- Electric Hammer: Rotary hammer or demolition hammer the greater the impact energy (ft/lbs) and the heavier the hammer, the greater the driving force to install bullet anchors into soil (e.g., Makita HM1214C, Hilti or other).
 - Use hammer-only mode, no rotation.
 - Use 3/4" Ground Rod Driver, which fits onto ScourStop HD Driver.
 - Recommend two ScourStop drivers per electric hammer to achieve maximum efficiency.

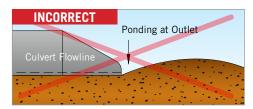
Maintenance:

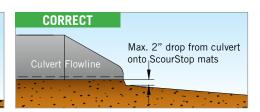
- No maintenance is required for a ScourStop solution.
- Mowing over a vegetated ScourStop solution is allowed minimum height of 4" recommended.
- Mowing is not recommended where soft, saturated soils exist.
- ScourStop surface may be slippery when wet use caution.
- New construction: soil may consolidate, so lock washers may need to be re-tightened after settling.

HANES GEO COMPONENTS A Leggett & Platt & COMPANY

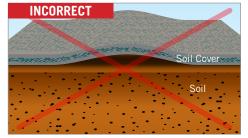
A LEADER in the **GEOSYNTHETIC** and **EROSION CONTROL** industries Learn more about our products at: HanesGeo.com | 888.239.4539

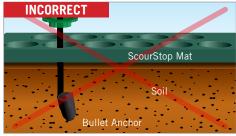
©2014 Leggett & Platt, Incorporated I 16538_10/14



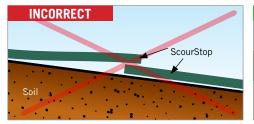


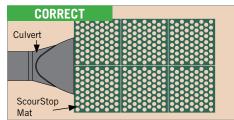
ScourStop® **INSTALLATION GUIDELINES**

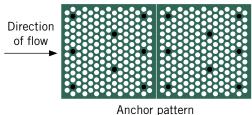

- **Site Preparation:** 1 Finish grading to ensure positive drainage and eliminate ponding.
 - 2 Create defined drainage channel to carry stormwater at outlet and downstream.
 - 3 Compact soil in all areas of fill to create firm seed bed.
 - 4 Install subsurface drainage tile if constant water is expected.
 - 5 Grade a smooth transition from outlet to discharge area (allow for soil cover thickness and ScourStop thickness).
 - 6 Max. 2" drop from culvert outlet/curb opening to top of ScourStop mats (no waterfall impact).



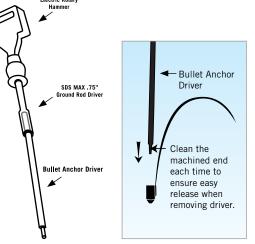
- Soil Cover: 1 ScourStop must be placed over soil cover (sod, TRM, or geotextile) not over bare ground, therefore, install soil cover first.
 - 2 Channel flow data must be evaluated to determine proper soil cover.
 - 3 Install sod; water thoroughly after completing installation.
 - 4 Or install turf reinforcement mat (TRM), after seed and fertilizer, then water thoroughly after completing installation.
 - 5 Non-vegetated: install geotextile (minimum 6 oz. non-woven geotextile fabric).

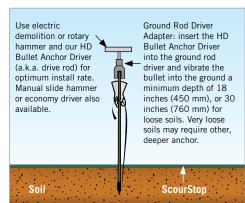


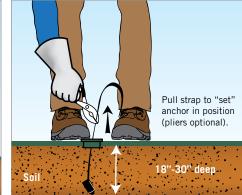



ScourStop Transition Mat Installation:

- 1 After proper grading and installation of selected soil cover, place ScourStop mats beginning at culvert outlet/curb opening, or at toe of slope, stream bank, or spillway.
- 2 Place ScourStop mat(s) adjacent to culvert/curb and adjacent to other ScourStop mats to avoid gaps.
- 3 Do not overlap adjacent mats unless necessary to conform to channel geometry.
- 4 If desired, ScourStop mats may be cut with circular saw or hand saw.


ScourStop Bullet Anchors:




- mats on top of soil cover and tightly to the soil surface.
- 2 Insert bullet anchor strap into lock washer (3"-4").
- 3 Insert the machined end of the driver into the bullet anchor.
- 4 Drive anchor through a 2" hole in mat (per recommended anchor pattern), stopping before lock washer is at least 1" above mat.
- 5 Twist and pull the driver out of the soil. Wipe driver tip with rag or glove to remove soil.

1 Use ScourStop bullet anchors (minimum of 8 anchors per mat) to secure

- 6 Grasp end of strap with one hand and push down on lock washer with the other until lock washer is flush with mat.
- 7 Place foot on top of lock washer, then give a firm tug on the strap (quick tug, like setting a fish hook) to set the pivoting bullet anchor.
- 8 Use additional anchors if necessary to secure mats tightly to soil surface.

www.HanesGeo.com

ScourStop® Transition Mats

ScourStop[®] Transition Mats are an engineered, proven, bio-technical alternative to traditional hard-armor systems. ScourStop[®] Transition Mats are manufactured of a semi-rigid HDPE. When combined with soft-armor soil cover and deep-soil earth anchors, the ScourStop[®] system mechanically protects soil from severe scour and erosion. The ScourStop[®] system offers greater protection than vegetation alone or rip rap and is lab-tested and field-proven to protect against considerably higher shear stresses and velocities. ScourStop[®] Transition Mats provide a permanent, low-maintenance solution with immediate, day-one protection and impact resistance over highly erosive areas such as stormwater outfalls, curb outfalls, overflow structures, drainage channels, levees, and shorelines. ScourStop[®] Transition Mats conform to the property values listed below:

PROPERTY	TEST METHOD	ENGLISH	METRIC
Properties			
Mass/Unit Area	ASTM D6566	0.942 lbs/ft ²	4.599 kg/m ²
Thickness	ASTM D6525	0.463 in	11.735 mm
Wide Width Tensile Strength	ASTM D4595	3053 lbs/ft	4.139 kN/m
Percent Open Area	Calculated	50 %	50 %
UV Stability	ASTM D4355	87 %	87 %
Manning's n	Calculated	0.039	0.039
Culvert Outfall Test Exit Velocity Discharge	Prototype	16 ft/sec	4.877 m/sec
Velocity Day 1 Performance Fully Vegetated	Flume Testing ASTM D6460	19 ft/sec	5.791 m/sec
Shear Day 1 Performance Fully Vegetated	Flume Testing ASTM D6460	13 lbs/ft ²	63.472 kg/m ²

DISCLAIMER: Descriptions regarding the products described herein are based solely upon information provided by the manufacturer and are provided for informational purposes only. NOTHING CONTAINED HEREIN SHOULD BE CONSTRUED AS CREATING AN EXPRESSED OR IMPLIED WARRANTY, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS, EACH OF WHICH IS HEREBY DISCLAIMED. THERE ARE NO WARRANTIES THAT EXTEND BEYOND THE DESCRIPTION ON THE FACE HEREOF. The final determination as to the suitability of any product of Hanes Geo Components in any particular application rests solely with the user. Hanes Geo Components reserves the right to alter or modify its products and descriptions at any time without notice.

APPENDIX BRUSLE SUPPORTING DOCUMENTS

Erosion and Sediment Control Plan

Mountain Ash Limited Partnership Summit Pit

SLR Project No: 212.06650.00006

TABLE 4-4. C-FACTOR AND P-FACTOR VALUES FOR CONSTRUCTION-SITE RAINFALL BMPS (ISRAELSEN ET AL., 1980; HDI, 1987; SCS, 1978; AND WISCHMEIER AND SMITH, 1978)

TREA	ATMENT		C-FACTOR	P-FACTOR
Bare Soil				
Packed and smooth			1.00	1.00
Freshly disked or rough, irregu	ılar surface		1.00	0.90
Sediment Containment Systems (a	.k.a. Sediment Trap	/Basin)	1.00	0.10-0.90A
Bale or Sandbag Barriers	* *************************************		1.00	0.90
Rock (Diameter = 25-50 mm) Bar	riers at Sump Locat	ion	1.00	0.80
Silt-Fence Barrier			1.00	0.60
Asphalt/Concrete Pavement			0.01	1.00
Gravel (Diameter = 60-400 mm) a	t 300 tonnes/ha		0.05	1.00
Established Vegetation			Figs. 4-3, 4-4	1.00
Sod Grass			0.01	1.00
Temporary Vegetation/Cover Cro	p		0.45B	1.00
Hydraulic Mulch at 4.5 tonnes/ha			0.10 ^C	1.00
Soil Sealant			0.10 - 0.60 ^D	1.00
Rolled Erosion Control Products			0.10 - 0.30D	1.00
	oe (%)	to application, out		
	0 10	2.0	0.06	1.00
	o 15 o 20		0.07	1.00
	o 25		0.11	1.00
	0 33		0.17	1.00
> 3			0.20	1.00
Contour Furrowed Surface Must be maintained througho refers to downslope length. Slope (%)	ut construction acti	vities, otherwise P-	factor = 1.00. Ma	Y
1 to 2	120		1.00	0.60
3 to 5	90		1.00	0.50
6 to 8	60		1.00	0.50
9 to 12	40		1.00	0.60
13 to 16	25		1.00	0.70
17 to 20 > 20	20 15		1.00	0.80

A Should be constructed as the first step in over-lot grading.

B Assumes planting occurs within optimal climatic conditions.

^C Some limitation on use in arid and semiarid climates.

D Value used must be substantiated by documentation.

TABLE 4-4. (CONTINUED)

TREATMENT	C-FACTOR	P-FACTOR
Terracing		
Must contain 2-year runoff volumes without overflowing, otherwise Slope (%)	P-factor = 1.00	
1 to 2	1.00	0.12
3 to 8	1.00	0.10
9 to 12	100	0.12
13 to 16	1.00	0.14
17 to 20	1.00	0.16
> 20	1.00	0.18
Grass Buffer Strips to Filter Sediment-Laden Sheet Flows Strips must be at least 15 m (50 ft.) wide and have a ground-cover otherwise P-factor = 1.00. Basin Slope	value of 65% or gr	eater,
0% to 10%	1.00	0.60
11% to 24%	1.00	0.80

NOTE: Use of C-factor or P-factor values not in this table must be supported by documentation.

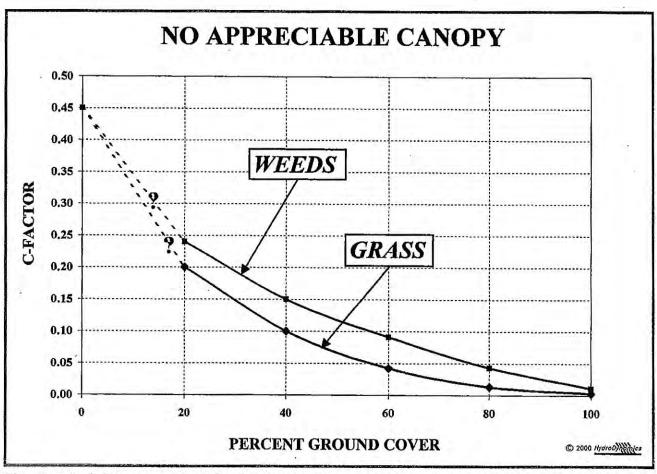


Figure 4-3. C-Factor Values for Established Grass and Weeds (Wischmeier and Smith, 1978)

WATER QUALITY SERVICES – SEDIMENT CONTAINMENT SYSTEMS – P-VALUE UPDATES

This Bulletin is to provide Calgary specific sediment containment system efficiency ratings to improve the accuracy of soil loss calculations and reduce the risk of sediment releases from construction sites. Effective July 1, 2016, the following design volumes and efficiency ratings shall apply:

Design Volume in m3	Percent Efficiency	P-Value
150	34	0.7
200	39	0.6
300	49	0.5
500	61	0.4
750	70	0.3
1200	80	0.2
1750	86	0.1

Sediment containment systems, such as sediment ponds, traps and storage ditches, are a common best management practice used on construction sites to reduce soil loss. These practices are given a P-value, or support practice factor, which is indicative of how effective they are at reducing soil loss from a construction site. The P-value is consequently used in soil loss calculations, where the goal is to propose best management practices that will reduce soil estimated from all slopes on site to below 2 tonnes/ha*yr. Calculations which are below this limit indicate a high probability that soil loss from the site will not have an adverse effect on our rivers , impair the quality of storm drainage or the integrity of the storm drainage system.

Recent modeling, using fifty years of rainfall data for The Calgary area, have resulted in more accurate local efficiency ratings for different sized sediment containment systems. The model was run to include pond volumes ranging from 150m3 to 1750m3. This new range of numbers provides consultants greater flexibility in their designs than the previous single volume of 250m3.

Implementation of these updated targets will increase the accuracy of predicted soil losses from construction sites. There will be a reduction in the number of sediment releases on sites using sediment ponds and this will result in improved compliance with municipal, provincial and federal legislation.

For more information contact:

Nicole Sparks
Team Lead, Stormwater Pollution Prevention
Water Quality Servcies
Nicole.Sparks@calgary.ca.

Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership

SLR Project No: 212.06650.00007/8

Mountain Ash Limited Partnership Summit Pit

SLR Project No: 212.06650.00006

April 2021

Dust Control Plan

Mountain Ash Limited Partnership Rocky View County, Alberta SLR Project No: 212.06650.00006

Prepared by: SLR Consulting (Canada) Ltd. 200 – 708 11th Ave SW Calgary, Alberta, T2R 0ER

for

Mountain Ash Ltd. Partnership 1945 Briar Crescent NW Calgary, AB, T2N 3V6

April 2021

This document has been prepared by SLR Canada. The material and data in this report were prepared under the supervision and direction of the undersigned.

Prepared by:

Reviewed by:

Xin Qiu, Ph.D., EP, ACM, P.Met Consultant (Air Quality) **Rick Lauzon, P.Biol., R.P.Bio.**Principal Environmental Consultant

Distribution: 1 copy (PDF) – Mountain Ash Limited Partnership

1 copy - SLR Consulting (Canada) Ltd.

Table of Contents

1.0	INTRO	DUCTION	1			
2.0	SOUR	SOURCES OF FUGITIVE DUST				
	2.1	Overview of Pit Operations	3			
	2.1.1	Aggregate Extraction	3			
	2.1.2	Aggregate Processing and Recycling	3			
	2.1.3	Conveyor Drop	3			
	2.1.4	Loading and Unloading	3			
	2.1.5	Shipping	3			
	2.2	Inventory of Fugitive Dust Sources	3			
3.0	MEAS	MEASURES TO CONTROL OR MINIMIZE FUGITIVE DUST				
	3.1	Aggregate Crushing and Screening	4			
	3.2	Truck Loading and Transportation	4			
	3.3	Unpaved Roads	5			
	3.4	Paved Roads and Entrance Ways	5			
	3.5	Wind Erosion of Exposed Stockpiles	6			
	3.6	Wind Erosion of Exposed Faces	6			
4.0	IMPLE	IMPLEMENTATION				
	4.1	Schedule	6			
	4.2	Implementation Plan	6			
5.0	INSPECTION AND MAINTENANCE					
	5.1	Maintenance	7			
	5.2	Identification of Problems	7			
6.0	MONI	TORING AND RECORD KEEPING	7			
7.0	RESPO	NSE TO COMPLAINTS	7			
8.0	CONC	LUSIONS	8			
9.0	STATE	STATEMENT OF LIMITATIONS8				

i

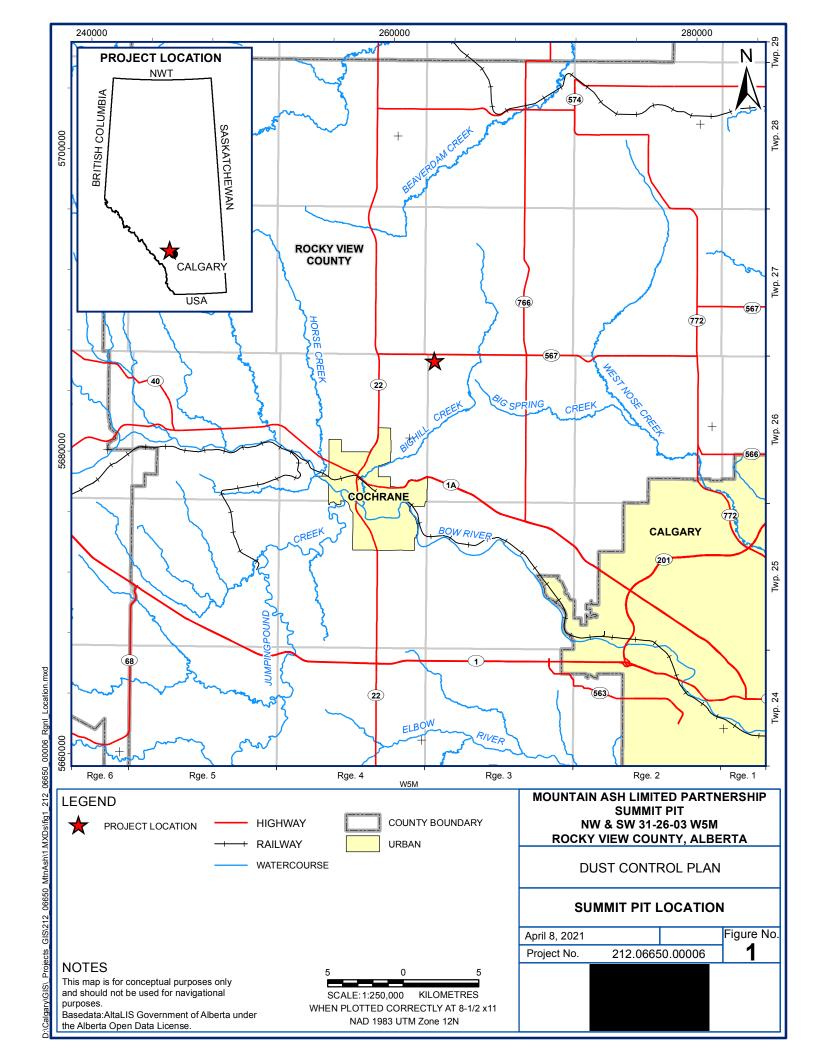
FIGURES

APPENDICES

Appendix A Complaint Record Report Log

1.0 INTRODUCTION

Mountain Ash Limited Partnership (Mountain Ash) is planning to develop the Summit Pit (the Project) along Highway 567 within NW and SW 31-026-03 W5M, northeast of the Town of Cochrane, in Rocky View County (RVC), Alberta (Figure 1). The Project will encompass approximately 208 acres (84 ha) excluding existing road rights-of-way. Mountain Ash is applying for Phase 1 of a six-phase mining plan. This land is currently owned by 1410266 Alberta Ltd. (a general partner of Mountain Ash). Summit Pit received land use and a master site development plan (MSDP) approval on March 2, 2021 (Land Use Bylaw C-8051-2020).


An air quality assessment was undertaken as part of the MSDP application to assess the potential fugitive air emissions generated from the Project operations in relation to adjacent receptors. The primary air emission associated with the Summit Pit operations is anticipated to be particulate matter (e.g., PM_{2.5} and TSP) released in the form of fugitive dust. Sources of fugitive dust can include traffic from on-site haul routes, aggregate processing, recycling, and handling, and natural releases occurring from exposed stockpiles and gravel faces. As a requirement for the Code of Practice (COP) for Pits and Development Permit (DP) applications, this report details the Dust Control Plan (DCP) in relation to the operation of the Summit Pit. The objectives of the DCP are:

- Provide an overview of the operations at the Summit Pit; identify potential sources of fugitive emissions; outline maintenance and inspection procedures.
- Provide a summary of control measures that are or shall be implemented; provide an implementation schedule for the control measures.
- Illustrate how on-going compliance is ensured through the use of a monitoring and record keeping program (i.e., the Ambient Air Quality Monitoring Plan).
- Detail the employee training program for fugitive dust control procedures.

Once implemented, the DCP will serve to minimize dust emissions from the Summit Pit, thereby minimizing or eliminating impacts to nearby receptors and the general local environment.

The Site Manager shall be responsible for ensuring that the control measures identified in this plan are implemented. To limit the transfer of dust to surrounding receptors, an operator must take all reasonable actions to ensure that fugitive dust emissions are minimized using best management practices associated with the industry and any regulatory approvals.

Although several pits have been proposed for the area, no additional pits have been approved with a development permit that have the potential to add to the dust contributions from Summit Pit operations at adjacent receptors. There is an agreement between future operators to ensure that a cumulative impacts mitigation management agreement is in place to minimize the dust from their respective operations with respect to cumulative effects. Mountain Ash will participate with those operations to address cumulative effects/impacts in the area prior to submitting future development permit applications.

2.0 SOURCES OF FUGITIVE DUST

Chapter 11 of the US EPA AP-42 document characterizes fugitive dust from stone crushing and aggregate handling as three forms of particulate matter: TSP, PM_{10} and $PM_{2.5}$. TSP is representative of total suspended particulate matter. PM_{10} and $PM_{2.5}$ is the respirable fraction of particulate matter.

2.1 Overview of Pit Operations

The primary operations at the Summit Pit will consist of aggregate extraction, crushing, screening and/or washing, stockpiling and off-site shipping.

2.1.1 Aggregate Extraction

Extraction will take place from Phase 1 to 6. Excavation will occur by stripping the deposit with a scraper, dozer, grader or excavator. There will be no blasting on the site.

2.1.2 Aggregate Processing and Recycling

Aggregate processing and recycling can include crushing, screening and conveyor transferring to drop points. Crushing plants can consist of primary and secondary crushers and screening plants can consist of primary and secondary screeners. Ground dust will be controlled via watering the area around the aggregate processing and loading site. Water is supplied through third party vendors and does not require a license.

2.1.3 Conveyor Drop

A total of four conveyors are considered in operation. Stack Conveyors 1-3, or more depending on the phase of operations, transfer aggregate from crushers to stockpiles, typically the fourth is a telescopic stacker to stockpile. The drop height is set to a minimum of 0.5 m to reduce dust emissions.

2.1.4 Loading and Unloading

Mountain Ash will sell aggregate from the Summit Pit throughout the year; however, most sales will likely be focused over the spring, summer, and early fall period. During this activity, aggregate will be loaded from the stockpiles onto trucks and transported offsite. Aggregate sales may overlap with overburden removal and mining/crushing activities.

2.1.5 Shipping

Trucks are weighed at the scale house before leaving the Summit Pit. There is one entrance to the Summit Pit which is paved and is located off Range Road 40. The internal haul road from the entrance will be unpaved with dust suppression applied on the remainder of the internal routes.

2.2 Inventory of Fugitive Dust Sources

The operations within the Summit Pit, and the associated potential sources of fugitive dust emissions, consist of the following:

- site preparation
 - o topsoil stripping and berm construction

- o traffic on unpaved roads
- crushing, screening and washing plants
 - o loading/unloading of aggregates
 - o traffic on unpaved roads
 - o conveyor transfers
- other general site-wide sources of fugitive emissions:
 - o traffic on paved and unpaved haul roads from shipping and general site activities
 - o wind erosion of active and inactive stockpiles
 - o loading/unloading of aggregates from general site activities

Road dust is one of the major emission source groups from the Project. It includes road dust emissions from moving vehicles on paved and unpaved roads, haul-trucks and water trucks on unpaved roads and trucks for calcium chloride applications on unpaved roads, etc. Road dust also includes emissions from off-road equipment and machines performing on-site activities, such as crushing, stripping, bull dozing and grading for remediation, backfilling, stockpiling, etc.

3.0 MEASURES TO CONTROL OR MINIMIZE FUGITIVE DUST

3.1 Aggregate Crushing and Screening

- The crushers will not be within 190 m of the east site boundary and 140 m from all other boundaries.
- Where the site foreman deems necessary, the processing plants shall be equipped with a water spray system. The actual water application rate shall vary, being adjusted as needed to reduce visible dust emission.
- Water for the spray system will be provided from a third-party water supplier.
- The spray-bars will be triggered whenever the site foreman or scale operator observes visible dust emissions.
- Where possible, the height of lifts and discharge distances to the top of the stockpile will be kept to a minimum.
- Conveyor drop heights shall be minimized to the extent possible to reduce spillage and provide windbreak. Conveyors on site should be equipped with rubber shrouds to minimize drop height for dust control.
- Conveyor belts shall be cleaned periodically to remove entrained material.
- During extreme windy conditions, the Operator will suspend operations until emissions can visibly be controlled.

3.2 Truck Loading and Transportation

Truck loading will be suspended if the site foreman or scale operator observes the material to be dry and dusty and the wind is sufficient to cause wide-spread visible emissions with plumes directed towards receptors.

The highest point of the material loaded into a truck shall not exceed the vehicles tray walls unless it is covered.

3.3 Unpaved Roads

The internal haul routes at the Summit Pit beyond the paved route are unpaved. The following measures shall be used to control and minimize fugitive dust from the internal unpaved roads:

- A truck or trailer-mounted tank will be located on site at all times and shall be equipped with a spray bar to deliver dust suppressor evenly over the haul route surface.
- Dust suppressant supply (Calcium Chloride, CaCl₂) shall be available to allow the tanker truck to fill and apply the full payload each hour, if necessary, during dry conditions.
- The actual application rate shall vary, depending on surface moisture conditions and traffic conditions, and shall be triggered whenever the site foreman or scale operator observes trucks producing a trailing cloud of dust greater than 1/3 of a trailer length.
- Haul routes shall be maintained (i.e., graded) approximately monthly during April to October, to ensure that loose fine material on the haul route surface is minimized.
- Trucks and other mobile equipment shall reduce speed as necessarily to reduce trailing dust clouds. The maximum speed will be 35 km/hr.
- The internal roads shall be clearly delineated to limit traffic to the established haul roads that have been maintained. Limiting the trucks away from unmaintained areas of the site is intended to minimize disturbance of unmaintained areas.
- To prevent spillage and air entrainment during transport of aggregates, the trucks carrying aggregate loads shall be covered during transport on the paved and unpaved roads.
- Disturbed areas of unpaved roads shall be stabilized to the extent possible with rollers or other similar equipment.

3.4 Paved Roads and Entrance Ways

The following measures shall be used to control and minimize fugitive dust from the paved Range Road 40:

- The Summit Pit will have one point of entry/exit, which will be paved and well-maintained during operations. The entry/exit point is on Range Road 40.
- The Summit Pit shall have the capability to spray water or other approved dust suppressants as deemed necessary by the site foreman on paved surfaces, as well as roads near the site entrance as needed.
- The actual application rate shall vary, depending on surface moisture conditions and traffic levels, and shall be triggered whenever the scale operator or site foreman observes trailers producing a trailing cloud of dust greater than 1/3 of a trailer length.
- To prevent spillage and air entrainment during transport of aggregates, the aggregate loads shall be covered during transport on the internal unpaved roads.
- Any spillage or material deposited on the paved roads shall be removed promptly.
- Regular sweeping of the paved roads will be conducted as required, at the discretion of the site foreman, to ensure that visible loose fine material of the haul road surface is minimized.
- Trucks and other mobile equipment shall reduce speed as necessarily to reduce trailing dust clouds. The maximum speed will be 35 km/hr.

3.5 Wind Erosion of Exposed Stockpiles

- Extraction shall be reduced or suspended if the condition of the active extraction face is dry and dusty, and the wind is directed toward a receptor at a speed sufficient to cause widespread visible erosion of the open face.
- Water shall be applied to stockpile material that are dry and dusty when the wind is directed toward a receptor at a speed sufficient to cause widespread visible emissions.
- Stockpiles shall be maintained to avoid steep sides or faces.
- Disturbance of storage piles shall be minimized where feasible. For active stockpiles, the disturbed area shall be minimized to the extent possible.

3.6 Wind Erosion of Exposed Faces

Mountain Ash expects the overburden hauling and remediation area will be crusted or covered by vegetation or snow after overburden stripping and backfilling is complete. Crusting would occur if the area is not disturbed for a period of time, depending on aggregate soil types and moisture content. Any natural crusting of the surface binds the erodible material, thereby reducing the erosion potential (U.S. EPA 2006).

Extraction shall be suspended if the condition of the extraction face is dry and dusty, and the wind is sufficient to cause wide-spread visible erosion of the open face with plumes directed off-site.

Aggregate stockpiles will be located on the Summit Pit floor in close proximity to the extraction face or in the stockpile area.

Wind forecasts shall be monitored regularly for heavy winds during operations to anticipate theneed for these measures and allow for next day planning.

4.0 IMPLEMENTATION

4.1 Schedule

All control measures are to be in place prior to extraction commencing in the Summit Pit. Control measures shall remain in place so long as the Summit Pit remains in operation.

4.2 Implementation Plan

The following outlines how the DCP shall be implemented, including training of facility personnel:

- The DCP shall be kept on file at the scale house.
- Training on new and existing operating procedures shall be provided to relevant staff; refresher training shall be provided at a minimum of once every 2 years.
- The Summit Pit management shall communicate the DCP to responsible supervisors, who shall ensure staff are following operating procedures defined in the DCP.
- The site foreman shall be responsible for ensuring the DCP is followed; Management shall ensure DCP is reviewed annually.
- The staff shall follow the DCP procedures.

5.0 INSPECTION AND MAINTENANCE

5.1 Maintenance

The following outlines the details regarding the inspection and maintenance procedures that shall be employed at the site:

- The water spray system and the CaCl₂ application equipment for the processing plant will be inspected when in use.
- Haul routes shall be maintained on a regular basis as previously indicated in Section 3.3; and, haul routes shall be inspected daily, or more regularly as dictated by wind conditions and truck traffic. The haul routes shall be maintained on a regular basis, as previously indicated, based on the inspection, the wind conditions, and the truck traffic.
- Prior to the operation of the processing plants, the water spray systems and the CaCl₂ application equipment should be inspected, and pond water levels shall be inspected to ensure adequate water supply.

5.2 Identification of Problems

The site operator shall be informed of any issues that arise from inspections performed. Operations may be curtailed if dust control equipment is not adequately performing.

6.0 MONITORING AND RECORD KEEPING

Visual inspection for dusty conditions in areas of emission sources identified in the DCP shall occur at a minimum of twice daily during dry weather and once per day otherwise. Records shall be made each time the following events occur:

- dust suppressant is applied to unpaved haul routes and unpaved haul routes are maintained
- water sprays are used at the processing plant and other surfaces
- wet or vacuum-sweeper arrives and cleans paved surfaces; heavy dust plumes are observed
- a complaint is received

All records will be kept onsite in a logbook. A sample Complaint Record Report log form is provided in Appendix A.

In the event of a dust complaint, the complaint will be directed to the site foreman who will follow the protocols outlined in the Complaints Procedures document, which is kept on-site.

The Pit will enact an action plan concerning its operations in response to a complaint, as detailed in the following section.

7.0 RESPONSE TO COMPLAINTS

Complainants should identify the location of the incident as well as the time of day that it was detected and any other relevant information. All dust complaints shall be forwarded to the site foreman and recorded in the logbook as identified in the previous section.

The site foreman shall ensure the following actions:

- conduct a site survey to identify sources of visible dust contributing to the complaint
- create a record of this survey
- determine weather conditions (both current and at the time that the complaint was made)
- report on all on-site activities at the time the complaint was made

If the information collected from the survey procedures indicates the Summit Pit is not the source of the dust, the complainant shall be notified of this finding. Documentation supporting this response mechanism (site survey record and wind station readings at the time of the complaint) shall be provided to the complainant upon request. The site foreman or other Pit staff shall respond to all complaints within 24 hours with a phone call to the complainant.

If it is determined that the complaint is related to Summit Pit activities, the following response procedures shall be followed, in the order provided below.

Level 1 – Inspection and Correction of Operations

The Site Foreman shall ensure that all elements of the DCP are being followed. Control measures such as spraying or watering shall be increased or operations may be curtailed, as required.

Level 2 - Review of the DCP

If the Level 1 response does not adequately resolve the source of the dust complaint, the DCP shall be reviewed for additional control measures.

Level 3 – Operational modifications

If the Level 2 response does not adequately resolve the source of the dust complaint, the Mountain Ash shall commit to making physical changes to the facility to address the source of the dust emissions. Such changes may include, but are not limited to, additional enclosures, relocation of equipment, or additional paving.

8.0 CONCLUSIONS

This document presents a Best Management Practices DCP to control and minimize fugitive dust emissions from the Summit Pit operations. Mountain Ash will implement and abide by these measures contained in the plan. Record keeping, inspections and oversight will ensure an effective dust mitigation program throughout the lifespan of operations at the Summit Pit.

The DCP will serve to minimize all dust emissions from the Summit Pit, so that the risk to human health and the potential for offsite nuisance is minimized.

This DCP will be kept on-site at all times in the scale house for reference.

9.0 STATEMENT OF LIMITATIONS

This report has been prepared and the work referred to in this report has been undertaken by SLR for Mountain Ash Limited Partnership., hereafter referred to as the "Client". The report has been prepared in accordance with the Scope of Work and agreement between SLR and the Client. It is intended for the sole and exclusive use of the Client. Other than by the Client and as set out herein, copying or distribution of

this report or use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of SLR.

This report has been prepared for specific application to this site and site conditions existing at the time work for the report was completed. Any conclusions or recommendations made in this report reflect SLR's professional opinion.

Information contained within this report may have been provided to SLR from third party sources. This information may not have been verified by a third party and/or updated since the date of issuance of the external report and cannot be warranted by SLR. SLR is entitled to rely on the accuracy and completeness of the information provided from third party sources and no obligation to update such information.

Nothing in this report is intended to constitute or provide a legal opinion. SLR makes no representation as to the requirements of compliance with environmental laws, rules, regulations, or policies established by federal, provincial, or local government bodies. Revisions to the regulatory standards referred to in this report may be expected over time. As a result, modifications to the findings, conclusions, and recommendations in this report may be necessary.

Dust Control Plan

Mountain Ash Limited Partnership Summit Pit SLR Project No: 212.06650.00006

GENERAL INFORMATION - COMPLAINTANT
Source of Complaint: Residential or Other: Name: Mr. Mrs. Ms. Telephone No.: () (home/cell) () (work)
Email Address: Home/Business Address:
City:Postal Code:
Other Comments:
COMPLAINT INFORMAION
Date (Month/Day/Year): /
Complaint Type: Dust Noise Other:
Address or Nearest Cross Street of Observed Incident:
Description:
WEATHER CONDITIONS DURING TIME OF COMPLAINT
Wind Direction: (Blowing From) Wind Speed:
OPERATIONS DURING TIME OF COMPLAINT
Description of Operations (production activity & recorded events during/before complaint period):
MITIGATION EFFORTS & COMPLAINT RESPONSE
Date of Response (Month/Day/Year):/ Response Summary: Attached Copy of Written Response
Corrective Action Taken :
REPORT PREPARATION
Report Prepared by:

Appendix D Air Quality Monitoring Plan

Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership

SLR Project No: 212.06650.00007/8

Mountain Ash Limited Partnership Summit Pit

SLR Project No: 212.06650.00006

June 2021

Ambient Air Quality Monitoring Plan

Mountain Ash Limited Partnership Rocky View County, Alberta SLR Project No: 212.06650.00006

Prepared by: SLR Consulting (Canada) Ltd. 200 – 708 11th Ave SW Calgary, Alberta, T2R 0ER

for

Mountain Ash Ltd. Partnership 1945 Briar Crescent NW Calgary, AB, T2N 3V6

June 2021

This document has been prepared by SLR Canada. The material and data in this report were prepared under the supervision and direction of the undersigned.

Prepared by:

Ryan Kangas, M.Sc. Senior Air Quality Scientist Reviewed by:

Rick Lauzon, P.Biol., R.P.Bio.Principal Environmental Consultant

Distribution: 1 copy (PDF) – Mountain Ash Limited Partnership

1 copy - SLR Consulting (Canada) Ltd.

Table of Contents

1.0	INTRO	DDUCTION	1
	1.1	Facility Location and Geographical Area	1
	1.2	Ambient Air Quality or Issues in the Area	4
	1.3	Documentation of Monitoring Objective(s)	4
	1.4	Responsible Authorities	8
2.0	MONI	TORING INFORMATION	8
	2.1	Local Climatology	8
	2.2	Substance(s) to be Monitored	8
	2.3	Method of Monitoring	8
	2.4	Instrument Siting Criteria	10
	2.5	Monitoring Location	10
	2.6	Limitations on Monitoring Site Access	10
	2.7	Monitoring Schedule	10
3.0	EMISSIONS AND RECEPTORS		
	3.1	Nearby Industrial Sources	10
	3.2	Sensitive Receptors	11
4.0	QUAL	ITY ASSURANCE AND QUALITY CONTROL	11
	4.1	Ambient Monitoring Operations	11
		4.1.1 Monitor Operation	11
		4.1.2 Site Visits	
		4.1.3 Instrument Calibration	
	4.2	Data Acquisition and Management	
		4.2.1 Data Acquisition	
		4.2.2 Data Validation	
	4.3	Non-Compliance, Preventive, and Corrective Action	
	4.3	Evaluation and Improvement	
	4.4 4.5	Reporting	
			Ip
5.0	STATE	MENT OF LIMITATIONS.	17

TABLES

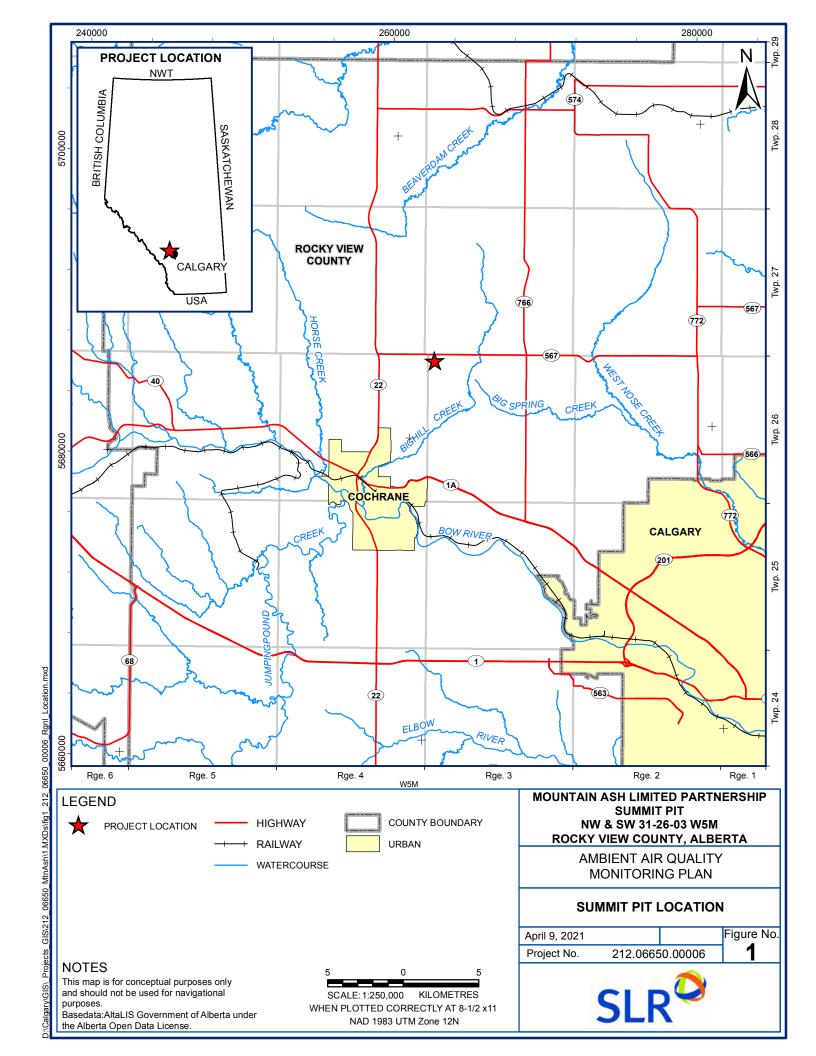
Table 1:	Alberta Ambient Air Quality Objectives (AAAQOs)	5
Table 2:	Canadian Ambient Air Quality Standards (CAAQS)	E
Table 3:	Key Responsibilities	8
Table 4:	Method of Monitoring and Performance Specifications	9
Table 5:	Summary of Project Documentation and Records	. 16
FIGURES		
Figure 1	Summit Pit Location	2
Figure 2	Plan Overview of Summit Pit Site	3
Figure 3	Layout of Modelling Receptors	7
Figure 4	Wind Rose from Springbank Airport	9

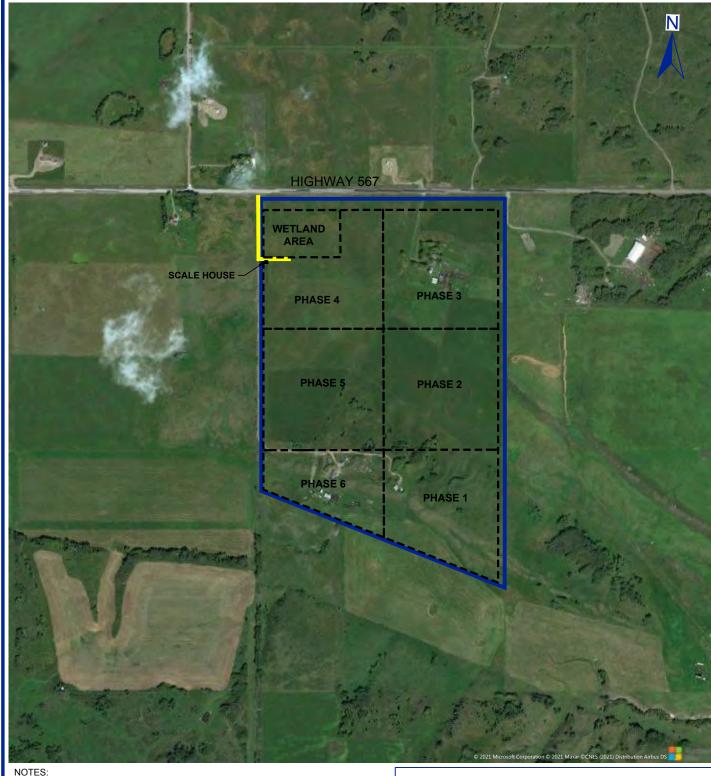
APPENDICES

Appendix A Photolog

1.0 INTRODUCTION

Mountain Ash Limited Partnership (Mountain Ash) is planning to develop the Summit Pit (the Project) along Highway 567 within NW and SW 31-026-03 W5M, northeast of the Town of Cochrane, in Rocky View County (RVC), Alberta (Figure 1). The Project will encompass approximately 208 acres (84 ha) excluding existing road rights-of-way. Mountain Ash is applying for Phase 1 of a six-phase mining plan. This land is currently owned by 1410266 Alberta Ltd. (a general partner of Mountain Ash). Summit Pit received land use and a master site development plan (MSDP) approval on March 2, 2021 (Land Use Bylaw C-8051-2020).


An air quality assessment was undertaken as part of the MSDP application to assess the potential air pollution from the Project operations in relation to sensitive receptors. Project operations will produce anthropogenic emissions and dust into the ambient air. Diesel combustion from engines on heavy trailer and haul trucks and other vehicles emit sulphur dioxide (SO_2), fine particulate matter with aerodynamic diameter below 2.5 micrometer ($PM_{2.5}$), carbon monoxide (CO), and oxides of nitrogen (NO_x). Additionally, fugitive dust emissions from wheel entrainment and pit operations produce suspended particulates (TSP). Since these contaminants can pose potential negative effects to human health at high ambient ground-level concentrations, they are regulated and should not exceed their prescribed Alberta Ambient Air Quality Objectives (AAAQOs) and Canadian Ambient Air Quality Standards (CAAQS). As a requirement for the Code of Practice (COP) for Pits and Development Permit (DP) applications, this report details the Ambient Air Quality Monitoring Plan (AQMP) in relation to the operation of the Summit Pit.


Following the Air Quality Modeling Guideline (AQMG), CALPUFF dispersion modeling was done to assess the effects of Project operations on AAAQOs and CAAQS. Modelling was completed for the three key pit operations defined as: overburden removal and backfill, aggregate mining/crushing, and hauling/trucking. Maximum Daily Emission and Annual Average Emission cases were estimated. The results at the Project boundary showed there were no predicted exceedances of AAAQOs and CAAQS for any modelled compounds and any averaging period when the Dust Control Plan is executed appropriately. The predicted maximum concentrations at residence receptors are all less than the AAAQOs and CAAQS for all modelling scenarios and all contaminants.

While Project operations are not expected to exceed ambient air quality objectives beyond the property boundary, Mountain Ash has committed to monitoring for PM_{2.5} and TSP at the property boundary to ensure dust suppression techniques are working and for the protection of their neighbors. Although several pits have been proposed for the area, no additional pits have been approved with a development permit that have the potential to add to the air emissions from Summit Pit operations at adjacent receptors. There is an agreement between future operators to ensure that a cumulative impacts mitigation management agreement is in place to minimize emissions from their respective operations with respect to cumulative effects. Mountain Ash will participate with those operations to address cumulative effects/impacts in the area prior to submitting future development permit applications.

1.1 Facility Location and Geographical Area

The Project area is northwest of the City of Calgary south of Highway 567 (Figure 1). The closest major community of Cochrane is approximately 9 km SSE, and the nearest neighbor is approximately 250 m to the East, from the property line, excluding self-imposed setbacks as contained herein. Figure 2 provides the site plan. The area is sparsely populated and surrounded by farmland and rolling terrain.

DRAWING COMPILED FROM DATA AS PROVIDED BY THE CLIENT.

LEGAL DESCRIPTION: W 1/2 SEC 31 TWP 026 RGE 03 W5M ROCKY VIEW COUNTY, ALBERTA LEGEND:

MOUNTAIN ASH PAVED ACCESS ROAD

SITE LOCATION

EXTRACTION PHASE BOUNDARIES

200 400 600 800 m

SCALE 1:12,500 WHEN PLOTTED CORRECTLY ON A 8.5 x 11 PAGE LAYOUT NAD 1983 UTM ZONE 11N

THIS DRAWING IS FOR CONCEPTUAL PURPOSES ONLY. ACTUAL LOCATIONS MAY VARY AND NOT ALL STRUCTURES ARE SHOWN. MOUNTAIN ASH LIMITED PARTNERSHIP **SUMMIT PIT** NW & SW 31-26-03-W5M ROCKY VIEW COUNTY, ALBERTA

AMBIENT AIR QUALITY MONITORING PLAN

PLAN OVERVIEW OF SUMMIT PIT SITE

Date: April	12, 2021	Figure No.
Project No.	212.06650.00006	2

1.2 Ambient Air Quality or Issues in the Area

The airborne contaminants of primary concern discharged from the facility are particulate matter, specifically, PM_{2.5} and dust or TSP. PM_{2.5}. The major emission source of PM_{2.5} particulates from the Project is machinery and vehicle emissions. TSP sources are gravel roads, mining and crushing operations and wind transport over bare ground. While TSP is often seen as less harmful due to its larger size.

Regional emissions in the area can also come from two active pits and one single point source located within 5 km of the Project. The sources were included in the modelling and are shown in Figure 3. The closest pit is Hillstone Gravel Pit, which is located around 2 km west of the Project while Lafarge Glendale Gravel Pit is around 3.7 km southeast of the Project. The nearby point source emission is Lochend Oil Battery which is about 3.5 km south of the Project.

1.3 Documentation of Monitoring Objective(s)

The objective of the AQMP is to design an ambient PM_{2.5} and TSP monitoring plan to obtain local air quality data that is suitable for comparison with applicable standards.

Alberta's ambient air quality objectives and guidelines are developed under the Alberta *Environmental Protection and Enhancement Act* (EPEA), and its objective is to protect Alberta's air quality. The AAAQOs shown in Table 1 include SO₂, NO₂, CO, PM_{2.5}, TSP and the averaging periods for each pollutant varies from 1-hour to annual. The Canadian Council of Ministers of the Environment (CCME) developed CAAQS for PM_{2.5}, O₃, SO₂ and NO₂. All CAAQS consist of three interrelated elements: an averaging time period, a numerical value and the statistical form of the numerical standard as shown in Table 2.

Table 1: Alberta Ambient Air Quality Objectives (AAAQOs)

Pollutant	Averaging Period	AAAQOS (μg/m³)
	9 th Highest 1-hour	450
50	Maximum 24-hour	125
SO ₂	Maximum 30-day	30
	Annual	20
NOS	9 th Highest 1-hour	300
NO2	Annual	45
	9 th Highest 1-hour	15,000
СО	Maximum 8-hour	6,000
PM _{2.5} Maximum 24-hour		29
	Maximum 24-hour	100
TSP	Annual	60

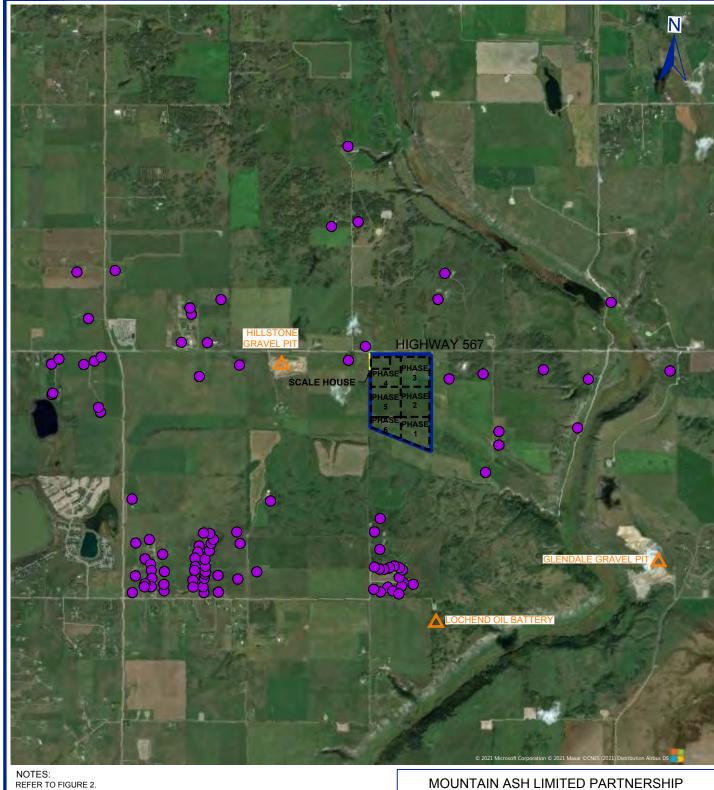


Table 2: Canadian Ambient Air Quality Standards (CAAQS)

Pollutant	Averaging Period	Year 2020	Year 2025
	1-hour ¹	70 ppb	65 ppb
SO_2	Annual ²	5.0 ppb	4.0 ppb
NO	1-hour³	60 ppb	42 ppb
NO_2	Annual ⁴	17 ppb	12 ppb
DAA	24-hour ⁵	27 μg/m³	27 μg/m³
PM _{2.5}	Annual ⁶	8.8 μg/m³	8.8 μg/m³
O ₃	8-hour ⁷	62 ppb	60 ppb

Notes:

- ¹ The 3-year average of the annual 99th percentile of the SO₂ daily maximum 1-hour average concentrations
- The average over a single calendar year of all 1-hour average SO2 concentrations
- ³ The 3-year average of the annual 98th percentile of the daily maximum 1-hour average concentrations
- The average over a single calendar year of all 1-hour average concentrations
- ⁵ The 3-year average of the annual 98th percentile of the daily 24-hour average concentrations
- ⁶ The 3-year average of the annual average of the daily 24-hour average concentrations
- ⁷ The 3-year average of the annual 4th highest of the daily maximum 8-hour average ozone concentrations

SITE LOCATION EXTRACTION PHASE BOUNDARIES

AIR QUALITY SOURCE AIR QUALITY RECEPTOR

MOUNTAIN ASH PAVED ACCESS ROAD

SCALE 1:50,000 WHEN PLOTTED CORRECTLY ON A 8.5 x 11 PAGE LAYOUT NAD 1983 UTM ZONE 11N

THIS DRAWING IS FOR CONCEPTUAL PURPOSES ONLY. ACTUAL LOCATIONS MAY VARY AND NOT ALL STRUCTURES ARE SHOWN.

MOUNTAIN ASH LIMITED PARTNERSHIP **SUMMIT PIT** NW & SW 31-26-03-W5M ROCKY VIEW COUNTY, ALBERTA

AMBIENT AIR QUALITY MONITORING PLAN

LAYOUT OF MODELLING RECEPTORS

Date: April 1	Figure No.	
Project No.	212.06650.00006	3

1.4 Responsible Authorities

The overall commitment of the AQMP is to ensure that appropriate measures and precautions will be implemented at the facility continuously and effectively, in a manner that is protective of the local airshed and human health. Table 3 lists the various responsibilities that are required by the Project operator in implementing the AQMP.

Key Role Responsibilities Project Manager Responsible for overseeing and coordinating all aspects of the Project. Responsible for operating the monitoring station and conducting routine monitoring activities such as routine site visits, calibrations, and resolving system errors. Station Operator Responsible for regular data downloads and review, data validation, and preparing data reports. Data Manager Responsible for reviewing the data analyst's work products. Quality Assurance Responsible for ensuring that established QA/QC procedures are Manager followed and will review results of all QA/QC activities.

Table 3: Key Responsibilities

2.0 MONITORING INFORMATION

2.1 Local Climatology

Climatological data is available from the nearby Springbank Airport located south-southeast of the Project. Wind is predominantly from the west and northwest at the Project location with an average speed of 15 km/h. A wind rose from April 2015 through October 2020 is provided in Figure 4. The wind rose only represents months of expected operations (approximately April-October).

2.2 Substance(s) to be Monitored

As the airborne contaminant of primary concern discharged from the Project is particulate matter, Mountain Ash has committed to establishing an air quality monitoring program. This program is designed to monitor and evaluate ambient PM_{2.5} and TSP concentrations related to potential particulate emissions from the Project. Additionally, wind speed and wind direction will be recorded.

2.3 Method of Monitoring

Mountain Ash will monitor for $PM_{2.5}$ and TSP using the TSI Dusttrak Aerosol Monitor or similar. The Dusttrak uses a light scattering laser photometer to provide real time aerosol readings corresponding to PM_1 , $PM_{2.5}$, PM_{10} and PM total. The Dusttrak is suitable for both indoor and outdoor use, has in internal datalogger, alarm capabilities, automatic zeroing for instrument drift, low power usage, and can be equipped with remote communications and additional peripherals. The Dusttrak will also be housed in a temperature and environment-controlled shelter for additional protection from the elements. Additionally, the Dusttrak monitor will be equipped with a wind speed and direction monitor to record

the source of particulate readings. A summary of the proposed instrument specifications is provided in Table 4.

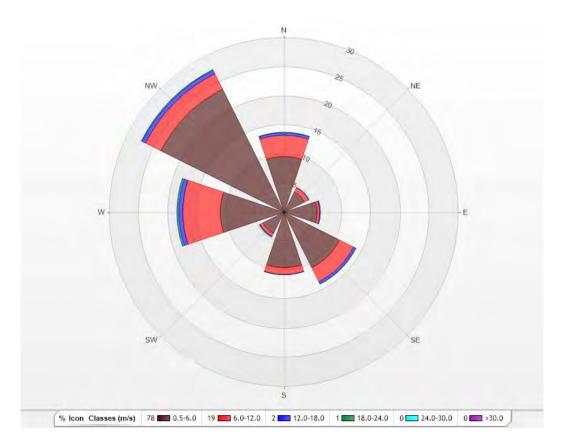


Figure 4 Wind Rose from Springbank Airport

Table 4: Method of Monitoring and Performance Specifications

Monitoring / Instrumentation Method	Resolution	Full Scale	Precision	Accuracy	Data Output Rate	
	PM _{2.5} and TSP Measurements					
TSI Dusttrak	± .1% or 1 μg/m³	150,000 μg/m³	± 1.0 μg/m³	n/a	1-second	
	Wind Measurements					
Wind Speed / Luft WS600-UMB	0.1 m/s	75 m/s	n/a	±0.3 m/s or 3%	1-second	
Wind Direction / Luft WS600-UMB	n/a	360 degrees	n/a	±3 degrees	1-second	

2.4 Instrument Siting Criteria

The location should be based on an objective procedure that will provide the best monitoring results for the needs of the program. The Alberta Air Monitoring Directive provides a list of siting criteria that is applicable to the proposed monitoring objectives and are listed below.

- PM_{2.5} and TSP Sampling Inlet
- sample inlet must be 2 to 15 m above ground
- the inlet must be located greater than 20 m from structures or trees
- no nearby furnace or incinerators
- air flow must be unrestricted in three of the four wind quadrants

The proposed air monitoring location will satisfy the criteria referenced above.

2.5 Monitoring Location

Based on the modelling results, predominant wind direction, and the close proximity of the neighbor east of the Project property line, the location for the $PM_{2.5}$ and TSP monitoring station is determined to be immediately inside the eastern property boundary in line with the Project and nearest neighbor. During the various phases of operations, the location will need to be moved occasionally to remain in line with the nearest neighbor and operations. The eastern boundary resides downwind from the Project during most of the year and will provide a point of maximum for particulate leaving the Project property. The eastern boundary also meets the required clearing from structures and trees and has unrestricted air flow in all four quadrants throughout the entirety of the eastern property boundary. Pictures of the eastern property line are in Appendix A.

2.6 Limitations on Monitoring Site Access

The PM $_{2.5}$ and TSP instrumentation will be located immediately inside the property boundary on the eastern property line between the nearest neighbor and Project operations. There are no roads along the eastern property boundary. Limited vehicle access may be possible depending on ground conditions and fencing but is easily accessible by foot.

2.7 Monitoring Schedule

Continuous monitoring for PM_{2.5}, TSP, wind speed and wind direction will be conducted at the monitoring station during mining operations (approximately April through October). Data will be logged in 15-minute increments and will be obtained on an ongoing basis from the instrumentation. Monitoring is proposed to be conducted during the period of mining operations.

3.0 EMISSIONS AND RECEPTORS

3.1 Nearby Industrial Sources

Regional emissions in the area come from two active pits and one single point source located within 5 km of the Project. Hillstone Gravel Pit, which is located around 2 km west of the Project and Lafarge Glendale

Gravel Pit, which is around 3.7 km southeast of the Project. The nearby point source emission is Lochend Oil Battery which is about 3.5 km south from the Project.

3.2 Sensitive Receptors

A number of receptors were included in the modeling. Most of them are human-inhabited areas, ecosystems, or other sites that are more susceptible to emissions. Figure 3 shows the layout of gridded receptors, as black dots, and discrete receptors, marked as black asterisks for more sensitive receptors. The largest residential area in the region is the Town of Cochrane, located approximately 9 km to the Southwest. The nearest residence is located approximately 250 m to the east of the Project property boundary/line.

4.0 QUALITY ASSURANCE AND QUALITY CONTROL

4.1 Ambient Monitoring Operations

In general, operations will include regular scheduled station visits, zero and span verifications, calibrations, preventative maintenance and documentation. Instrument specific standard operating procedures (SOPs) will be developed to ensure operators are aware of all detailed information and follow the correct installation, operation and detailed calibration and maintenance procedures for each monitor and sensor.

4.1.1 Monitor Operation

Continuous $PM_{2.5}$, TSP, wind speed and wind direction monitoring are expected to be operational at least 90% of the time on a monthly basis. Operating procedures will be described in the specific monitoring instruments operations manual. Performance specifications are listed in Table 4.

4.1.2 Site Visits

To verify proper operation of the monitoring equipment, scheduled station visits are proposed to be conducted on a quarterly basis. Typical activities to be performed during site visits will include the following and will be documented in a site logbook:

- perform preventative maintenance as recommended by operations and maintenance manuals
- completion of flow rate verifications and leak checks
- cleaning of inlet heads and equipment as required
- removal of tall grass or trees
- instrument calibrations, as required

4.1.3 Instrument Calibration

As many variables can affect the performance of particulate monitoring instruments, instrument calibration at regular intervals is necessary. All calibration checks will be performed by a trained technician or station operator by following the requirements of the maintenance and calibration procedures in the instrument operation manual. Flow checks will need to be performed with a certified calibration device.

Routine calibration checks of the monitoring equipment will be performed quarterly, during operations, for PM_{2.5} and TSP monitoring. Calibration checks for the particulate instruments will include a flow, zero verification and span test. On an annual basis the Dusttrak will need to be returned to the manufacturer for a comprehensive maintenance and calibration verification check. Calibration criteria for each measured parameter are provided in instrument manuals and listed below:

- flows should not deviate by more than 5% of the designated flow rate (3LPM)
- zero checks should be passing
- span (bump check) should be responsive
- verify time is correct

Additional calibration checks are required if any one of the following criteria is met, as appropriate:

- after initial installation
- after major repairs
- if an instrument is physically relocated
- when any maintenance activity that may alter the response of the instrument is conducted
- prior to the removal, repair or replacement of any instrument if it is still operational
- immediately following the installation of a replacement instrument
- immediately prior to project takedown

All test equipment used for calibrations will be maintained and certified on a regular basis. Records that provide traceability to authoritative standards of all equipment used for adjusting monitoring systems will be maintained by operator.

4.2 Data Acquisition and Management

4.2.1 Data Acquisition

Data acquisition will include the collection of electronic data and the generation of hand-written or electronic documentation and records. Data acquisition can be completed either remotely through the modem and instrument or may be downloaded from the instrument directly. Documents and records generated for this project are listed in Table 5.

A data acquisition and data management system will be used. The system will maintain an ongoing real-time log of one-hour data averaging periods for particulate concentrations and wind. This system will store data in an organized manner for reporting purposes and can be used to record maintenance and calibrations within a logbook.

4.2.2 Data Validation

4.2.2.1 Validation Process

Validation of continuous sensor data occurs several times before data is finally archived.

Daily Validation

Daily data validation will be conducted on the one-hour averages using the following steps:

- At a minimum, daily validation should ensure the instruments are running and properly functioning.
- Daily validation should consistently be performed at the same time of day, usually in the morning.
- Daily validation involves the review of the previous 30 hours of data from all monitors. Data is examined for negative baseline, missing data, power failures, rate of change flags or any other data anomalies.
- If the validation process detects an error, investigation should occur.
- A data error may result in the data point being declared invalid.
- A data error may result in instrument repair followed by a recalibration of the monitor/sensor. If the monitor/sensor is replaced, it must be recalibrated immediately following installation.
- The daily check also involves verifying that all communication systems are operational. Corrections or repairs are carried out as required.

Monthly Validation

Monthly data validation will be conducted on one-hour averages using the following steps:

- Monthly data validation involves examination of the daily data.
- The data set is reviewed for the entire month and reasons for missing data is explained, or the data is replaced if available.
- A second review of data from all stations should be performed, preferably by another technician.
- After second review, the dataset is checked for minimums, maximums, averages, data recovery and trends, etc.

Annual Validation

Annual data validation will be conducted on the one-hour averages and will be examined using the following steps:

- As part of the annual data validation, minimums, maximums, averages, data recovery and trends, etc. are calculated and identified. Anomalies are identified and further verification is performed.
- An annual data report is generated and reviewed.
- The dataset is archived.
- The three levels in the verification process coupled with the application of high-quality QA/QC standards provide a defensible dataset.

Data review evaluates incoming data for conformance with predetermined project criteria. Data validation and QA/QC will be performed on a daily, monthly and annual basis with screening criteria that is established to identify data integrity and quality issues early so they can be corrected. The operator will ensure that:

- data observations are within the operating limits of the monitoring equipment
- data continues to be collected and transmitted as designed
- apparent outliers are identified and investigated to determine if they represent a malfunction or some other issue

Data validation evaluates data against a set of criteria to provide assurance that the data are adequate for their intended use. Data validation is intended to confirm the degree of truth in an analytical sense. The data analyst will confirm that:

- the instruments were operated and calibrated in accordance with the manufacturer's specifications
- automated and manual QC procedures meet acceptance criteria
- corrective actions are documented, and their effectiveness is verified
- log books are kept current and accurately record significant station events
- method specific screening and data validation criteria are applied

Data verification evaluates the completeness, correctness, conformance, and compliance of a specific data set against the method, procedural, or contractual specifications. The operator will ensure that:

- data quality and completeness meets or exceeds program requirements
- data is reviewed to identify long term trends
- calibration documentation is reviewed to ensure timeliness of field activities and review the performance of the station sensors
- invalidated data periods are documented and investigated and provide recommendations for improvement as needed.

4.2.2.2 Validation Process Records

As part of the data validation process, data validation codes will be entered for any data value deemed to be invalid, or that need to be qualified.

Whenever any data are invalidated or qualified the monitoring program requires that a data validation log entry be made. The log entries will include the following information:

- who performed the validation action
- when the validation action was completed
- the parameter(s) affected
- the identification of, and justification for, any data adjustments or invalidations
- a brief description of any corrective action performed to address data issues

- the identification of, and justification for, the validity of anomalous data or outliers
- any additional entries for post-validation changes

A 24-hour average will be deemed to be valid if at least 18 hours of sampling occurred from midnight to midnight Local Standard Time.

4.2.3 Documents and Records

Data will be automatically backed up to an online storage folder. Data will be reviewed at regular intervals to check the function of the instruments and to ensure that the data collected is reasonable and valid.

Raw data along with all data reduction and validation procedures will be retained. Raw data will be archived separately and distinct from validated data.

4.3 Non-Compliance, Preventive, and Corrective Action

Documentation of all site visits will be provided through several forms. Station logs and checklists, which detail inspection, calibration, and repair activities, will be maintained by the operator. Records and measurements taken during calibrations will be recorded on forms designed specifically for the instrument. The archive location for these project documents is provided in Table 5.

The monitoring system has been designed to require minimal preventive maintenance. All system components have been selected based on dependability and stability through extensive field application and will be purchased new. The preventive maintenance tasks and schedules recommended by each equipment manufacturer will be followed. Records will be maintained of all preventive maintenance activities.

A collection of spare parts will be maintained for the instrumentation. Inlet filters, O-rings, pumps, and inlet head replacements will be maintained for the particulate samplers. In the event of an instrument failure beyond the repair of the operator, the instrument will be sent to the manufacturer for repair and calibration. In this event, a temporary replacement instrument will be obtained to prevent excessive data loss on the Project.

The station operator will maintain the following support documentation at the monitoring location:

- copies of manufacturer's operation and service manuals for each piece of monitoring equipment
- copies of applicable SOPs covering tasks to be performed in the operation and servicing of the monitoring system
- station logs, and checklists for recording site visits and maintenance activities
- a copy of the Project AQMP

Any monitoring equipment problems or issues that are identified during calibration or regular site visits, or during the data review process, or that may affect the quality of the data collected, will be documented and reported to the project manager. All monitoring equipment problems that may affect data quality, and the corrective actions taken to resolve them, will be documented using corrective action request forms and will be detailed in the data reports.

Table 5: Summary of Project Documentation and Records

Type of Documentation Generated	Frequency Generated	Preparer	Archive Location
Raw data (digital)	1-hour averages logged hourly and downloaded regularly	Station operator	Data Acquisition System
Validated data	Monthly and annual	Station operator	Data Acquisition System
Station logs	Each station visit	Anyone visiting the site	On site logbook or Data Acquisition System
Equipment checklists	Each station visit	Station operator	On-site or Data Acquisition System
Calibration checks	Quarterly	Station operator	On-site or Data Acquisition System
Maintenance logs	As needed	Station operator	On-site or Data Acquisition System
Spare parts inventory	Quarterly	Station operator	On-site
Monthly data report	As needed	Station operator Project Manager	On-site or Data Acquisition System

4.4 Evaluation and Improvement

The operator will conduct an annual review of the monitoring program following the end of the calendar year to evaluate whether the objectives of the monitoring program have been met. The results of the review will be reported in the relevant data report.

The project manager will reassess the AQMP if:

- the review shows that the objectives of the monitoring project are not being met
- the data are inconsistent or fail to meet the criteria or objectives of the monitoring project
- new monitoring objectives are identified
- there are change(s) in emissions and/or receptors in the area, changes in ambient air quality, changes in monitoring technology, audit results, or public concerns within the area monitored

4.5 Reporting

Quarterly or annual reports will be prepared as needed. The contents of the reports will include the following:

- a station performance summary with data recovery statistics and a discussion of significant events (e.g., audits, calibrations, repairs)
- documentation of the reasons for any missing, invalidated, or adjusted data
- tabular listings of all validated hourly data with daily and monthly summaries
- results of audits and/or calibrations performed
- copies of calibration data forms for all instrument calibrations conducted

5.0 STATEMENT OF LIMITATIONS

This report has been prepared and the work referred to in this report has been undertaken by SLR for Mountain Ash Limited Partnership., hereafter referred to as the "Client". The report has been prepared in accordance with the Scope of Work and agreement between SLR and the Client. It is intended for the sole and exclusive use of the Client. Other than by the Client and as set out herein, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of SLR.

This report has been prepared for specific application to this site and site conditions existing at the time work for the report was completed. Any conclusions or recommendations made in this report reflect SLR's professional opinion.

Information contained within this report may have been provided to SLR from third party sources. This information may not have been verified by a third party and/or updated since the date of issuance of the external report and cannot be warranted by SLR. SLR is entitled to rely on the accuracy and completeness of the information provided from third party sources and no obligation to update such information.

Nothing in this report is intended to constitute or provide a legal opinion. SLR makes no representation as to the requirements of compliance with environmental laws, rules, regulations, or policies established by federal, provincial, or local government bodies. Revisions to the regulatory standards referred to in this report may be expected over time. As a result, modifications to the findings, conclusions, and recommendations in this report may be necessary.

Ambient Air Quality Monitoring Plan

Mountain Ash Limited Partnership Summit Pit SLR Project No: 212.06650.00006

Pictures look North, East, South, and West (Clockwise from top left) along the eastern property boundary.

Appendix E Post Mining Reclamation Plan

Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership

SLR Project No: 212.06650.00007/8

Mountain Ash Limited Partnership Summit Pit

SLR Project No: 212.06650.00006

June 2021

Post Mining Reclamation Plan

Mountain Ash Limited Partnership Rocky View County, Alberta SLR Project No: 212.06650.00006

Prepared by: SLR Consulting (Canada) Ltd. 200 – 708 11th Ave SW Calgary, Alberta, T2R 0ER

for

Mountain Ash Ltd. Partnership 1945 Briar Crescent NW Calgary, AB, T2N 3V6

June 2021

This document has been prepared by SLR Canada. The material and data in this report were prepared under the supervision and direction of the undersigned.

Prepared by:

But Shat

Katrina Sharko, B.Sc., P.Ag.Soil Scientist and Vegetation Ecologist

Reviewed by:

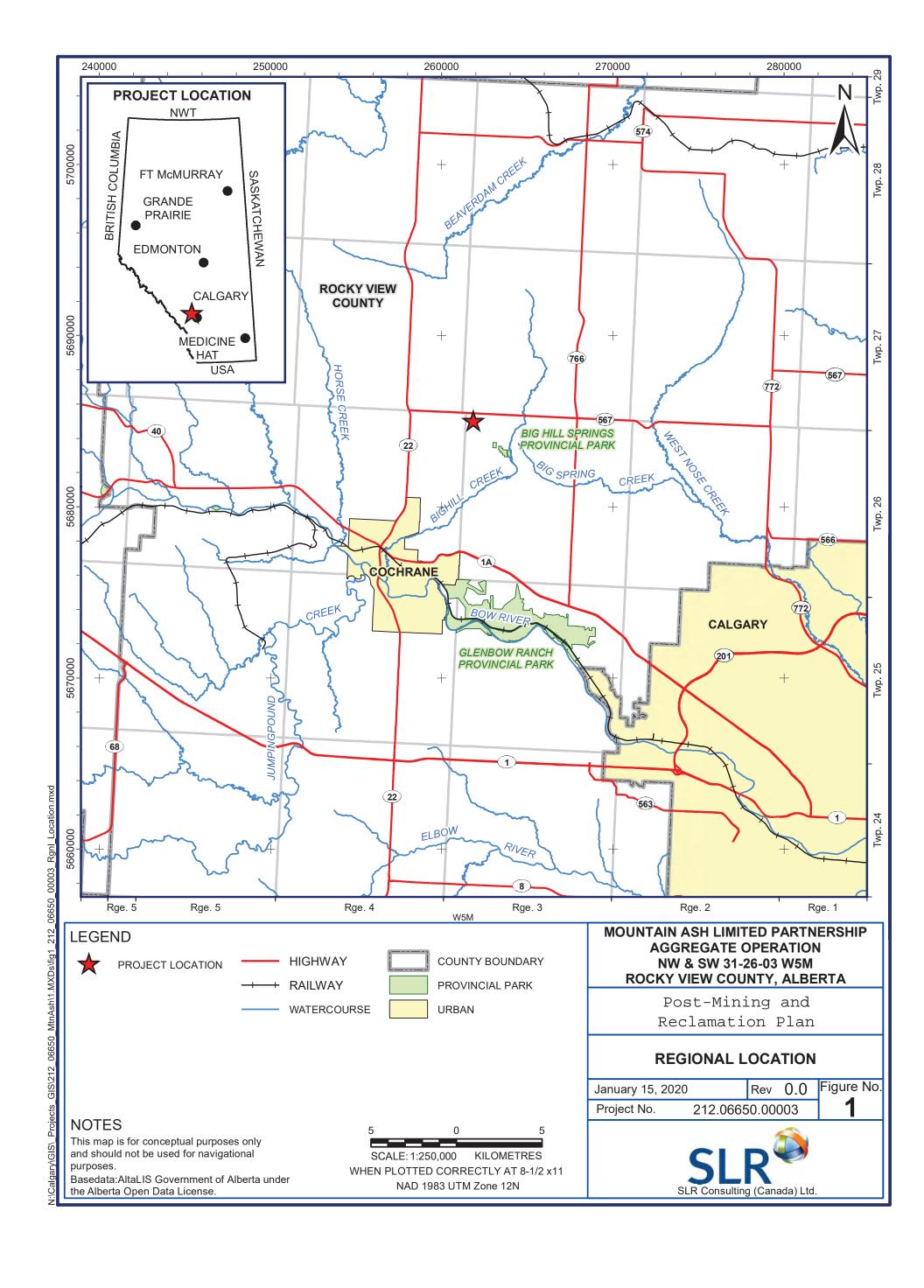
Maria Kudienko, B.Sc., P.Ag. Senior Reclamation Specialist

Distribution: 1 copy (PDF) – Mountain Ash Limited Partnership

1 copy - SLR Consulting (Canada) Ltd.

Table of Contents

1.0	INTRO	DDUCTION		
2.0	PROJECT SETTING			
	2.1	Landuse	3	
	2.2	Terrain and Soil		
	2.3	Vegetation	3	
	2.4	Wetlands	5	
	2.5	Rare Plants	5	
	2.6	Wildlife	5	
3.0	POST-	MINING RECLAMATION PLAN	. 5	
	3.1	Overall Reclamation Objectives	5	
	3.2	Vegetation Clearing	5	
	3.3	Rare Plant Mitigation	5	
	3.4	Wildlife Mitigation	6	
	3.5	Timber Management	7	
	3.6	Soil Salvage and Soil Conservation	7	
	3.7	Erosion and Weed Mitigation	8	
	3.8	Reclamation and revegetation	8	
4.0	MONITORING RECLAMATION SUCCESS			
5.0	REFER	RENCES	9	
6.0	STATE	MENT OF LIMITATIONS	9	
FIGL	JRES			
Figure 1	1	Summit Pit Location	2	
Figure 2	2	Soils and Vegetation	4	
Figure 3		Identified Wetlands	6	


1.0 INTRODUCTION

Mountain Ash Limited Partnership (Mountain Ash) is planning to develop the Summit Pit (the Project) along Highway 567 within NW and SW 31-026-03 W5M, northeast of the Town of Cochrane, in Rocky View County (RVC), Alberta (Figure 1). The Project will encompass approximately 208 acres (84 ha) excluding existing road rights-of-way. Mountain Ash is applying for Phase 1 of a six-phase mining plan. This land is currently owned by 1410266 Alberta Ltd. (a general partner of Mountain Ash). Summit Pit received land use and a master site development plan (MSDP) approval on March 2, 2021 (Land Use Bylaw C-8051-2020).

A biophysical impact assessment was undertaken as part of the MSDP application to assess baseline conditions for soils, vegetation and wildlife and to provide an impact and cumulative effects assessment on these resources (SLR 2020). As a requirement for the Code of Practice (COP) for Pits and Development Permit (DP) applications, this report details the Post-Mining Reclamation Plan (AEP 2004a and 2004b). This is also consistent with requirements of the land re-designation and MSDP.

This Post-Mining Reclamation Plan has been developed based on the information obtained in the biophysical impact assessment, literature review as well as best industry practices and in accordance with recommendations in a User's Guide to Pits and Quarry Reclamation in Alberta (Alberta Land Conservation and Reclamation Council 1992). The objectives of the Post-Mining Reclamation plan are to:

- provide information about the planning process for the phased reclamation and the ultimate closure of the Summit Pit
- provide the endpoints for final reclamation of the Summit Pit and demonstrate how equivalent land capability will be achieved

2.0 PROJECT SETTING

The Project area settings are summarized from the Biophysical Impact Assessment (SLR 2020) completed as part of the MSDP application and based on literature review.

2.1 Landuse

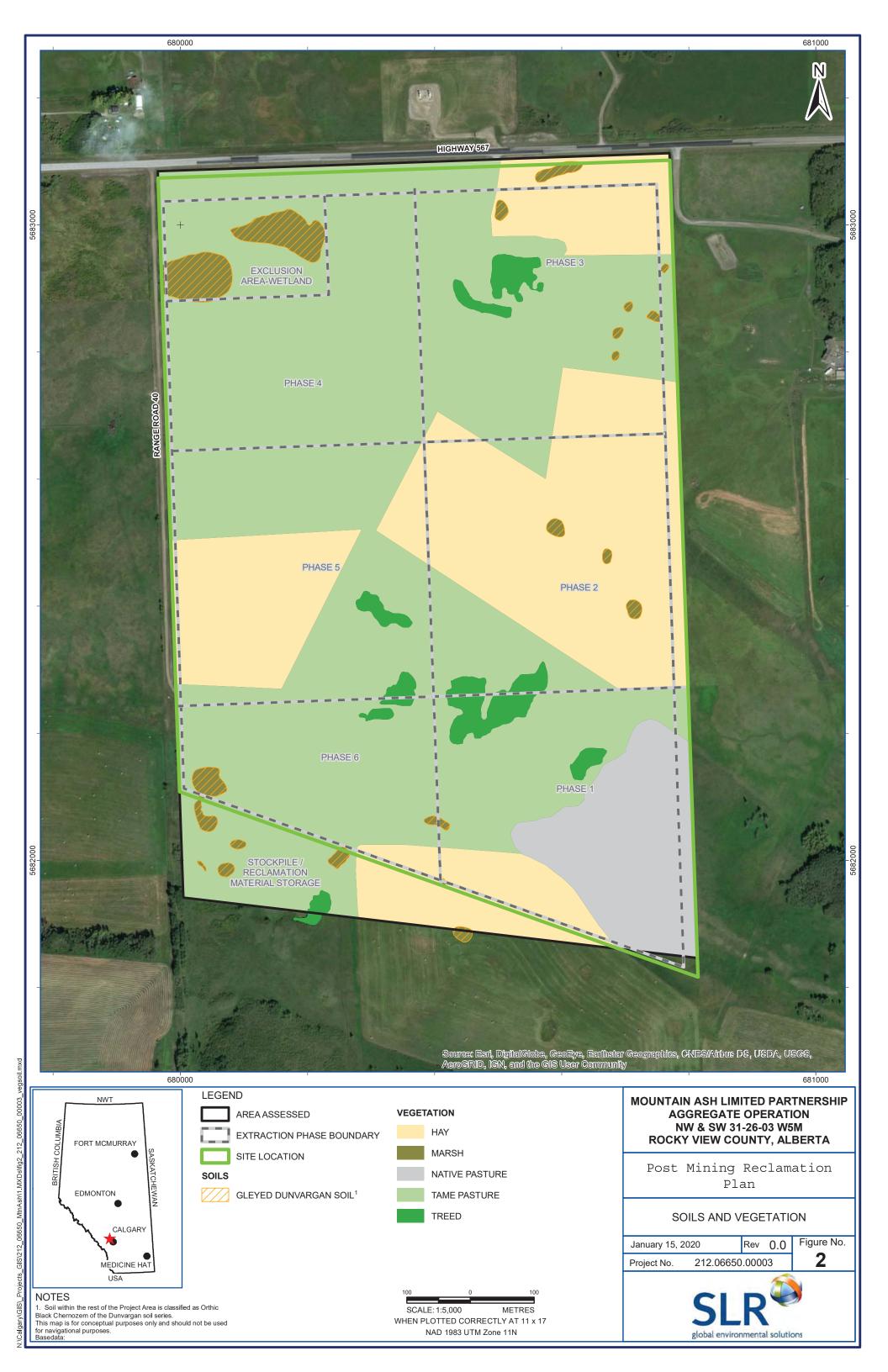
The Project is located in the Parkland Natural Region and Foothills Parkland Natural Subregion (Natural Regions Committee 2006). The subregion has a relatively short growing season and correspondingly less intensive cultivation due to proximity to the mountains. Rolling to hilly native grasslands, aspen woodlands and willow shrublands are common in areas remaining under native vegetation. Haylands are typical for undulating to rolling terrain in the areas used for agriculture.

All soils in this area are mapped as Class 5 for agriculture, because of adverse climate (subclass C; Land Canada Inventory 2021). Such soils have severe limitations that restrict their capability in producing perennial forage crops. Since the main limitation for agriculture at the site is climate, this subclass cannot be improved (Environment Canada 1972).

Current land use at the site is hayland / tame pasture. In consultation with the landowner, the future landuse at the end of mine life cycle will be tame pasture.

2.2 Terrain and Soil

The site is in low relief – hummocky terrain with slope classes 3 – 4. (AGRASID 2021).


The AGRASID Alberta Soil Information Viewer (Alberta Agriculture and Forestry 2021) and the Alberta Soil Names File (Generation 4) User's Handbook (Alberta Soil Information Centre 2021) were accessed to determine soils expected to be present in the Project area.

It was determined that underlying parent material in the Project area is moderately to strongly calcareous, mixed Continental and Cordilleran till (Alberta Soil Information Centre 2021. Fertile loam to clay loam Orthic Black Chernozemic soils are extensive, with Gleysolic soils present in poorly drained and lower slope positions expected at the Project (Alberta Agriculture and Forestry 2021). The AGRASID information was consistent with SLR field assessment conducted on June 2019. The Dunvargan soil series, a fertile, well-drained Orthic Black Chernozem formed on glacial till parent material, was identified across the majority of the Project area, with the gleyed variant (Dunvargan-GL) identified in depressional areas. These soils have low wind erosion risk and moderate water erosion risk; no sensitive soils were observed within the Project area during the field investigation.

For Dunvargan soil series, Ap and Ah horizon (topsoil) depths are on average 25 cm and include well drained loam to clay loam soils and average subsoil thickness was 20 cm. SLR recorded average topsoil thickness in the wetland areas as 30 cm and average subsoil thickness as 20 cm.

2.3 Vegetation

Onsite vegetation consisted mostly of hayland / tame pasture species dominated by wheatgrass, brome species, alfalfa, and timothy. Treed areas, marsh areas and native pasture was also present (Figure 2). A detailed vegetation list is provided in Appendix C of the Biophysical Impact Assessment Report.

2.4 Wetlands

Ten wetlands ranging from class 1 to class 3 were identified (Figure 3). Detailed information on wetland assessment, including Classification and Species List is provided in Appendix C and D of the Biophysical Impact Assessment Report.

2.5 Rare Plants

No rare plants or rare ecological communities were documented in ACIMS or identified during the field investigation completed in 2019. Most of the habitat has low rare plant potential as it is tame pasture or hay land.

2.6 Wildlife

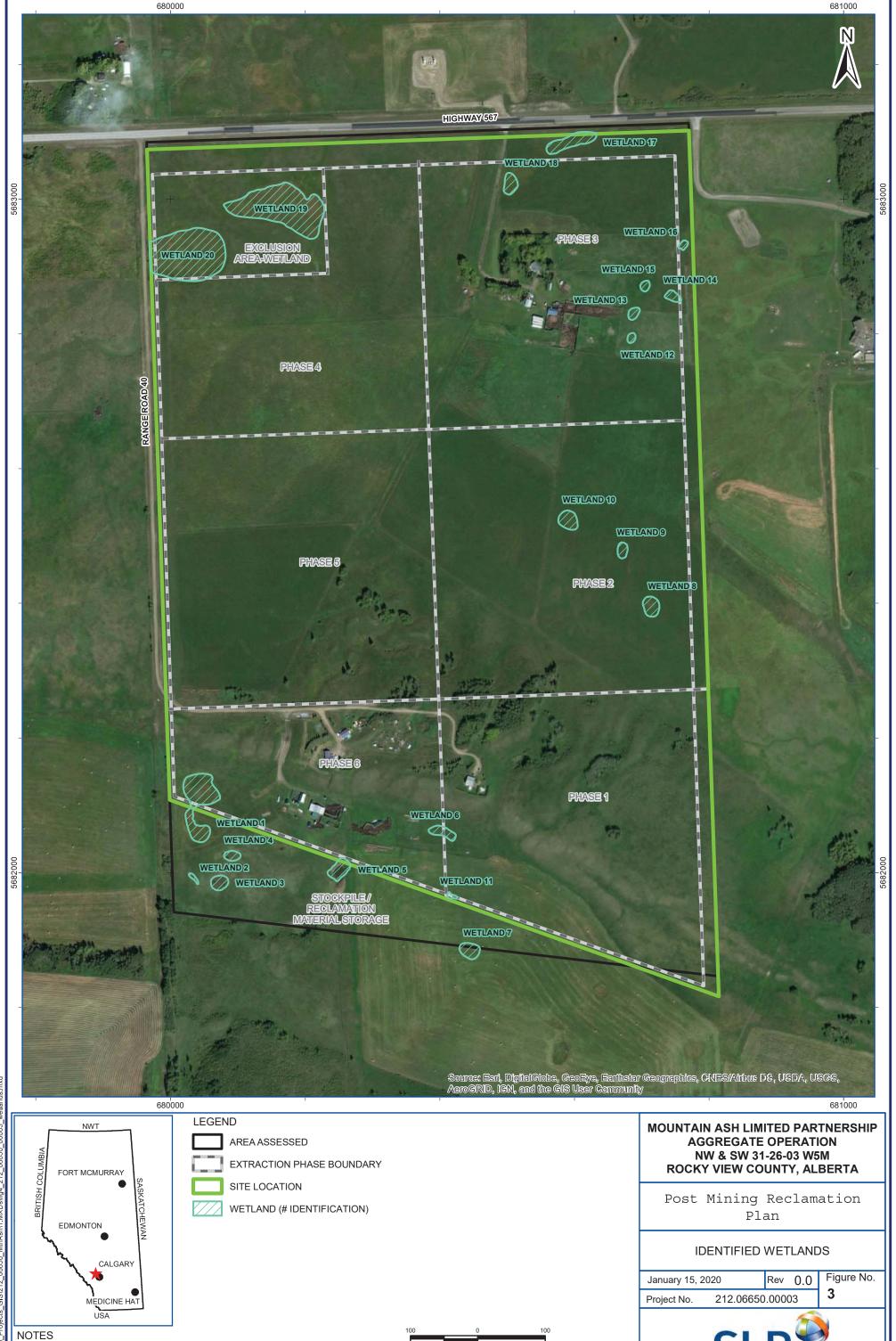
Active barn swallow (provincially 'sensitive' and federally 'threatened' species) nests were observed on two residences in the Project area; therefore, the potential exists to interact with or disturb species at risk. However, the Project area is heavily modified by existing land uses, with limited areas of native vegetation that provide limited habitat for wildlife species. The wetlands were dry during the 2019 surveys and therefore were determined to have limited value for wetland wildlife species.

3.0 POST-MINING RECLAMATION PLAN

3.1 Overall Reclamation Objectives

Reclamation objectives will be considered in all stages of mining in order to:

- minimize the footprint of the development
- maximize resource extraction
- prevent double handing of materials
- consider sequencing of pit development in reclamation planning and incorporate direct soil placement and progressive reclamation in all stages of mining, whenever feasible
- optimize the efficiency of soil handling equipment and reduce noise, dust and equipment emissions.


The goal of reclamation is to achieve equivalent land capability and obtain reclamation certificate as required under the *Environmental Protection and Enhancement Act* and *Conservation and Reclamation Regulation* (GoA 2021). The sections below describe how these objectives can be achieved.

3.2 **Vegetation Clearing**

Development of the Summit Pit will require onsite vegetation to be stripped. Most of the vegetation onsite is hay, tame pasture or native pasture, where minimal vegetation clearing is required. As such, short vegetation can be salvaged with soil for future reclamation purposes.

3.3 Rare Plant Mitigation

Since no rare plants or rare ecological communities were identified (see Section 2.5.), no rare plant mitigation is required.

SCALE: 1:5,000

WHEN PLOTTED CORRECTLY AT 11 x 17 NAD 1983 UTM Zone 11N

METRES

N:\Calgary\G\S\ Projects G\S\212 06650 MtnAsh\1.MXDs\fig4 212 06650 0

Basedata:

This map is for conceptual purposes only and should not be used for navigational purposes.

3.4 Wildlife Mitigation

Wildlife could be affected by activities including vegetation removal, removal of residences, topsoil stripping and salvage, excavation activities, and by vehicle and equipment traffic. Development will require the removal of habitat (treed areas and wetlands) and dwellings that may affect local wildlife use; although Project area was determined to have low wildlife use (Section 2.6.). As due diligence to avoid contravening the *Migratory Birds Convention Act* and to reduce the potential for impacting active migratory nesting birds which may nest between mid-April and late August, clearing of wetlands and vegetation will occur outside of this period (GoC 2019). Similarly, care will be taken to demolish the residences or remove barn swallow nests from the residences outside the breeding season and prevent their renewed use; thereby avoiding interaction with a species at risk. Best management practices will be implemented (e.g., abiding by restricted activity periods; keeping garbage in wildlife-proof containers; being aware of the potential for wildlife at the Project access and on haul routes) to limit the likelihood of adversely interacting with wildlife.

3.5 Timber Management

There are limited treed areas onsite, consisting of small aspen stands and some planted trees surrounding the house sites. Non-merchantable timber and slash materials will be disposed of at landfill, local campsite(s) or burnt on site.

3.6 Soil Salvage and Soil Conservation

Based on available soil data (Section 2.2.), average topsoil depths onsite were approximately 25 cm in upland areas and 30 cm in wetland areas. Desktop information and field inspection indicates low variability in the topsoil thickness at the Project area.

Suitable upper subsoil was approximately 25 cm thick (Section 2.2); there are no unsuitable subsoil reported for this area. Color change between topsoil and upper subsoil is obvious and can be used to tell soil stripping depth in cases where the anticipated 25 cm or 30 cm does not seem reliable. Wetland and upland topsoil can be salvaged and stockpiled together, and wetland and upland suitable subsoil can be stockpiled together. For soil stripping and overburden volumes, please see the Stripping and Grading Plan (SLR 2021).

Topsoil will be stripped everywhere where soil disturbance occurs at the site, except for the areas under topsoil storage piles. Topsoil will be stripped at least 5 m ahead of the pit face to ensure there is no topsoil loss into the pit. The salvage distance will be increased if pit face is unstable or if it is rapidly advancing. Subsoil will be stripped everywhere where soil disturbance occurs at the site, and at least 3 m ahead of the pit face to reduce loss into the pit.

Topsoil and subsoil piles will not be located over merchantable aggregate, to prevent double handling of soils. Thin, vegetated topsoil piles tend to maintain topsoil quality better than thick piles; therefore, any topsoil piles will not exceed 2 m in depth (AEP 2004b); this will also allow better access for weed management. The surface of the stockpile will be smoothed and properly sloped to make a firm, well-drained base. A drainage channel around stockpiles will be constructed to prevent collection and blockage of surface run-off. Signs indicating topsoil and subsoil piles will be installed on each pile to be used for future reclamation purposes. Progressive reclamation and direct topsoil placement will occur as soon as practically possible to avoid deterioration of topsoil.

Native pasture is found in the south-east section in Phase 1 of the Project. Native prairie will be stripped and salvaged separately and the native prairie area will be reclaimed as soon as practical. This should reduce the future establishment of weeds and invasive species and increase the seed propagule viability upon reclamation of the area. Overall this will encourage the return of native species during final reclamation.

3.7 Erosion and Weed Mitigation

While the onsite soils were determined not to be susceptible to erosion (Section 2.2.) and no sensitive soils were identified during the biophysical assessment, the following mitigation measures for erosion will be implemented:

- Soil will not be salvaged during extremely windy periods, when wind velocity creates a potential for loss of topsoil or subsoil.
- Soils will not be handled when wet conditions are present, such as during spring melt or heavy rain events.
- Salvage or replacement of topsoil and subsoil will only restart when conditions specified above no longer exist.
- Soil stockpiles will be promptly revegetated using suitable seed mix to limit erosion and weed establishment. Proposed species include oats, barley or rye; with the exception of the native pasture topsoil pile that will be allowed to naturally re-vegetate.
- Soil stockpiles will be continuously monitored for weeds and erosion issues and further mitigation measures will be developed based on these observations.
- Reclaimed final slopes will have 3:1 configuration and will be hydroseeded within the first
 growing season of topsoil placement to avoid any topsoil loss or erosion. Furthermore, slope
 benching is recommended at this site to prevent erosion. The frequency of benches will be
 determined based on geotechnical properties of soil.

3.8 Reclamation and revegetation

As areas are no longer needed for operations, Mountain Ash will reclaim them in accordance with the best industry practices to ensure equivalent land capability can be achieved.

Subsoil will be de-compacted before topsoil placement. Subsoil will be recontoured to tie in with the surrounding landscape and create drainage patterns consistent with surrounding landuse. Experienced reclamation specialist will supervise machinery to avoid final contours that may cause water ponding or any erosion issues.

Revegetation will occur within the same growing season when topsoil placement is completed to avoid any soil loss via erosion. Hydro seeders will be used for maximum germination and erosion control success. Species mix, seeding rates and composition will be determined by assessing the surrounding lands during the time of reclamation and will be supported by the approval received in writing from the landowner. Currently, the land is used for native pasture, tame pasture and hay.

Seed will be sourced from the reputable supplier and professional agrologist will review seed germination tests, impurities and presence of weed species in the seed mix. Seed certificates will be reviewed and kept on file.

4.0 MONITORING RECLAMATION SUCCESS

Reclamation success will be determined by a landscape that does not require inputs and provides equivalent land capability as it did prior to disturbance.

Continuous monitoring of progressively reclaimed areas will guide further reclamation activities and help identify proper mitigation measures leading to a successful reclamation outcome.

In accordance with the current regulations, Mountain Ash will submit a report on disturbance and reclamation status to Alberta Environment and Parks, starting five years after registration and then every five years after that until the Final Reclamation Report is submitted and/or a reclamation certificate for the whole pit is received (AEP 2004a and 2004b).

5.0 REFERENCES

Alberta Agriculture and Forestry. 2021. AGRASID Alberta Soil Information Viewer. https://soil.agric.gov.ab.ca/agrasidviewer/

Alberta Environment and Parks (AEP) 2004a. Code of Practice for Pits. September 1, 2004.

Alberta Environment and Parks (AEP) 2004b. A Guide to the Code of Practice for Pits. October 2004.

Alberta Soil Information Centre. 2021. Alberta Soil Names File (Generation 4) User's Handbook.

Environment Canada 1972. *The Canada Land Inventory Soil Capability Classification for Agriculture.* The Canada Land Inventory Report No. 2 1972.

Government of Alberta (GoA) 2021. Environmental Protection and Enhancement Act. Conservation and Reclamation Regulation. Alberta Regulation 115/1993. Current as of January 17, 2021.

Government of Canada (GoC). 2019. Migratory Birds Convention Act, 1994 (S.C. 1994, c.22).

Land Canada Inventory 2021. Available online: https://sis.agr.gc.ca/cansis/nsdb/cli/index.html . Assessed on April 16, 2021.

Natural Regions Committee 2006. Natural Regions and Subregions of Alberta; compiled by D.J. Downing and W.W. Pettapiece. Government of Alberta. Pub. No. T/852.

SLR Consulting (Canada) Ltd. 2020. *Biophysical Impact Assessment Report*, January 2020. Mountain Ash Limited Partnership, Rocky View County, Alberta.

SLR Consulting (Canada) Ltd. 2021. *Stripping and Grading Plan*, April 2021. Mountain Ash Limited Partnership, Rocky View County, Alberta.

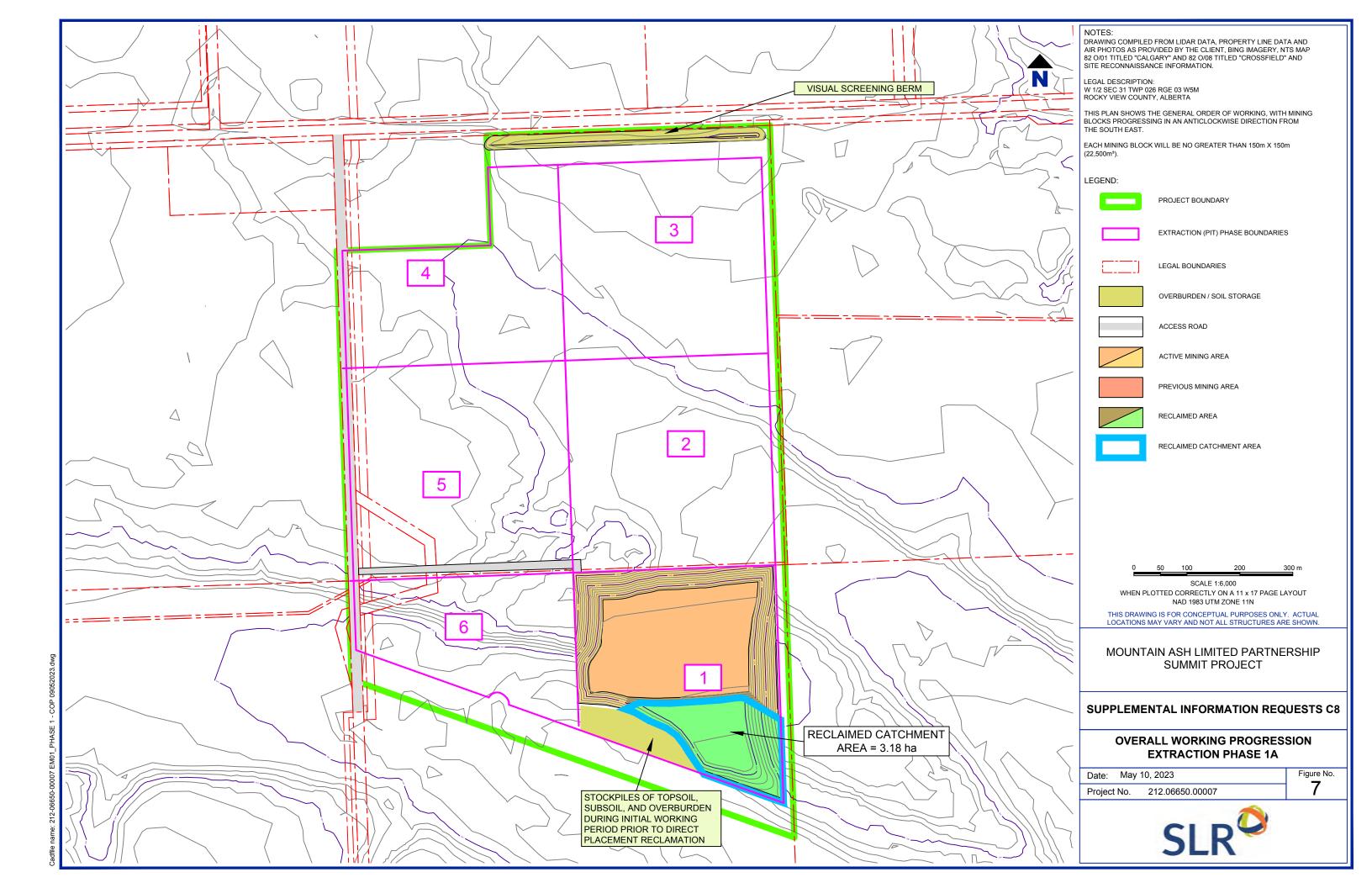
6.0 STATEMENT OF LIMITATIONS

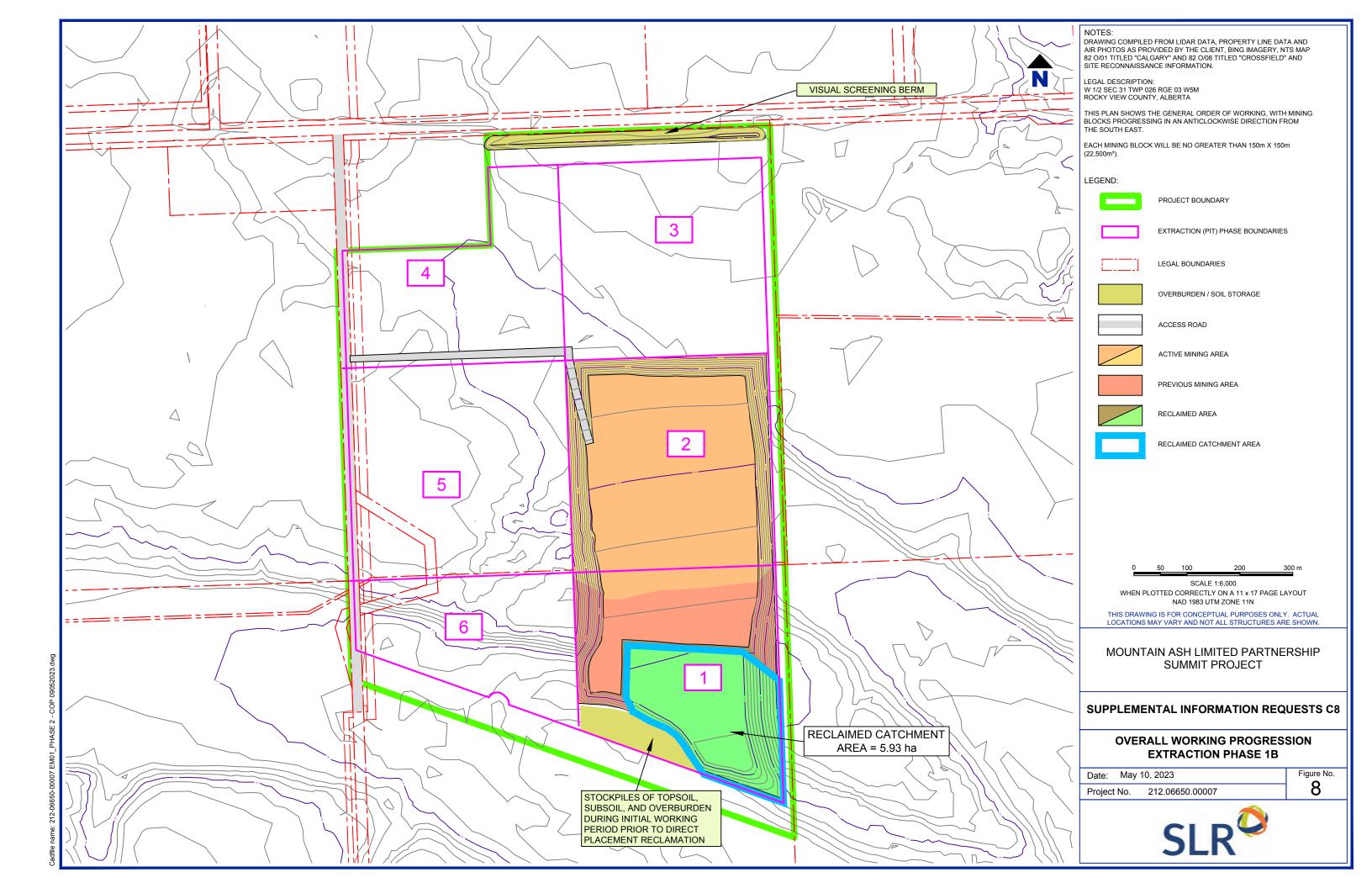
This report has been prepared and the work referred to in this report has been undertaken by SLR for Mountain Ash Limited Partnership., hereafter referred to as the "Client". The report has been prepared in accordance with the Scope of Work and agreement between SLR and the Client. It is intended for the sole and exclusive use of the Client. Other than by the Client and as set out herein, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of SLR.

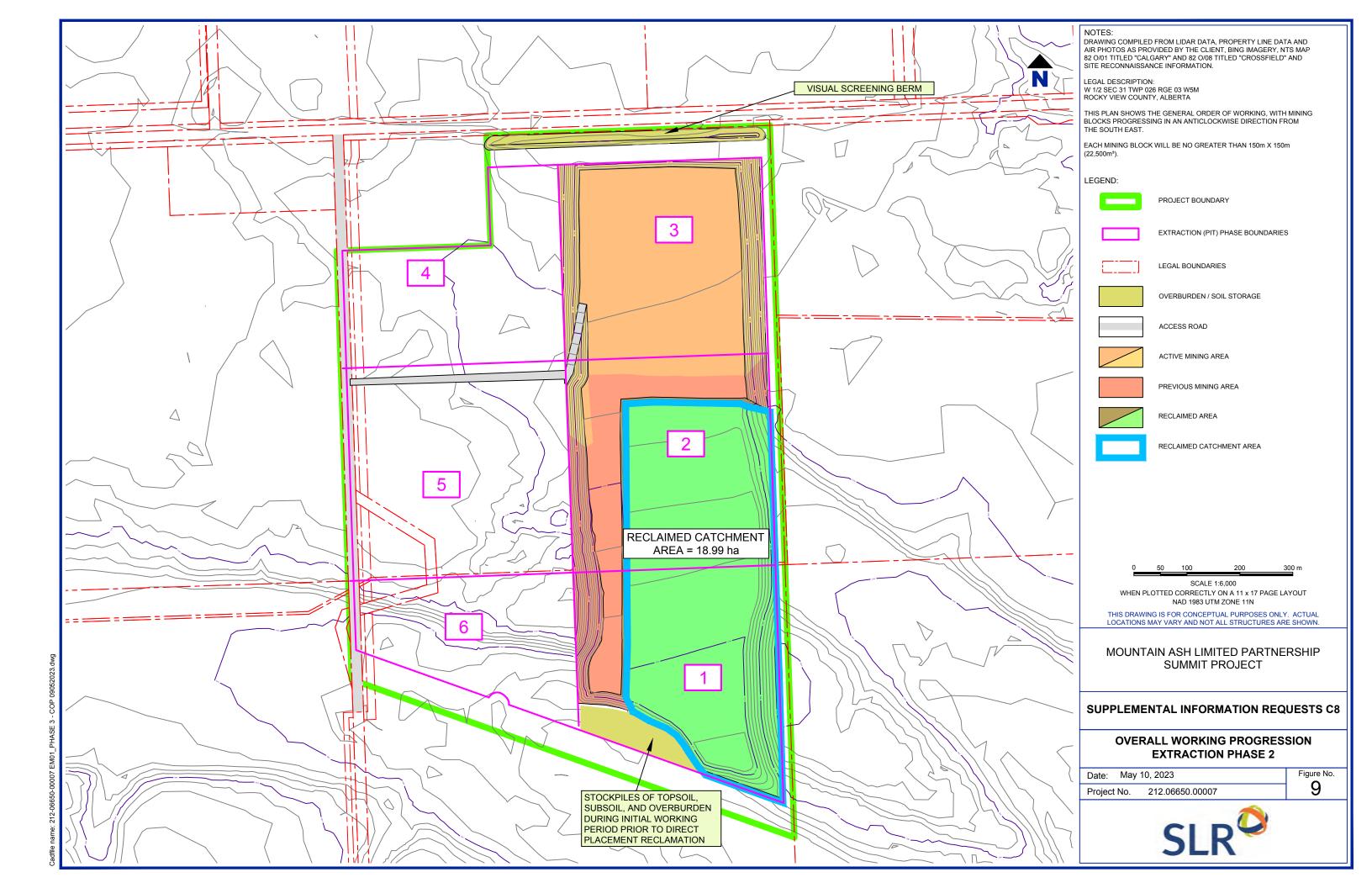
This report has been prepared for specific application to this site and site conditions existing at the time work for the report was completed. Any conclusions or recommendations made in this report reflect SLR's professional opinion.

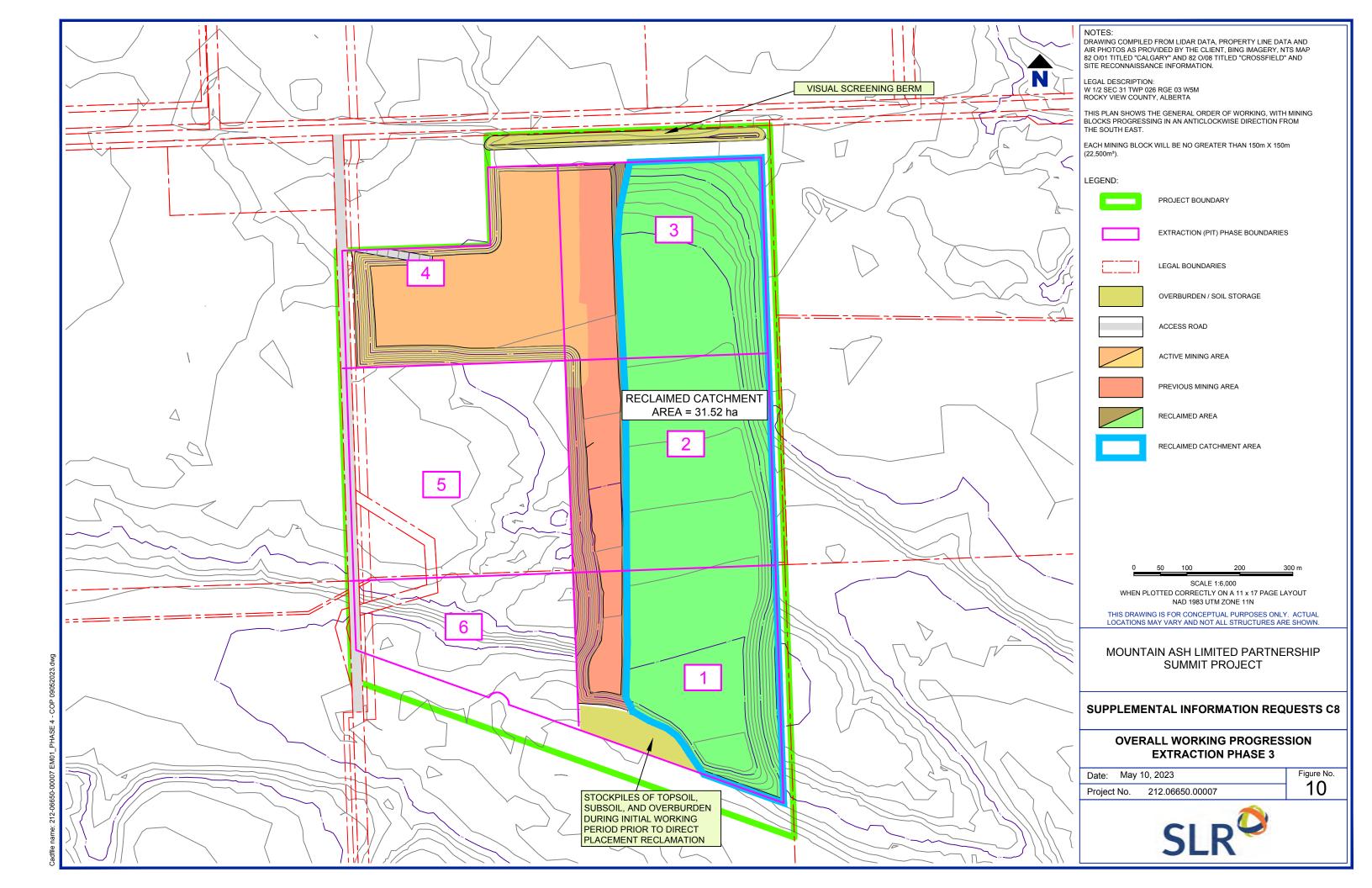
Information contained within this report may have been provided to SLR from third party sources. This information may not have been verified by a third party and/or updated since the date of issuance of the external report and cannot be warranted by SLR. SLR is entitled to rely on the accuracy and completeness of the information provided from third party sources and no obligation to update such information.

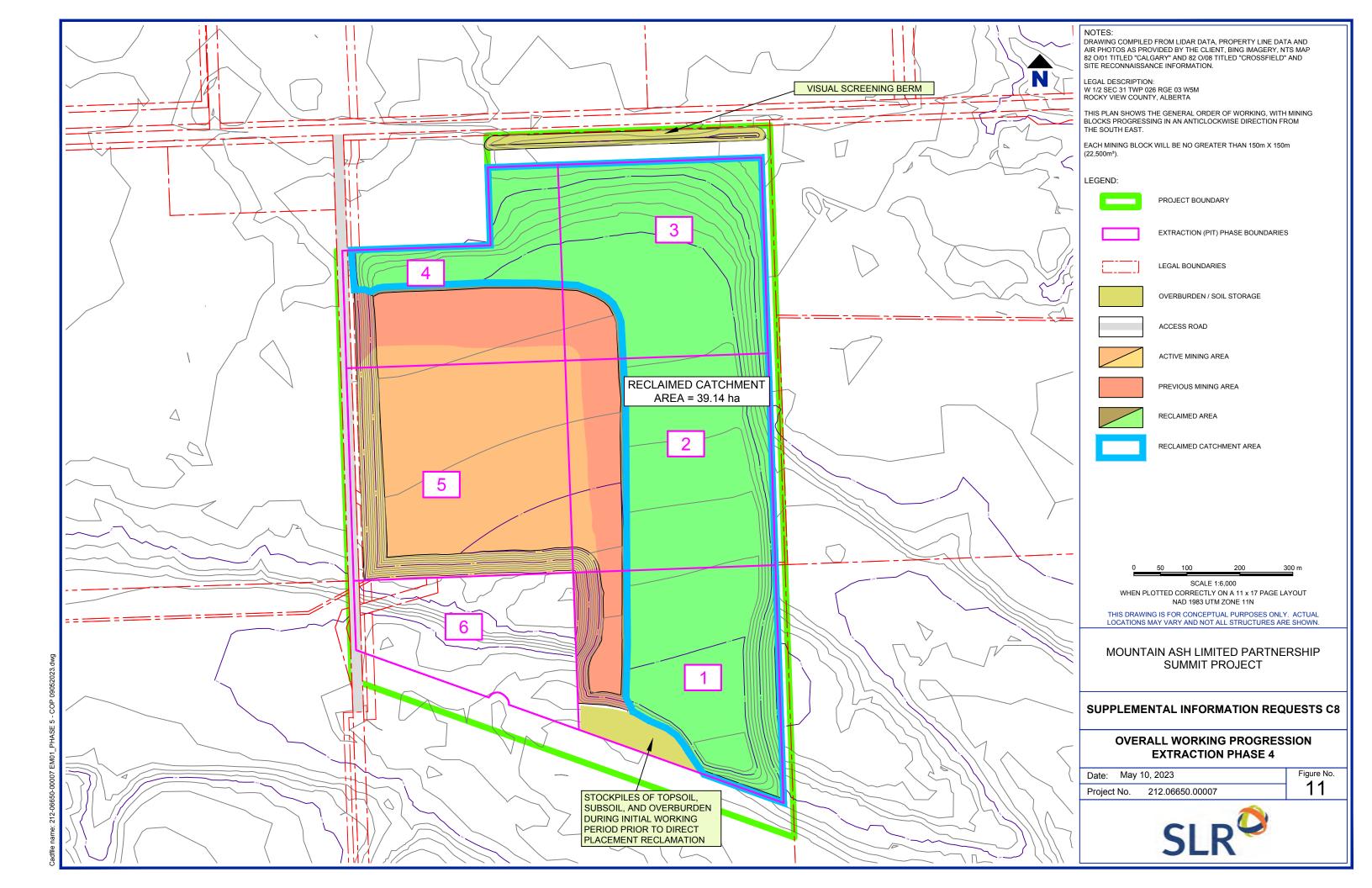
Nothing in this report is intended to constitute or provide a legal opinion. SLR makes no representation as to the requirements of compliance with environmental laws, rules, regulations, or policies established by federal, provincial, or local government bodies. Revisions to the regulatory standards referred to in this report may be expected over time. As a result, modifications to the findings, conclusions, and recommendations in this report may be necessary.

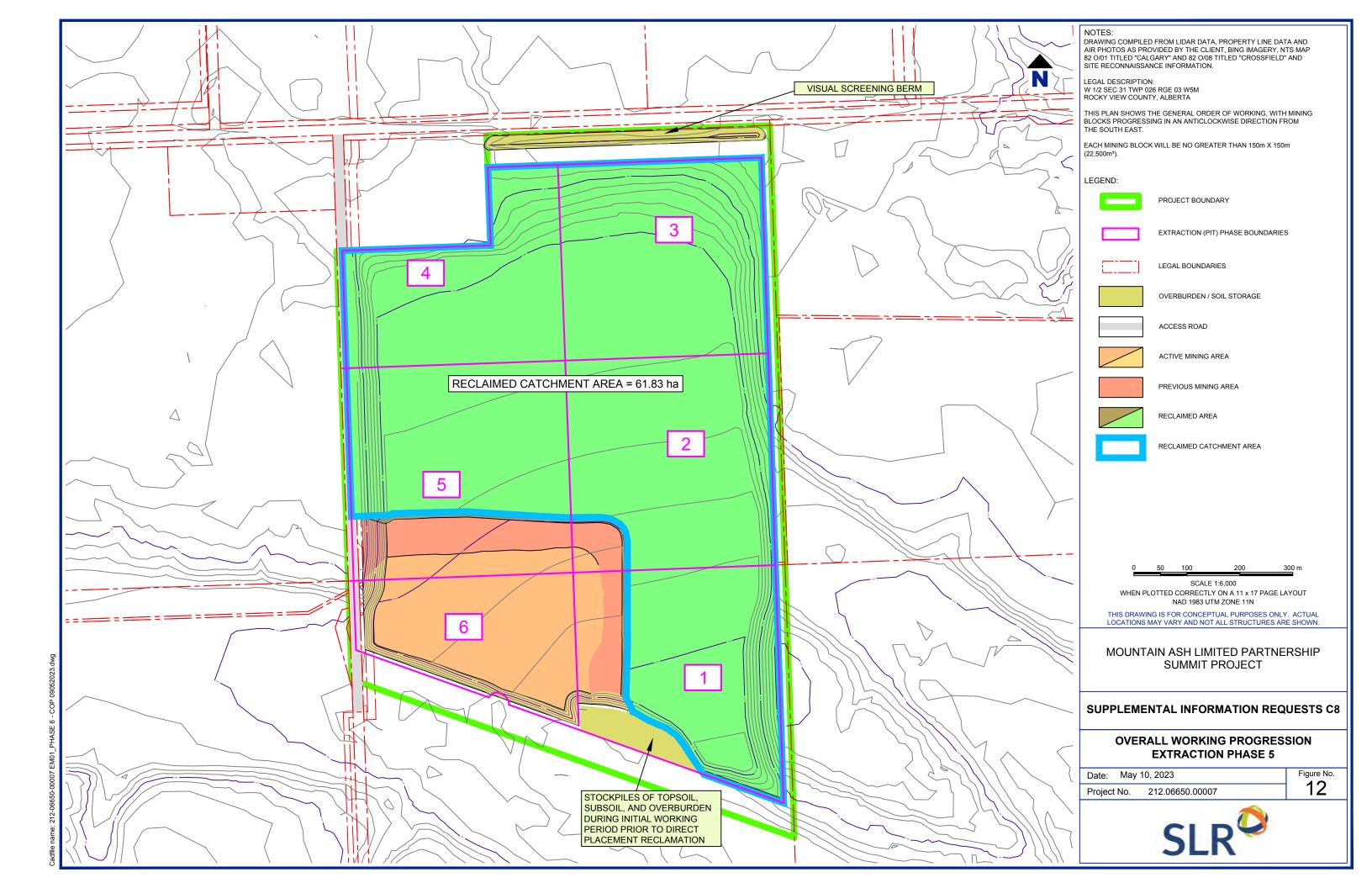


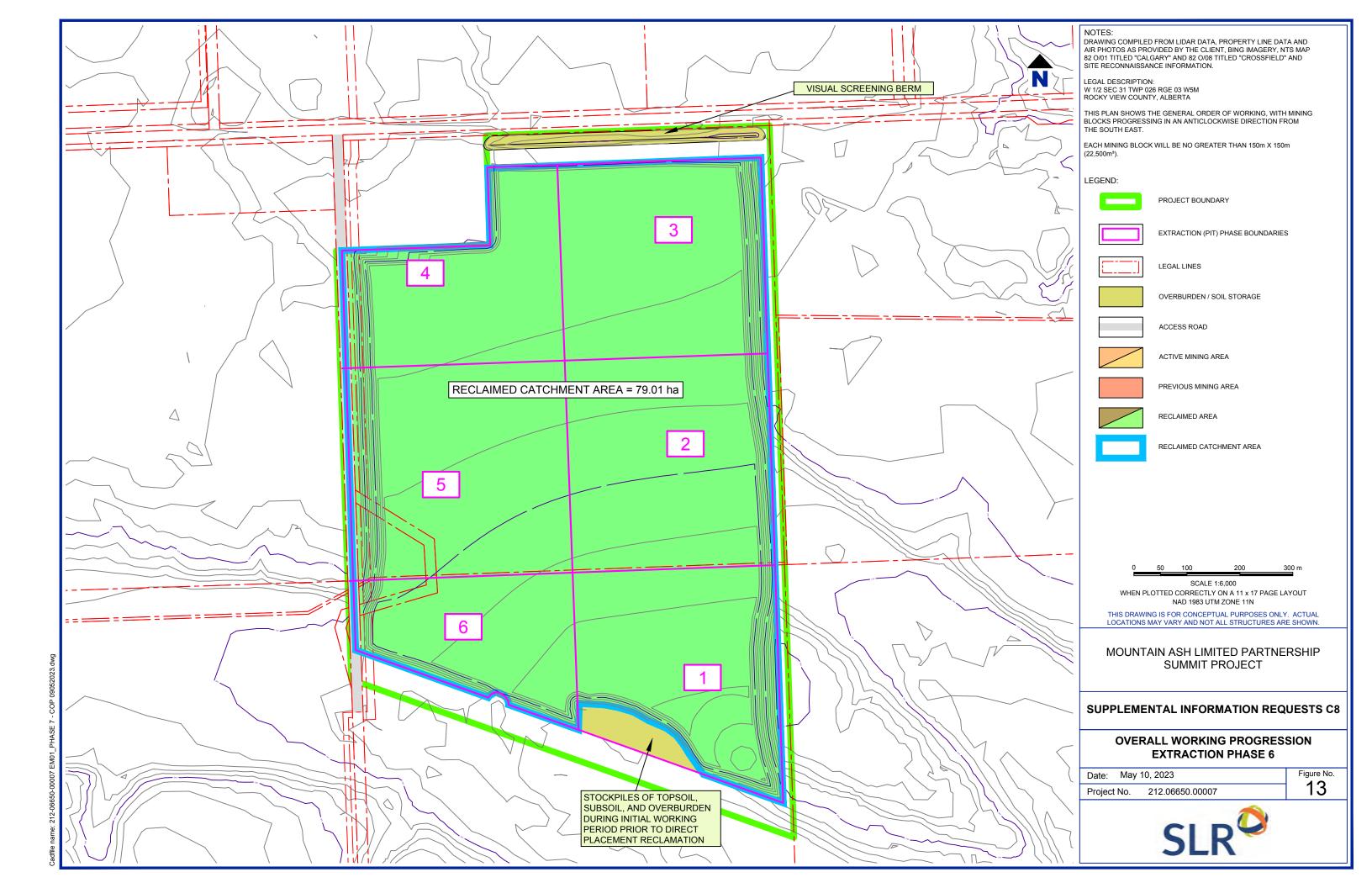

Appendix F Proposed Sequence of Activity


Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership


SLR Project No: 212.06650.00007/8







Appendix G Gravel Estimations

Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership

SLR Project No: 212.06650.00007/8

Mountain Ash Limited Partnership Summit Pit

SLR Project No: 212.06650.00006

August 2021

Gravel Estimation

Mountain Ash Limited Partnership Rocky View County, Alberta

SLR Project No: 212.06650.00006

Prepared by: SLR Consulting (Canada) Ltd. 200 – 708 11th Ave SW Calgary, Alberta, T2R 0ER

for

Mountain Ash Ltd. Partnership 35181 Big Hill Springs Road Rocky View County, AB T4C 3A2

August 2021

This document has been prepared by SLR Canada. The material and data in this report were prepared under the supervision and direction of the undersigned.

Prepared by:

ENGINERA SO CO SEA BENDERAL DE LA COURTE D

Jordan Cooper Mining Engineer ID 189347 PROBERT TILL

Robert Till

10 August 2021

Senior Hydrogeologist

Reviewed by:

Jason J. Cox

Technical Director – Canada Mining Advisory

PERMIT NUMBER: P005449
The Association of Professional Engineers and
Geoscientists of Alberta (APEGA)

Distribution: 1 copy (PDF) – Mountain Ash Limited Partnership

1 copy - SLR Consulting (Canada) Ltd.

Table of Contents

1.0	INTROD	DUCTION	1
2.0	SCOPE (OF WORK	1
3.0		DOLOGY	
	3.1 3.2	Modelling Volume Estimation	1
4.0	ASSUM	PTIONS AND RECOMMENDATIONS	9
5.0	STATEM	1ENT OF LIMITATIONS	9
T A I	DI EC		
	BLES		
Table	e 1	Estimated Volume of Material within Pit Extraction Boundary	7
Table	e 2	Estimated Tonnage of Aggregate within Pit Extraction Boundary	8
FIC	SURES	3	
Figur	e 1	Area Boundaries	2
Figur	e 2	Cross-Section of MALP Property North Area	3
Figur	e 3	Isometric View of 1V:0.50H Larger Boundary	3
Figur	e 4	Isometric View of 1V:0.50H Smaller Boundary	4
Figur	e 5	Plan-View of Range Road 40 and MALP Property North Cross-Section Location	5
Figur	e 6	Cross-Section of Range and MALP Property North Showing All Slope Configurations	6

1.0 INTRODUCTION

SLR Consulting (Canada) Ltd. (SLR) is pleased to provide this summary letter to Mountain Ash Limited Partnership (Mountain Ash) for an aggregate and overburden volume estimate for the proposed Summit Pit aggregate resource located at West ½, Section 31, TWP 26, RGE 3 W5M near Cochrane, Alberta (AB), herein after referred to as the "site".

2.0 SCOPE OF WORK

As requested by the client the scope of work involved the volume estimation of material between the surfaces as outlined below:

- The volume of overburden between the ground surface and the top of sand and gravel;
- The volume of aggregate between the top of sand and gravel and a surface 1 metre (m) above the highest established groundwater table over the site; and
- The remaining volume of aggregate between the surface 1 m above highest established groundwater table and top of bedrock over the site.

These volumes are estimated based on the constraints of the mine plan including appropriate setbacks and incorporate volumes estimated for side slope scenarios of 1V:0.15H, 1V:0.25H and 1V:0.5H. The geological surfaces are based on the boreholes enclosed as Appendix A.

3.0 METHODOLOGY

3.1 Modelling

Six pit designs were produced using two surface boundaries and three slope scenarios as noted in Section 2.0. To account for the volume of material to bedrock in either outline, the overall pit slope and ramp access needed to be included in the design. The ramp assumes a 20 m width and surface access off Range Road 40 to the northwest.

A DXF file of the property lines was shared by the client and used as constraints throughout the project.

Below is a list of the layers used:

- _1M_ABOVE_2019_ GW_TABLE_MINOR_CONTOURS 1m above maximum recorded groundwater level created from available monitoring data, covering the MALP Property North and South areas.
- _1M_ABOVE_2019_GW_TABLE_MAJOR_CONTOURS 1m above maximum recorded groundwater level created from available monitoring data, covering the MALP Property North and South, Wetland and Range Road 40 areas.
- AREAS NUGTER area of extraction over MALP Property South area provided by client.
- AREAS RANGE ROAD area of extraction over Range Road 40 provided by client.
- AREAS WATERMAN area of extraction over MALP Property North area provided by client.
- _AREAS_WETLAND area of extraction over Wetland area provided by client.
- MA LIDAR CROPPED DXF Surface topography based on LiDAR provided by client.

- MA_BASE_MINERAL_DXF base of sand and gravel based on site drilling data.
- MA_BASE_OVERBURDEN_DXF base of overburden based on site drilling data.

Deswik Design and Solids Modelling software was used for this project. It's compatible with AutoCAD files and can carry out all required functions, including volume reporting, pit designs and 3D modelling.

The Figures below visually represent the steps taken to produce itemized volumes. Figure 1 displays surface boundaries with four working areas labelled accordingly. The areas shown in Figure 1 are the modelled representations of those indicated in the tables below. Figure 2 illustrates the results in cross-section. This example is focused on the northern border of each pit design. Figure 1, Figure 3 and Figure 4 include property boundaries with Figure 3 including the Wetlands and Range Road 40 areas (Larger Boundary) and Figure 4 showing only MALP Property North and South (Smaller Boundary). Figure 3 and Figure 4 are final pit designs displayed isometrically.

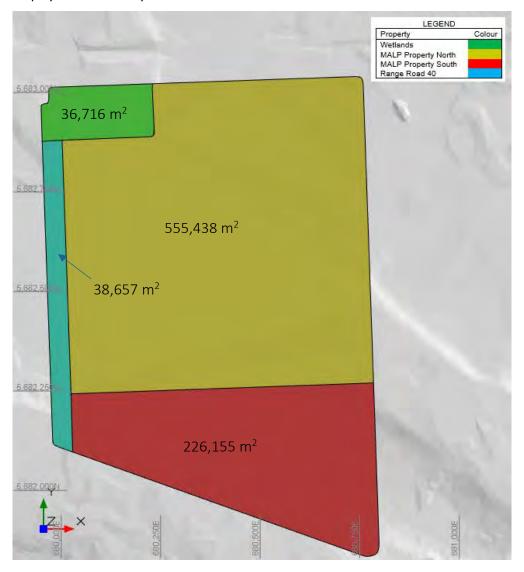


Figure 1 Area Boundaries

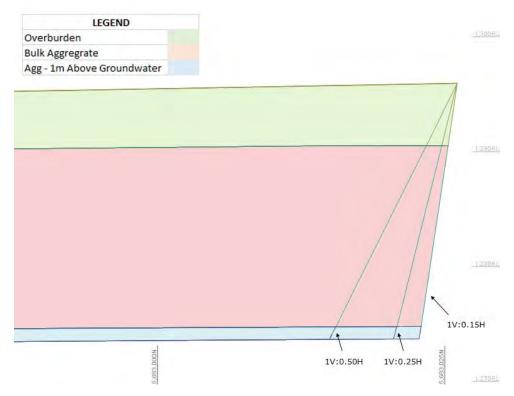


Figure 2 Cross-Section of MALP Property North Area

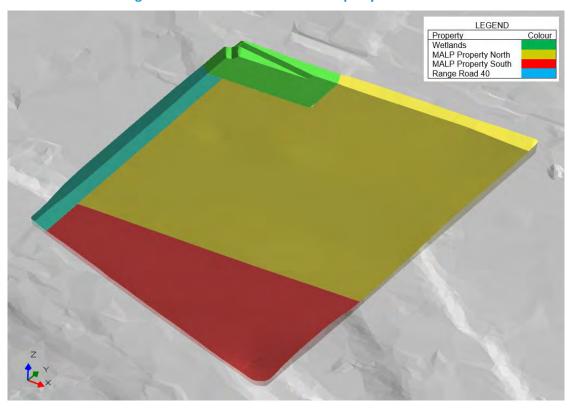


Figure 3 Isometric View of 1V:0.50H Larger Boundary

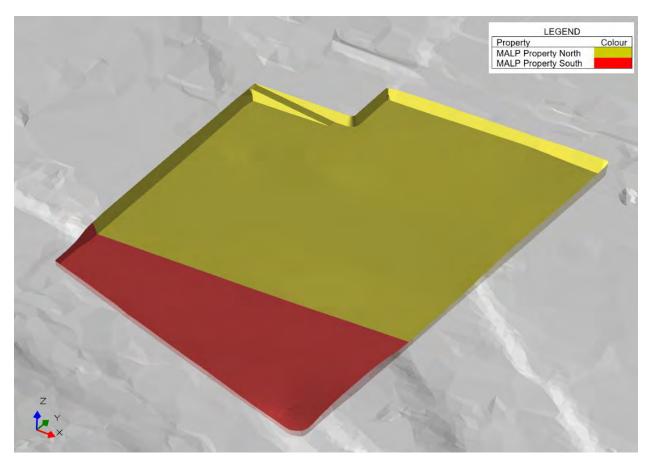


Figure 4 Isometric View of 1V:0.50H Smaller Boundary

Below are cross-section figures outlining the vertical difference in Large versus Small property calculations.

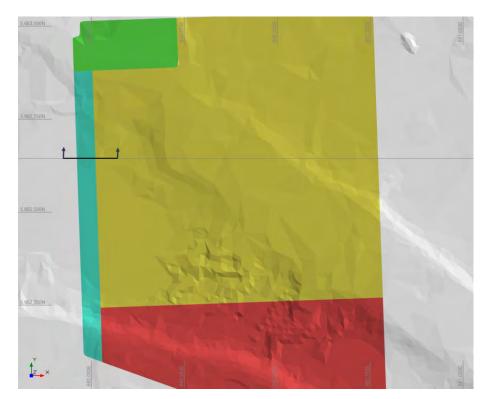


Figure 5 Plan-View of Range Road 40 and MALP Property North Cross-Section Location

The figure below (Figure 6) parses volume estimates out by colour. The grey shading represents only the Large boundary in this particular cross-section and falls within the Range Road 40 property lines, the yellow shading represents only the Large boundary and falls within the MALP Property North property lines and the unshaded (white) sections fall within both the Large and Small boundaries, with pit slopes showing the Small boundary limits within MALP North. Colours selected below are not correlated with colours selected in plan view to separate property lines.

The diagonal lines represent the area difference between the Lafarge property line and the steepest Range Road 40 slope.

Figure 6 Cross-Section of Range and MALP Property North Showing All Slope Configurations

3.2 Volume Estimation

The volumes of material outlined in Section 1.0 were estimated within the constraints of the mine plan (e.g. side slopes and mine footprint) as provided by the client. The corresponding aggregate tonnage for each slope scenario was produced using a density of 1.85 tonnes per cubic metre (t/m³) as requested by the client. The external boundaries were sloped in the model as per the indicated side slope scenarios. The boundary between each property was modelled as being vertical if not separated by pit slopes. Estimated volumes for the four areas and estimated tonnages for the corresponding areas are included in the Tables below. The larger boundary includes all areas (MALP Property North, MALP Property South, Wetland and Range Road 40) and the smaller boundary is limited to MALP Property North and MALP Property South. The volumes calculated are estimates based on the assumptions in Section 3, and actual quantities may vary.

The increase in volume per area from the Smaller Boundary to the Larger Boundary is due to the change in boundary design. The western Smaller Boundary perimeter would be sloped, while the internal boundary on the western side of MALP North and MALP South within the Larger Boundary area would be vertical. This is because it no longer represents the perimeter of the pit on the western side of MALP North and MALP South.

 Table 1
 Estimated Volume of Material within Pit Extraction Boundary

	LARGER BOUNDARY (POTENTIAL VOLUMES)				SMALLER E	BOUNDARY			
	MALP Property N	MALP Property S	Wetland Area	Range Road 40	MALP Property N	MALP Property S	Wetland Area	Range Road 40	
Subsurface Area	S	ide Slope Angl	e of 1V:0.15	Н		Side Slope Angle of 1V:0.15H			
Estimated Volume of overburden ('000 m³)	2,315	880	138	129	2,312	880	-	-	
Estimated Volume of Aggregate between Top of Sand and Gravel and 1 m above Water Table ('000 m³)	8,336	3,560	419	606	8,285	3,559	-	-	
Estimated Volume of Remaining Aggregate between 1 m above Water Table and Top of Bedrock ('000 m³)	1,237	348	152	119	1,212	347	-	-	
Subsurface Area	Side Slope Angle of 1V:0.25H				Side Slope Angle of 1V:0.25H				
Estimated Volume of overburden ('000 m³)	2,313	879	138	128	2,309	878	-	-	
Estimated Volume of Aggregate between Top of Sand and Gravel and 1 m above Water Table ('000 m³)	8,312	3,546	414	590	8,243	3,543	-	-	
Estimated Volume of Remaining Aggregate between 1 m above Water Table and Top of Bedrock ('000 m³)	1,230	346	148	113	1,197	345	-	-	
Subsurface Area	Side Slope Angle of 1V:0.5H			Side Slope Angle of 1V:0.5H					
Estimated Volume of overburden ('000 m³)	2,307	876	137	127	2,302	875	-	-	
Estimated Volume of Aggregate between Top of Sand and Gravel and 1 m above Water Table ('000 m³)	8,249	3,510	402	553	8,136	3,503	-	-	
Estimated Volume of Remaining Aggregate between 1 m above Water Table and Top of Bedrock ('000 m³)	1,213	340	139	99	1,162	338	-	-	

 Table 2
 Estimated Tonnage of Aggregate within Pit Extraction Boundary

	LARGER BOUNDARY (POTENTIAL TONNAGES)			SMALLER BOUNDARY					
	MALP Property N	MALP Property S	Wetland Area	Range Road 40	MALP Property N	MALP Property S	Wetland Area	Range Road 40	
Subsurface Area	S	ide Slope Angl	e of 1V:0.15	Н		Side Slope Angle of 1V:0.15H			
Estimated Volume of overburden ('000 t)	4,283	1,628	256	238	4,277	1,627	-	-	
Estimated Volume of Aggregate between Top of Sand and Gravel and 1 m above Water Table ('000 t)	15,421	6,586	775	1,120	15,328	6,585	-	-	
Estimated Volume of Remaining Aggregate between 1 m above Water Table and Top of Bedrock ('000 t)	2,288	644	282	220	2,242	643	-	-	
Subsurface Area	Side Slope Angle of 1V:0.25H				Side Slope Angle of 1V:0.25H				
Estimated Volume of overburden ('000 t)	4,279	1,625	255	237	4,272	1,625	-	-	
Estimated Volume of Aggregate between Top of Sand and Gravel and 1 m above Water Table ('000 t)	15,377	6,560	766	1,092	15,250	6,555	-	-	
Estimated Volume of Remaining Aggregate between 1 m above Water Table and Top of Bedrock ('000 t)	2,275	640	275	210	2,214	638	-	-	
Subsurface Area	Side Slope Angle of 1V:0.5H			Side Slope Angle of 1V:0.5H					
Estimated Volume of overburden ('000 t)	4,269	1,620	254	235	4,258	1,619	-	-	
Estimated Volume of Aggregate between Top of Sand and Gravel and 1 m above Water Table ('000 t)	15,261	6,493	745	1,024	15,052	6,480	-	-	
Estimated Volume of Remaining Aggregate between 1 m above Water Table and Top of Bedrock ('000 t)	2,243	629	258	183	2,150	625	-	-	

4.0 ASSUMPTIONS AND RECOMMENDATIONS

The volume estimates are based on the following assumptions:

- Surface depths provided on borehole logs and the survey data for the borehole locations are accurate as provided by the client and the third parties who were responsible for them. Where the monitoring wells or test holes have not been professionally surveyed, the surface elevations have been estimated from Lidar data covering the site.
- Where drilling or groundwater data was not available, the surface was extrapolated to cover the required area using professional judgement.
- The surface area of the mine and any slope angles were provided by the client based on their mine plan. SLR is not responsible for recommending slope angles for the estimate as they have not provided a geotechnical stability assessment which is outside the scope of works.
- The volume estimate is purely an estimate of the volume of material between the surfaces and within the planned mining area; it does not include any assessment of the quality or economic value of that material. The estimated tonnage is based on an assumed density of 1.85 t/m³ as provided by the client.
- Volumes calculated are estimates only and the actual quantities of material in the ground may vary depending on physical measurement, model gridding and other potential errors. The volume estimate may change as further geological data becomes available or if the mine plan changes.
- A ramp width of 20 m and a turning radius of 15 m was assumed for all pit designs.
- The pit designs shared within this report reflect only overall slopes. It is not recommended to use these pits as dig limits; the design may have to incorporate catch-benches where necessary and follow geotechnical slope recommendations for SLR to provide pit designs with dig limits.

5.0 STATEMENT OF LIMITATIONS

This report has been prepared and the work referred to in this report has been undertaken by SLR Consulting (Canada) Ltd. (SLR) for Mountain Ash Limited Partnership, hereafter referred to as the "Client". It is intended for the sole and exclusive use of Mountain Ash Limited Partnership. The report has been prepared in accordance with the Scope of Work and agreement between SLR and the Client. Other than by the Client and as set out herein, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted unless payment for the work has been made in full and express written permission has been obtained from SLR.

This report has been prepared in a manner generally accepted by professional consulting principles and practices for the same locality and under similar conditions. No other representations or warranties, expressed or implied, are made.

Opinions and recommendations contained in this report are based on conditions that existed at the time the services were performed and are intended only for the client, purposes, locations, time frames and project parameters as outlined in the Scope or Work and agreement between SLR and the Client. The data reported, findings, observations and conclusions expressed are limited by the Scope of Work. SLR is not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. SLR does not warranty the accuracy of information provided by third party sources.

Appendix H Groundwater Monitoring Plan

Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership

SLR Project No: 212.06650.00007/8

Groundwater Monitoring Plan

Summit Pit Project

Mountain Ash Limited Partnership

1945 Briar Crescent NW Calgary, AB T2N 3V6

Prepared by:

SLR Consulting (Canada) Ltd.

200, 708 – 11th Avenue SW Calgary, AB T2R 0E4

SLR Project No: 212.06650.00007

May 11, 2023

Table of Contents

1.0	Introd	luction	1
2.0	Site D	escription	1
2.1		ាd Uses	
2.2	Pro	pposed Site Activities	2
2.3		tential Sources of Groundwater Contamination	
2	2.3.1	Historical	2
2	2.3.2	Current and Future	2
3.0	Geolo	gy	3
3.1		rficial Geology	
3.2		drock Geology	
4.0		ogeology	
4.1	•	uifer Properties	
	۰۰۹ 1.1.1	Surficial Unconsolidated Deposits	
	.1.2	Paskapoo Formation Bedrock	
4.2	Gr	oundwater Levels and Flow	
4	.2.1	Groundwater/Surface Water Interactions	7
4.3	Ва	seline Water Quality Assessment	8
4	.3.1	Surficial Deposits	8
4	.3.2	Paskapoo Formation Bedrock	8
4	.3.3	Big Hill Springs	10
4.4	Re	gional and Local Water Users	12
5.0	Regul	atory Framework	14
6.0	Propo	sed Groundwater Monitoring Well Network	15
6.1	Gr	oundwater Monitoring Objectives	15
6.2	Gr	oundwater Monitoring Approach	15
6.3	Gr	oundwater Monitoring Network Description	15
7.0	Grour	ndwater Monitoring Program	16
7.1		ethodology	
7	111	Groundwater Monitoring	1/

7	7.1.2	Monitoring Wells	17
7	7.1.3	Residential Wells	17
7	7.1.4	Groundwater and Surface Water Sampling	17
7	7.1.5	Groundwater and Surface Water Analytical Program	18
7.2	Qu	ality Assurance and Quality Control (QA/QC)	18
7.3	Pro	posed Monitoring Schedule	19
8.0	Groun	dwater Response Plan	21
8.1	Bas	eline Groundwater Sampling	21
8.2	Est	ablish Control Limits	21
8.3	Anı	nual Groundwater Monitoring	22
8.4	Anı	nual Groundwater Monitoring Report	22
8.5	lde	ntification of a Problem	22
8.6	Sou	ırce Investigation	22
8.7	Ris	k Management Plan	22
9.0	Summ	ary	23
10.0	Staten	nent of Limitations	23
11.0	Refere	ences	25
Table	es in	Text	
Table 1: Summary of Big Hill Spring Flow Data		mmary of Big Hill Spring Flow Data	7
Table 2	2: Gr	oundwater Quality Summary, Expressed as Historic Ranges	9
Table 3	B: Hi	storical Summary of Bighill Spring Water Quality	11
Table 4	l: W	ater Wells within 800 Metres	13
Table 5	i: Pr	oposed Phase 1 Monitoring Schedule	20
Table 6	b: Co	ontrol Limits for Parameters Not Covered by Provincial Guidelines	21

Appended Tables

Table A1: Sand and Gravel Monitoring Well Groundwater Quality Results

Table A2: Paskapoo Formation Residential Well Groundwater Quality Results

Table A3: Big Hill Springs Water Quality Results

Appended Figures

Figure 1: Site Location and Study Area

Figure 2: Current and Historical Potential Sources of Groundwater Contamination

Figure 3: Monitoring Well and Water Well Location Plan

Figure 4: Schematic Geological Section A-A'

Figure 5: Groundwater Elevations (July 3, 2019)

Figure 6: Phase 1 Monitoring Location Plan

Figure 7: Groundwater Response Plan

Appendices

Appendix A Monitoring Well Construction Logs

Appendix B Groundwater Hydrographs

Appendix C Alberta Water Well Records

Appendix D Residential Well Assessment Questionnaires

1.0 Introduction

Mountain Ash Limited Partnership (MALP) is planning to develop the Summit Pit (the Project) along Highway 567 within NW and SW 31-026-03 W5M, northeast of the Town of Cochrane, in Rocky View County (RVC), Alberta (Figure 1). The Project will encompass approximately 208 acres (84 ha) excluding existing road rights-of-way. This land is currently owned by 1410266 Alberta Ltd. (a general partner of MALP). The Project received land use and a master site development plan (MSDP) approval on March 2, 2021 (Land Use Bylaw C-8051-2020).

A hydrogeological assessment was undertaken as part of the MSDP application to assess the potential for groundwater impacts from Project operations in relation to nearby groundwater users. The assessment concluded that Project activities are not expected to effect adjacent groundwater well users because aggregate extraction occurs above the water table, and the nearest off-site residential wells are located more than 490 metres (m) away from the closest point of Project operations. As a requirement for the Code of Practice (COP) for Pits and Development Permit (DP) applications, and in response to supplementary information requests (SIRs) from Alberta Environment and Protected Areas (AEPA) dated August and December 2022, and April 2023, this report details the revised and updated Groundwater Monitoring Plan (GWMP) in relation to the operation of the Project. The objective of this GWMP is to monitor potential effects of Project operations on groundwater resources in the vicinity of the site, and to mitigate adverse effects wherever possible. This is also consistent with a condition required as part of the land re-designation and MSDP. Ongoing monitoring and assessment of groundwater levels and quality will be determined for effective monitoring of the lack of effect of operations on groundwater, and to plan and manage mitigation should un-anticipated impact occur.

Several residential water wells and groundwater springs exist near the proposed Project area. The Hydrogeological Assessment (SLR 2020c) concluded these receptors are not expected to be adversely affected by Project activities. This GWMP provides a description of:

- Local geology and hydrogeology
- Potential historical and future sources of contamination
- The proposed groundwater monitoring program including monitoring locations and parameters
- Groundwater response plan

2.0 Site Description

2.1 Land Uses

The site is currently being used for agricultural purposes, previously referred to as Ranch/Farm. There are two large wetlands in the northwest corner which have been classified as Temporary Graminoid Marshes (M-G-II) and a number of other, smaller water bodies which are mainly ephemeral water bodies that have been farmed through. A detailed description of water bodies, including wetlands, on site is provided in the Wetland Assessment and Impact Report (SLR 2022). The site location and surrounding land use is shown on Figure 1.

1

2.2 Proposed Site Activities

The property will be operated in six phases of similar size excluding Phase 4 and Phase 6 which are smaller than Phases 1 to 3 and Phase 5, with operations commencing initially in the southwest parcel. Phase 1 comprises about 14.4 ha (35.5 acres) and is expected to take 5 to 7 years to deplete, depending on market demand. Each of the subsequent phases is anticipated to take approximately 5 to 7 years to deplete, depending on market demand. The proposed phasing is shown on Figure 2.

Based on drilling investigations at the site, there is 3 m to 6 m of glacial till overburden overlying approximately 20 m of sand and gravel, on average (Appendix A). The till and organic topsoil will be stripped and stockpiled for future use during post-development restoration. It is anticipated that stripping will commence in the southwest corner of Phase 1 and move eastwards. Sand and gravel are the target deposit for extraction/processing and lies immediately above the underlying bedrock. Groundwater in assessment boreholes was noted at between 20 m and 24 m below ground surface (m bgs) and above the bedrock in most wells. the site will be excavated to a depth, not exceeding 1.0 m above the highest recorded groundwater level, within the targeted gravel deposit, and will therefore be a dry excavation. Dry excavations do not require operational or permanent dewatering. Actual depths will be determined with progressive investigation of water levels as the aggregate resource is developed (see Section 7.1.1).

2.3 Potential Sources of Groundwater Contamination

An assessment of potential sources for contamination was undertaken by SLR. Potential sources, which could affect groundwater at the site, are identified and described below, and are shown on Figure 2.

2.3.1 Historical

A search of historical records for potential sources of contamination using the Alberta Environment and Parks (AEP) Environmental Site Assessment Repository (ESAR) indicated that no investigations on the public record had been carried out within the boundaries of the site. This is common for rural settings.

A review of historical air photos from Google Earth dating back as far as May 2002 indicates that the site was undeveloped and consisted of rough grazing land as is the current situation. No evidence of previous contaminating land uses was found.

2.3.2 Current and Future

The following current and future operations at and adjacent to the site have been identified from a review of air photos, site visits, recent development applications and the MSDP which have the potential to impact soil and groundwater quality onsite:

- Oil and gas infrastructure is currently located in close proximity to the site and is likely the biggest contamination risk to groundwater in the area. This infrastructure includes several operational oil wells with associated pump jacks located along Highway 567 north of the site, and a pipeline which runs north/south along the western boundary of the site.
- Septic systems are present at the three residences on site and could be a potential hazard to groundwater quality if not functioning correctly.
- Volker Stevin Highways Maintenance Facility (10 acre) is located adjacent to SW31-26-3-W5M, to the west.

 Diesel fuel, equipment refueling, equipment and lubricants will be stored on-site adjacent to the scale building. Fuels and lubricants will be stored in accordance with current regulations and, as per the recommendations in the Hydrogeological Assessment (SLR 2020c), be located in an area where thick clay overburden is still present. The location of the proposed storage, refueling and maintenance area is shown on Figure 2.

There are no significant quantities of chemicals stored or used at the site. Future operations will ship incidental hazardous and non-hazardous wastes off site for disposal at an approved waste facility. This is common with other rural land uses.

3.0 Geology

The geology and hydrogeology in the vicinity of the site has been compiled from site specific drilling data, available published documents, and the AEP water well database. Figure 3 shows the line of a vertical cross-section (Figure 4) that runs northwest to southeast along the direction of groundwater flow towards the springs (A-A'). It has been prepared to illustrate the relationship between the various geological units at the site and is referred to in the following subsections.

3.1 Surficial Geology

Surficial geology in the vicinity of the Project has been determined from published geology maps (Shetsen 1987). Two primary layers are found, as can be seen in the cross-section in Figure 4. The upper strata are predominantly comprised of Pleistocene-age moraine draped over underlying sand and gravel. This moraine consists of an unsorted mixture of clay, silt, sand, and gravel with local water-sorted material; this is called a glacial till. The till in the vicinity of the site, is of a relatively consistent thickness with a flat to undulating topography. The till topography reflects the topography of underlying deposits, which in turn reflect the shape of the bedrock surface below. Underlying the draped moraine at the site is sand and gravel of glaciofluvial origin, which formed on the slopes and base of meltwater channels draining melting ice sheets (Shetsen 1981).

Borehole logs for 31 test holes from the site indicate that surficial deposits over the majority of the site include approximately 3 m to 6 m of silty, sandy or gravelly clay till and approximately 0.5 m of organic topsoil (this overburden and topsoil will have to be removed to expose the underlying aggregate deposit). Beneath the clay till is the sand and gravel deposit of interest, which is generally a well graded mixture of sand and gravel containing occasional beds of pure sand or pure gravel up to 2 m thick. The sand and gravel unit varies in thickness, with an average thickness of approximately 20 m.

3.2 Bedrock Geology

Consolidated bedrock underlies the unconsolidated sand and gravel layer as indicated on Figure 4. The bedrock represents the basement to site operations where the sand and gravel is not saturated. Structurally, the site is located several kilometres (km) east of the furthest extent of the main Cordilleran Deformation. As such, the bedrock is relatively flat lying with little folding or faulting compared to older bedrock further west in the Disturbed Belt. The bedrock beneath the sand and gravel at the site consists of Tertiary, Paleocene age (55 to 65 million years old) sedimentary rocks of the Upper Paskapoo Formation. The Paskapoo Formation comprises grey to greenish grey, thickly bedded, calcareous sandstone interbedded with siltstone or mudstone and minor conglomerate or thin limestone beds (Alberta Geological Survey 1999). Drilling at this site has found grey sandstones and siltstones directly underlying the sand and gravel. The bedrock was derived from sediments eroded from the Rocky

Mountains during a period of uplift and erosion and carried east by river systems which drained melting ice from the mountains west of the site. The sandstones within the Paskapoo are a complex series of stacked river channel deposits separated by floodplain siltstone and mudstone deposits (Hamblin 2004).

Outcrops of the Paskapoo Formation sandstone can be seen in the steep slopes at the Big Hill Springs Provincial Park southeast of the site. A number of domestic well records from the immediate vicinity identify sandstone and shale¹ beneath and surrounding the site.

4.0 Hydrogeology

The hydrogeological regime at the application site and the surrounding area is described in the following sub sections:

- Aquifer properties
- Groundwater levels and flow
- Baseline water quality assessment
- Regional and local water users

The hydrogeological data is drawn from the Hydrogeological Assessment (SLR 2020c). This data has been used to develop a conceptual site model that has in turn been used to develop the monitoring system installed to assess potential impacts associated with the proposed development.

4.1 Aquifer Properties

A number of different geological units with different hydraulic properties are present in the study area. The distinct units are discussed here progressively with depth from surface (and increasing geological age). The testing of two monitoring wells and two residential wells was undertaken and a summary of the work is provided below. Hydraulic conductivity testing methodology and analysis are provided in the Hydrogeological Assessment (SLR 2020c) and are not reproduced here.

4.1.1 Surficial Unconsolidated Deposits

Surficial deposits of unconsolidated soils consist of till overlying sand and gravel deposits as described in Section 3.1 above. Groundwater flows in the intergranular pores in these soils, and the rate of flow is proportional to the hydraulic conductivity of the soil. For example, the hydraulic conductivity is low where clay rich material infills these pores but is significantly higher where clean sand and gravel is present.

Since the upper glacial till that caps the site is not saturated, no groundwater monitoring wells were installed and therefore no field testing for hydraulic conductivity was undertaken. These soils are not typically aquifers, as their hydraulic conductivity is in the range of 10⁻⁸ to 10⁻⁷ m/s (Freeze and Cherry 1979), but they do act as a protective layer for underlying deposits.

¹ It is common for drillers to use the term "shale" to describe mudstones and siltstones, as the differences are subtle, and they all share a common fine-grained appearance to the untrained eye.

As detailed in the Hydrogeological Assessment (SLR 2020c) a number of slug and pumping/recovery tests were undertaken on monitoring wells MW14-101 and MW14-103 which are screened in the sand and gravel. The testing determined hydraulic conductivities of approximately 1 x 10^{-4} m/s to 3 x 10^{-4} m/s. These values fall in a narrow range and are typical of sand and gravel aquifers.

4.1.2 Paskapoo Formation Bedrock

The Paskapoo Formation is the most significant aquifer formation in western Alberta and potentially the Prairie region, and although of regional importance as a whole, the isolated nature of the main sandstone units can provide variable success for residential wells. Only the sandstone facies of the Paskapoo Formation demonstrate any significant intergranular porosity; however, the pore spaces may be filled with calcareous cement in some areas. Bedding planes, joints and structural fractures contribute to a secondary permeability of the bedrock as well. Based on water well records in the area and the drilling at this site, much of the formation in this area is primarily comprised of fine-grained bedrock such as siltstone, mudstone and shale which demonstrate low intergranular porosity. Secondary fracture porosity is likely to be responsible for the yields obtained from residential wells in the vicinity of the site. Lower yields are recorded from wells completed within mudstone and siltstone than from the sandstone (Geological Survey of Canada, 2007; Ozaray and Barnes 1977). The majority of residential wells in the area are drilled into the Paskapoo Formation indicating that the aquifer is locally important for groundwater supplies.

A short-term pumping and recovery test was undertaken on WW2 as described in the Hydrogeological Assessment (SLR 2020c). The test results showed that the Paskapoo Formation sandstone and shale penetrated by WW2 has an approximate hydraulic conductivity of 2 x 10⁻⁷ m/s. The hydraulic conductivity value obtained reflects this fractured bedrock. When purging the wells, WW2 had drawdown of >7 m at a flow rate of approximately 12 Litres per minute (L/min) and WW4 had drawdown of just 0.09 m at a flow rate of approximately 39 L/min. The contrast between the performances of the two wells demonstrates the variability of the hydraulic properties of the bedrock in the Paskapoo Formation.

4.2 Groundwater Levels and Flow

A total of ten groundwater monitoring wells have been installed at various times in the sand and gravel at the site since 2014. The wells are variably screened from the bedrock up into the base of the sand and gravel.

The locations of these monitoring wells and their groundwater elevations (on July 3, 2019) are presented on Figure 5. The well construction details are found in Appendix A. The information from these wells have historically been supplemented with groundwater level information from residential wells WW2 and WW4 also presented in Figure 5.

The groundwater monitoring points completed at the site have been subject to periodic groundwater elevation monitoring between October 2014 and April 2023. Sand and gravel monitoring wells MW14-101 and MW14-103 and bedrock residential wells WW2 and WW4 have been equipped with dataloggers recording continuous groundwater levels on a daily basis since October 2014. Groundwater hydrographs of monitoring data to April 2023 are presented in Appendix B, a review of which shows:

- A downward vertical gradient between the sand and gravel deposits and the underlying Paskapoo Formation was demonstrated in SLR 2020c. Therefore, there is a component of downward vertical groundwater flow from the sand and gravel to the bedrock. The amount of downward groundwater flow is probably limited due to the relatively lower hydraulic conductivity of the underlying bedrock, inhibiting drainage to depth; however, the recharge is enough to locally sustain single wells drilled into the bedrock.
- Minimal short-term (daily/weekly) fluctuation in the groundwater levels within the sand and gravel (Appendices B1 and B2). This indicates negligible or no influence from pumping within residential wells in the area.
- Groundwater levels within the sand and gravel gradually fell over the initial years of monitoring between 2014 and 2019, with a drop of approximately 0.9 to 1.3 m during the period (Appendices B1 and B2). This is due to a series of dry years with <400 millimetres (mm) of precipitation each year, based on Environment and Climate Change Canada data for the meteorological station at Calgary International Airport. Even an above average precipitation year (2016) with 520 mm of precipitation did not increase water levels, likely due to a high soil moisture deficit absorbing much of the surplus. Levels rebounded somewhat (0.2 m) in the months between July and September 2019 due to the higher-than-average rainfall totals (526 mm) in the area in spring and summer 2019. This had followed an average precipitation year (424 mm) in 2020 which allowed soil moisture deficits to be reduced. The levels then gradually declined back to the pre-2019 recharge levels in March 2020 before again rising approximately 0.3 to 0.4 m in the 2020 spring recharge event (see Appendices B1 and B2). Groundwater levels continued to slowly rise through 2020 and into the spring of 2021 due to the high precipitation in 2020 (554 mm) before they started to decline again to the end of the monitoring record. Comparison of the groundwater elevations to rainfall therefore indicates that it takes a minimum of two consecutive years of above average precipitation to create a sustained rise of groundwater levels in the sand and gravel under natural conditions.
- A variable response to the pumping from normal use in residential bedrock wells, with the wells
 recovering within a few hours of extended pumping (Appendices B3 to B5). The degree of
 response between wells is indicative of the differing performance of the wells due to variability of
 the hydraulic conductivity within the Paskapoo Formation.

Using site groundwater observation data, Figure 5 shows the inferred potentiometric groundwater surface (drawn in blue) in the sand and gravel at site as recorded on 3 July 2019. Figure 5 shows that the horizontal flow direction in the sand and gravel is towards the south-southeast and the Big Hill Springs valley.

The potentiometric surface within the Paskapoo Formation cannot be drawn based on just two far apart data points (WW2 and WW4). Examination of historical water levels at other wells based on the water well records show that the elevation of the potentiometric surface is between about 1,266 and 1,268 metres above sea level (masl) in the area of the site, which is near the bedrock surface. If one assumes the bedrock potentiometric surface is near ground level at the Big Hill Springs, which is about 1,240 masl, then there is strong lateral gradient southeast towards the springs at which point groundwater is observed discharging to the surface.

6

4.2.1 Groundwater/Surface Water Interactions

Two large wetlands (Water bodies 19 and 20) located in the northwestern corner of the site have a surface elevation of approximately 1,290 masl and are perched on 6 m of low permeability fine grained till. The presence of freestanding water is temporary based on observations made at the site, with water being present for only a temporary period of about four weeks after snow melt. Monitoring well MW14-101 located close to one of the wetlands (Water body 20) has a groundwater elevation in the sand and gravel of approximately 1,274 masl, which is well below the base of the till (at about 1,284 masl). This demonstrates that the wetlands are not fed by groundwater from the sand and gravel. Thus, it is inferred that the wetlands are fed by rainfall and snowmelt from the local catchment and from the catchment across Highway 567 transported by the culvert located beneath the highway. These wetlands will be retained on the landscape.

Since groundwater from beneath this site flows southeasterly towards the Big Hill Springs, it represents an offsite interaction of groundwater with surface water in the area. Bedrock outcrops can be seen on the valley walls surrounding the stream and springs and thus it is inferred that the host valley is incised into the bedrock. Stream flow downstream of Big Hill Springs has been manually measured in several studies at the Provincial Park over the years, the results of which are presented in Table 1. The collected data indicates that this flow ranges from 40 litres per second (L/s) to 400 L/s, with an average flow in the vicinity of 70 to 100 L/s. Flows from October to February (fall/winter) are generally in the range of 50 to 100 L/s, while flows from March to September (spring/summer) are more variable. The variability in flow rates speaks to the seasonality of inputs to the discharge. There is lower stream flow in late summer and over winter when groundwater flow is the primary input. The highest and more variable flows are found during spring and summer when spring freshet and snowmelt periods occur, and during summer storms when high runoff occurs.

Table 1: Summary of Big Hill Spring Flow Data

Source	Measurement Point	Date	Number of Measurements	Lowest Flow (L/s)	Highest Flow (L/s)	Average Flow (L/s)
Ozaray and Barnes (1977)	Unknown	Unknown	Unknown		40.0*	
Borneuf (1983)	Unknown	Unknown	Unknown		11.3**	
	Source	2003 - 2004	9	45.3	89.4	73.0
Caron (2004)	Culvert downstream of Park	2003 - 2004	9	54.6	76.7	70.0
Poschmann (2007)	Source	2003 - 2006	20	50.0	240.0	100.0
Fouli (2018)	Main Spring	June 2017	1		184.0*	
Fouli (2020)	Main Spring	July 2019	1		227.0*	
Fennell (2021)	Unknown	Unknown	Unknown	100.0	400.0	

^{*}Where only one figure for the spring has been quoted in the published source it has been added in the Highest Flow column. Those results posted for Fouli (2018, 2020) are the highest flows measured in the reports, other results for the main springs were only presented in charts with no specific values attached.

^{**}This figure is considered an outlier when compared with the other flows measured at the Project area and so is not included in the summary statistics.

4.3 Baseline Water Quality Assessment

Groundwater samples have been collected from the accessible residential wells in the Paskapoo Formation bedrock, the onsite sand and gravel monitoring wells and the furthest publicly accessible upstream discharge point at Big Hill Springs as part of the baseline water quality assessment. A detailed comparison of the water quality in the Hydrogeological Assessment (SLR 2020c) concluded that this is the same water type for the sand and gravel, the Paskapoo bedrock, and the discharge from Big Hill Springs. The groundwater and spring water chemistry supports the conclusion that groundwater within the saturated sand and gravel recharges the Paskapoo Formation bedrock and provides baseflow to Big Hill Springs. A summary of historical water quality is provided in Table 2 with details provided in appended Tables A1, A2 and A3. In general, more recent results reflect historically measured ranges, as would be expected, since operations have not yet begun.

4.3.1 Surficial Deposits

Table A1 (appended) indicates that groundwater in the sand and gravel deposit is of marginally poor quality for drinking. The Alberta Tier 1 Groundwater Remediation Guidelines (2023) set guidelines protective of all water users which have been applied for agricultural land use in coarse-grained soils.

Generally, natural groundwater has a moderately alkaline pH (7.2 to 8.2), low sodium (5 to 10 milligrams per litre {mg/L}), low chloride (7 to 29 mg/L) and high hardness (280 to 350 mg/L). A number of total metals exceeded Tier 1 quidelines. These included trace metals such as arsenic, barium, cadmium, chromium, lead, manganese, and mercury. In addition, microbiological parameters (total coliforms and E.Coli) were exceeded. Total metals exceeded guidelines likely due to high turbidity during sampling in the monitoring wells. Turbidity is an artifact of some sampling methodologies, like the one used for this Project. The method inadvertently stirs up sediment within the monitoring well during sampling. A comparison of dissolved (filtered) metals versus total metals was completed for the onsite sand and gravel groundwater samples collected on July 4, 2019, with concentrations of both presented in Table A1. Table A1 shows that in almost all cases where an exceedance of the total metal guideline concentration occurs, the dissolved concentration for the same sample is significantly reduced and falls below the relevant guideline. This is due to the total metal sample being preserved using acid, which dissolves sediments stirred up during sampling. This leads to higher metals concentrations than the filtered dissolved metal sample. The dissolved metal concentrations in groundwater are, therefore, more representative of natural conditions and indicate that groundwater is generally of good quality with low dissolved metals.

It is recommended that a program of well development occurs in the existing monitoring wells in an attempt to remove sediment remaining from drilling within the wells and reduce the turbidity sampling issues as much as possible.

4.3.2 Paskapoo Formation Bedrock

Table A2 (appended) indicates that groundwater in the Paskapoo Formation is of relatively good quality for drinking, with all parameters meeting the Canadian Drinking Water Quality (CDWQ) guidelines except a single exceedance of total coliforms in WW4 and a single turbidity exceedance in WW2. E.Coli was not detected in WW4 which indicates that the coliforms were not related to fecal contamination; however, they do indicate that the well could be vulnerable to bacterial contamination. pH values were moderately high (7.6 to 8.1) in all samples, indicating slightly more alkaline conditions within the bedrock as compared to the sand and gravel.

Table 2: Groundwater Quality Summary, Expressed as Historic Ranges

	Units	Groundwater							
Parameter		Guideline Sand and Grav		d Gravel ²	Guideline	Paskapoo Formation ³			
		(Alberta Tier 1) ¹	min	max	(CDWQ)	min	max		
Aluminum	mg/L	0.054	<0.0030	0.44	0.1 (OG)	0.0041	0.011		
Antimony	mg/L	0.006	<0.00060	0.0013	0.006 (MAC)	<0.00050	0.00088		
Arsenic	mg/L	0.005	<0.00020	0.00061	0.01 (MAC)	0.000121	0.00032		
Barium	mg/L	2	0.22	0.48	1 (MAC)	0.11	0.41		
Bicarbonate (as HCO3)	mg/L	NV	310	400	NV	340	391.6		
Boron	mg/L	1	<0.020	0.032	5 (MAC)	<0.020	0.039		
Cadmium	mg/L	0.000374	<0.000020	0.000063	0.005 (MAC)	<0.00005	0.00004		
Dissolved Calcium	mg/L	NV	61	79	NV	55	80		
Chloride	mg/L	100	7.83	29	<250 (AO)	1.38	17		
Chromium	mg/L	0.001	<0.0010	0.0013	0.05 (MAC)	<0.0010	0.0012		
Copper	mg/L	0.007	<0.0002	0.0074	2 (MAC) / 1 (AO)	0.0016	0.125		
Hardness	mg/L	NV	280	350	NV	-	-		
Iron	mg/L	0.3	<0.060	1.2	<0.3 (AO)	<0.010	0.3		
Lead	mg/L	0.005^4	<0.00020	0.0023	0.005 (MAC)	<0.00020	0.011		
Mercury	mg/L	0.000005	<0.0000019	0.0000048	0.001 (MAC)	<0.0000020	<0.00020		
Dissolved Magnesium	mg/L	NV	30	37	NV	30	39.9		
Manganese	mg/L	0.02	<0.0040	0.11	0.12 (MAC) / 0.02 (AO)	<0.0010	0.015		
Molybdenum	mg/L	NV	0.00051	0.012	NV	0.00063	0.00222		
Nickel	mg/L	0.124	<0.00050	0.0035	NV	<0.00050	0.00174		
Nitrate-N	mg/L	3	0.97	5.22	10 (MAC)	0.37	3.4		
Nitrite-N	mg/L	0.14	<0.010	0.098	1 (MAC)	<0.005	0.012		
Dissolved Potassium	mg/L	NV	2.4	6.3	NV	2	3.3		

				Ground	water		
Parameter	Units	Guideline	Sand and	d Gravel ²	Guideline	Paskapoo Fo	rmation ³
		(Alberta Tier 1) ¹	min	max	(CDWQ)	min	max
рН		6.5 - 8.5	7.2	8.2	7.0 -10.5	7.6	8.1
Selenium	mg/L	0.002	0.00037	0.0022	0.05 (MAC)	0.00037	0.0018
Silver	mg/L	NV	<0.0001	<0.0001	NV	<0.00007	0.00012
Dissolved Sodium	mg/L	200	5.2	18	<200 (AO)	6.4	22
Sulphate	mg/L	500 ⁴	4.8	77	<500 (AO)	5.9	21
Thallium	mg/L	NV	<0.00020	<0.00020	NV	<0.00020	<0.00020
Total Dissolved Solids (calculated)	mg/L	500	280	380	<500 (AO)	300	349
Turbidity	NTU	NV	0.54	>4000	1 (OG)	0.2	1.23
Uranium	mg/L	0.01	0.0014	0.0027	0.02 (MAC)	0.00064	0.0021
Zinc	mg/L	0.03	<0.003	0.01	<5 (AO)	0.0046	0.99
Total Coliforms	MPN/100 mL	<1 (MAC)	<1	120000	<1 (MAC)	<1	11
E.Coli	MPN/100 mL	<1 (MAC)	<1	100	<1 (MAC)	<1	<1

- 1. Table 2, Alberta Tier 1 Groundwater Remediation Guidelines (2023) applied for Agricultural land use in coarse grained soils
- 2. Metal concentrations are dissolved unless stated otherwise.
- 3. Metal concentrations are total unless stated otherwise.
- 4. Tier 1 guideline is the lowest of the aquatic life guideline and all other guidelines. Lead is based on the potable water pathway, as is sulphate in the absence of an assessment for the very high natural groundwater hardness. Cadmium and nickel guidelines are hardness dependent and nitrite as N guideline is chloride dependent for the aquatic life pathway. Guidelines quoted are based on the lowest chronic guideline applied for the range of hardness or chloride observed.

4.3.3 Big Hill Springs

Table A3 (appended) summarizes water quality results of water samples taken from the creek downstream from the springs (BHS1) at Big Hill Springs Provincial Park on October 30, 2014, August 4, 2015, July 10, 2019, December 15, 2022, and April 19, 2023, by SLR. Data collected by SLR for general water quality parameters was combined with a number of published sources to provide the baseline water quality summary included in Table 3 below.

Table 3: Historical Summary of Bighill Spring Water Quality

Parameter	Units	Number of Measurements	Lowest Value	Mean Value	Highest Value	Standard Deviation
Temp	C°	36	3	5	7.9	0.9
Electrical Conductivity (EC) (field)	uS/cm	19	260	365	580	78.0
Electrical Conductivity (EC) (lab)	uS/cm	26	403	536	610	56.6
рН		10	7.94	8.20	8.37	0.1
Dissolved Oxygen	mg/L	1	10.92	N/A	10.92	N/A
Turbidity	NTU	5	0.8	2	5.1	N/A
Calcium	mg/L	37	43	70	77.1	6.8
Magnesium	mg/L	37	18	34	39	4.2
Sodium	mg/L	37	5	7	13.4	1.3
Potassium	mg/L	37	1.9	3	6.7	0.8
Chloride	mg/L	36	1.8	7	16.8	3.2
Nitrate-N	mg/L	36	1	3	7.2	1.4
Sulphate	mg/L	37	4.7	9	13.5	1.8
Bicarbonate	mg/L	37	200	364	390	36.6
Total Dissolved Solids (TDS)	mg/L	36	190	457	526	95.6
Summary includes data from: Caron, 2004;	Poschmann, 200	07; Fouli, 2020; Koning	, 2022 and this	report.		

Groundwater emerging at Bighill Springs is generally cold (approximately 3 to 8°C), with an alkaline pH (>8), low sodium, low chloride, and saturated with respect to calcium (Turner and Jones, 2005). Of some interest, both calcium (Ca) and bicarbonate (HCO₃) have the highest concentrations in the spring water. Tufa is primarily composed of CaCO₃, which is consistent with these groundwater concentrations and the formation of tufa within the Provincial Park. It should be noted that data from July 10, 2019, showed uncharacteristically low bicarbonate, calcium, and TDS concentrations (200 mg/L, 43 mg/L and 190 mg/L respectively) and which, on first review, appears could be anomalously low. Further review reveals that two studies; SLR (2020) and Fouli (2020), sampled the springs on the same day (July 10, 2019), and while the concentrations were not identical, they were of the same order of magnitude. Flow measured on the sampling date by Fouli (2020) and listed in Table 1 indicates a high flow condition (227 L/s) on that day. This would indicate that a high proportion of the flow sampled may have been comprised of stormwater runoff (Environment Canada reported thundershowers in the area during previous days) which would have had a much lower dissolved mineral content and diluted the spring flow, thus lowering key parameter concentrations, therefore accounting for the uncharacteristically low values mentioned above.

11

Since this groundwater discharge is the source for a surface water stream, and the point of sampling is within that stream, it is compared to the Environmental Quality Guidelines (EQG) for Alberta Surface Waters (March 2018). The EQG has guidelines for 22 parameters of the sampling suite. The samples met 18 of the guidelines for these parameters indicating that water discharging from the spring is generally of good quality. It is noted that total coliforms and E.Coli concentrations exceed the CDWQ drinking water guidelines; however, there is no CWQG bacteria guideline for the protection of aquatic life. High concentrations of E.Coli are consistent with the presence of livestock in the stream catchment and of which evidence was abundant adjacent to the property line at the sampling location. Only aluminum, selenium and nitrate as nitrogen exceeded the EQG guideline in these natural waters. Of minor note, the laboratory detection limit for mercury (0.001 mg/L) in 2014 and 2015 exceeded the guideline (0.000005 mg/L) and thus the "non-detect" reported in Table A3 may or may not meet the lower guideline. Mercury sources in this geologic setting are not common, nor will the proposed aggregate operation be a source of mercury. Mercury concentrations measured in 2019 fell below the guideline. Since this water is the source for the stream, the downstream biota will be acclimatized to this form of the natural water quality.

4.4 Regional and Local Water Users

As part of the original hydrogeologic study (SLR 2020c), a field verified water well survey was conducted to establish residential well use, baseline water quality conditions and to provide an assessment of the hydraulic parameters within the aquifers used by local residences adjacent to the site. Initially, a water well record search was undertaken by obtaining records from the Alberta Water Wells database which are presented in Appendix C (updated in 2019). This was followed by a door-to-door survey (October to December 2014) of residences within a 500 m radius of the site with visits on a number of occasions to those houses where no resident was at home. Where possible, the formal well records were correlated with the actual wells in the field. It was considered that the 1,600 m radius required for a *Water Act* application is not appropriate as no groundwater body is to be disturbed by the Project which will be worked dry, and much of that greater area is not in the same groundwater flow field. A number of properties were surveyed and sampled and/or yield tested in order to further assess the relevant aquifer units. At each residential well, a questionnaire was completed to determine the type of well, well completion details, water levels and whether the well user has any issues with water quality or quantity. The questionnaires completed at the residential wells are provided in Appendix D.

The majority of local wells (for which there are records) are used for domestic or commercial purposes. The Alberta records indicated a total of 17 wells within 500 m of the Project with two of those decommissioned (391599 and 391600) and one with very little available detail (395793). Figure 3 presents the locations of the wells identified from the records search and the door-to-door survey for which Table 4 summarizes the information collected. The majority of drilled wells are drilled to between 30 m and 75 m bgs and are screened within the Paskapoo Formation.

Two drilled wells (WW1 and WW4) are on the site at the residences of the current tenants; however, all of the other drilled wells recorded are greater than 100 m from the site boundary. With respect to the WW1 property, there is a well listed in the records for this property (494800); however, the geology recorded in this record is completely different than the rest of the area. It had been concluded that the available log is for a different well and has been misfiled in the digital records kept by AEPA. Therefore, the log has not been used in the analysis.

Dug wells identified at location WW5 (four wells in total) are between 6.1 m and 7.6 m deep according to details provided by the householder. This location is in the bottom of the valley at the southeast end of Section 31. No lithological logs are available for the dug wells; however, based on their estimated depth and the lithological details provided in nearby drilled wells to the east, it is inferred that they are completed in the sand and gravel deposits. The well owners reported that the static water level is 3 m bgs. Although this was unconfirmed by direct measurement, it is a reasonable estimate, given the shallow nature of the wells.

Table 4: Water Wells within 800 Metres

Water Well Number	Alberta Water Well Record Number	No. of Wells	Well Owner	Easting (UTM)	Northing (UTM)	Well Depth (m)	Drilled / Dug	Distance (m) and Direction from Site
WW1	Unknown	1	Waterman	680559 ¹	5682875	Unknown	Drilled	On Site
WW2	1475699	1	Rawn	680988 ¹	5682770	50.9	Drilled	200 E
WW3	1475698	1	Rawn	681173 ¹	5682907	36.0	Drilled	400 E
WW4	350194	1	Nugter	680257 ¹	5682091	35.1	Drilled	On Site
WW5	N/A	4	Burnco	681547 ¹	5681568	6.1 – 7.6	Dug	800 SE
WW6	Unknown	1	Unknown	See Note ²	SW Quarter, S32-T26-R3	Unknown	Drilled	900 E
WW7	Unknown	1	Unknown	See Note ²	SW Quarter, S32-T26-R3	Unknown	Drilled	900 E
WW8	395786	1	Hodgson	See Note ²	NE Quarter, S31-T26-R3	62.5	Drilled	690 E
WW9	360164	1	Carroll	680744 ¹	5683480	67.1	Drilled	350 N
WW10	Unknown	1	Unknown	See Note ²	SE Quarter, S6-T27-R3	Unknown	Unknown	800 N
WW11	391000	1	Unknown	679932 ³	5683339	39.6	Drilled	350 N
WW12	Unknown	1	Unknown	See Note ²	NE Quarter, S36-T26-R4	Unknown	Unknown	270 W
WW13	Unknown	1	Big Hill Estates	See Note ²	SW Quarter, S30-T26-R3	Unknown	Drilled	1,800 S
N/A	1022436	1	Lafarge Canada Inc.	679682 ³	5682526	30.5	Drilled	
N/A	387449	1	Lafarge Canada Inc.	See Note ⁴	NE Quarter, S36-T26-R4	33.8	Drilled	
N/A	494773	1	Lafarge Canada Inc.	See Note ⁴	NE Quarter, S36-T26-R4	30.5	Drilled	

Water Well Number	Alberta Water Well Record Number	No. of Wells	Well Owner	Easting (UTM)	Northing (UTM)	Well Depth (m)	Drilled / Dug	Distance (m) and Direction from Site
N/A	2095665	1	Unknown	See Note ⁴	SW Quarter, S6-T27-R3	25.6	Drilled	
N/A	390998	1	Unknown	See Note ⁴	SE Quarter, S6-T27-R3	65.5	Drilled	
N/A	390999	1	Unknown	See Note ⁴	SE Quarter, S6-T27-R3	73.2	Drilled	
N/A	391598	1	Unknown	See Note ⁴	NW Quarter, S3-T26-R3	39.6	Drilled	
N/A	395786	1	Unknown	See Note ⁴	NE Quarter, S31-T26-R3	62.5	Drilled	

^{1.} Location based on GPS measurement in the field.

5.0 Regulatory Framework

The site will operate under a Development Permit issued by RVC and an Approval under the COP for Pits. A requirement of the Development Permit is to prepare a groundwater monitoring program for assessing whether site operations are impacting groundwater quality and levels. This document is intended to meet this latter requirement.

It is proposed that for the first year, groundwater quality at the onsite monitoring wells be assessed initially by comparing groundwater monitoring results with the Alberta Tier 1 and/or 2 Soil and Groundwater Remediation Guidelines (updated August 2022) and herein referred to as the Tier 1 or Tier 2 Guidelines. The Tier 1 Guidelines contain guidelines which are protective of all receptors and potential exposure pathways, whereas the Tier 2 Guidelines can be modified to exclude those pathways or receptors which don't apply. Monitoring results will be compared to guidelines for Agricultural land use based on the current site and surrounding land uses. The site is coarse-grained with respect to contaminant migration in the surficial deposits.

Water quality results obtained from residential wells which opted to join the monitoring program, will be assessed against the Guidelines for CDWQ and equivalent Alberta potable groundwater guidelines.

Water quality results obtained from the Bighill Springs (BHS1) will be compared against the Environmental Quality Guidelines (EQG) for Alberta Surface Waters as updated. Additional water quality guidelines were developed by SLR from baseline sampling by SLR and others for the protection of tufa formation (section 8.2).

^{2.} Plotted by AEP at quarter centre centroid, adjusted to likely location, subject to field confirmation.

^{3.} Location based on Abacus Datagraphics database.

^{4.} Wells plotted at quarter-section centroid in Abacus Datagraphics database. Not likely actual location.

Background groundwater chemistry will be established using historical groundwater monitoring data and additional data collected during April 2023 after spring freshet and prior to development of the site. Control limits setting upper and lower acceptable bounds for parameters have been derived for each sampling point using the pre-operational data, and subsequent data will be compared to these control limits.

6.0 Proposed Groundwater Monitoring Well Network

6.1 Groundwater Monitoring Objectives

The objectives of the groundwater monitoring program are twofold:

- To enable understanding of the groundwater flow regime at the site and adapt the basal elevation of the pit in response to observed groundwater levels.
- To confirm the site is having only the effects predicted, but also to enable the gathering of sufficient information to identify and provide solutions to any unanticipated groundwater problems should they arise through the life of the site.

6.2 Groundwater Monitoring Approach

The site monitoring program is designed to provide data to enable the assessment of potential impacts to groundwater quality in the vicinity of the site. By extrapolation it can be inferred what the likely effects of any observed changes will be at potential receptors such as private residential wells. In addition, potential receptors will also be monitored directly as a precaution to assess potential changes. All monitoring wells installed within the boundaries of the site will receive the earliest warning possible of any changes in the groundwater system.

Background monitoring provides a key benchmark for the assessment of change within the groundwater system, both temporally, before development commences, and spatially, in up-gradient locations. Down-gradient wells provide information on what changes, if any, may be occurring as the groundwater passes beneath the site. By this method, early warning is attained on site, long before any problem could manifest itself in the more distant private wells.

6.3 Groundwater Monitoring Network Description

The groundwater monitoring network for the site will comprise three main elements:

- Existing onsite sentinel monitoring wells to monitor groundwater flowing directly beneath the site in upgradient, downgradient and cross-gradient locations from the actively working areas.
- Monitoring of adjacent residential wells as part of a precautionary water well protection program which protects both the operator and the local residents.
- Sampling of water quality within Big Hill Springs to confirm no negative effects are being seen.

The locations of the proposed groundwater monitoring points for the baseline monitoring are presented in Figure 3 and the monitoring wells for Phase 1 monitoring are presented in Figure 6.

Ten monitoring wells have been installed onsite. The monitoring wells are screened either at the base of the sand and gravel unit or across the upper bedrock / sand and gravel interface to ensure the water table could be measured. The wells are constructed of 50 mm diameter polyvinyl chloride (PVC) pipe with a hydrated bentonite chip seal placed around the annulus of the solid section of standpipe above the screened section. An above ground steel protective cover with a lockable lid was concreted in place above the top of the wells. Borehole geological information and monitoring well construction details are provided in the SLR well logs in Appendix A.

As indicated in Section 4.4 and Table 4, several residential wells are located within or close to an 800 m radius of the site (WW1 to WW12), and MALP has offered to include them in the monitoring program as a precautionary measure to confirm the quality and quantity of water available in these wells is unimpacted by the Project. WW13 (Big Hill Creek Estates Water Coop) is approximately 1.8 km to the south of the site, and unlikely to be affected by the Project because it falls on the other side of a groundwater divide; however, a commitment was made during the Public Hearing to review data from this well as part of the monitoring program. It is our understanding that this well is monitored by others and Mountain Ash proposed to enter into a data sharing agreement, however the Co-Op has not yet agreed.

Confirmatory sampling from the furthest publicly accessible upstream point of the stream flowing from Big Hill Springs will be sampled within the Big Hill Springs Provincial Park (BHS1).

7.0 Groundwater Monitoring Program

7.1 Methodology

7.1.1 Groundwater Monitoring

Each onsite groundwater monitoring well will be measured for depth to groundwater using an electronic water level tape on a monthly basis during operating months (April to November). Prior to the day's monitoring, the water level probe will be inspected and tested for proper operation. The depth to the nearest millimetre from the highest point of the well pipe (which has been surveyed for geodetic elevation) will be observed and recorded. The depth to the bottom of each well will also be measured and noted if any soil particles are present. The water level probe will be cleaned with an Alconox and water solution, rinsed with clean tap water, neutralized with isopropyl alcohol, and then rinsed with distilled water between each well to minimize the potential for cross contamination between wells.

Additional simple piezometers will be installed within the pit once the base of extraction reaches within approximately 3 m of the proposed extraction depth to confirm that no extraction takes place within 1 m of the groundwater table. These will be installed approximately every 200 m as the excavation moves laterally and will be removed as the area is worked out and prepared for restoration.

Groundwater levels will only be measured within residential wells where safe access to the wellhead can be provided. Water levels will be measured using the same methodology outlined above for the onsite monitoring wells. Pressure transducers with built in data loggers will also be installed in available residential wells to establish the normal range of water level fluctuation due to daily use. Twelve private wells have been identified (WW1 to WW12) within or near the 800 m limit as described above. Each owner has been approached to see if they wish to be included. Some decline as they do not wish to be disturbed by monitoring staff or due to their great distance from the operation. Participation will be based on owner's willingness. All owners within 800 m have been approached, and the monitoring details will be provided to them upon issuance and approval of the development permit. Owners initially were given an overview of the program's intentions, process, procedures, and pending approval by the development authority. Monitoring of wells within an 800 m radius of the active area of the pit will commence once DP approval has been obtained and will continue for a period of 5 years or until the Phase 1 DP expires.

7.1.2 Monitoring Wells

Prior to groundwater sampling, each monitoring well will be purged using the parameter stabilization method. While purging, the following geochemical parameters will be monitored and recorded periodically with a minimum of three minutes between readings: temperature, pH, electrical conductivity (EC). The time, flow rate and cumulative volume purged will also be recorded with qualitative observations such as colour, odour and sheen, if any.

Stabilization will be considered achieved after all parameters have stabilized for three successive readings. The following stabilization criteria will be used:

pH: +/- 0.2 units

• Temperature: +/- 0.2°C

• EC: +/- 5%

Each well will be purged until field parameters have stabilized.

7.1.3 Residential Wells

Residential well samples will be collected from a point within the household system before any water quality treatment. The sample will be taken after a purge of 15 minutes or until field parameters are deemed to have stabilized. Attention will be paid to ensure that static water from the pressure tank is not inadvertently sampled.

7.1.4 Groundwater and Surface Water Sampling

Samples will be collected from the dedicated sampling equipment (for monitoring wells and surface water) or the sampling tap (for residential wells) and transferred directly to clean, laboratory prepared sample containers that will be labelled prior to sample collection. A clean pair of disposable nitrile gloves will be worn during sample collection and a new pair of gloves used at each sample location. Upon collection, the sample containers will be placed immediately into sealed coolers with ice packs and delivered directly under Chain-of-Custody (COC) to the laboratory the same day.

7.1.5 Groundwater and Surface Water Analytical Program

The proposed Phase 1 monitoring and sampling schedule is provided in Table 5 and the monitoring point locations presented in Drawing 6. The parameters included in the suites in Table 5 are defined as follows:

- Field Parameters: Temperature, pH, specific conductance, turbidity
- Routine Potability: alkalinity, bicarbonate (HCO3), electrical conductivity (EC), ion balance, dissolved calcium (Ca), iron (Fe), potassium (K), manganese (Mn), magnesium (Mg), sodium (Na), chloride (Cl), sulphate (SO4), nitrite (NO2), nitrate (NO3), pH, hardness, total dissolved solids
- Tier 1 metals: Ag, Al, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, Li, Mg, Mn, Mo, Na, Ni, P, Pb, S, Sb, Se, Si, Sn, Sr, Ti, Tl, U, V, Zn
- **Petroleum Hydrocarbons**: Benzene, toluene, ethylbenzene, xylenes, petroleum hydrocarbon fractions F1 & F2 Turbidity.

These parameters take into account all those likely indicator parameters which would indicate unanticipated impacts to the groundwater from the operations. Full details of the parameters to be tested are provided in Table 5, below.

7.2 Quality Assurance and Quality Control (QA/QC)

Field procedures will be implemented to minimize the potential of cross contamination between sampling locations. Sample handling protocols will be established to track and maintain the integrity of the samples. Disposable Nitrile gloves will be used at all times and will be changed between sampling locations. Sampling will progress from up-gradient locations to down-gradient locations, reducing the potential for cross contamination from potentially impacted areas to un-impacted or background locations.

Field duplicates will be submitted at a rate of 1 per every 10 samples collected or a minimum of one per sampling event. A field or equipment blank will be run through the sampling equipment and then submitted to the laboratory for analysis to assist in assessing the effect of field sampling and sample shipping methodologies on the accuracy and precision of the analytical results. For volatile parameters, a travel or trip blank prepared by the laboratory will accompany the sample bottles and be submitted for analysis.

For each duplicate, a relative percent difference (RPD) is calculated for each parameter analysed for comparison to SLR's standard QA/QC acceptance limits. RPD will be calculated as follows:

$$RPD = \frac{(C_1 - C_2)}{(C_1 + C_2)/2} \times 100$$

Where: C1 is the concentration in the original sample; and

C2 is the concentration in the duplicate.

Analytical error increases near the reported detection limit (RDL); therefore, the RPD is not normally calculated unless the concentrations of both the original and duplicate samples are greater than five times the RDL. If the RPD for a sample and its duplicate do not meet SLR's RPD standards (60% for organic parameters or 40% for inorganic parameters) for the parameters analysed, an explanation is required to qualify the difference in values.

Chain-of-custody forms will be completed for all samples submitted to the laboratory and will accompany each sample shipment. Sample temperatures will be maintained between 0°C and 10°C at all times by being kept in sealed coolers on ice. Samples will be shipped for analyses within the recommended time requirements.

All samples will be submitted to a Canadian Association for Laboratory Accreditation Inc. (CALA) accredited laboratory that uses AEP recognized methods to conduct laboratory analyses. Laboratories accredited by CALA are required to be ISO17025 compliant. Method blanks, control standards samples, certified reference material standards, method spikes, replicates, duplicates and instrument blanks are routinely analysed as part of the analytical laboratory's QA/QC programs.

7.3 Proposed Monitoring Schedule

Historical water quality from the residential wells shows that the water is of consistent quality between the residential wells collected at different times and at various depths within the bedrock. Water quality within the sand and gravel is likewise consistent between the monitoring wells and at different times of year (excluding the outliers due to high turbidity within the samples). This historical data (excluding outliers) is used to form the baseline groundwater quality with the completion of baseline sampling during the spring 2023 freshet and prior to the commencement of stripping and excavation. Results of the baseline sampling to date is provided in Tables A1 to A3, with the monitoring point locations presented in Figure 3.

Now baseline water quality has been established for all sampling points, the program will be reduced to sampling of only those monitoring wells surrounding the working areas (i.e., those stripped areas. those extracting sand and gravel, or those being actively restored) and for wells which will act as baseline for later phases, plus those residential wells within 800 m of the working areas. Monthly water level monitoring will continue at onsite monitoring wells during operating months. The Phase 1 monitoring and sampling schedule is provided in Table 5 and the monitoring point locations presented in Figure 6.

Table 5: Proposed Phase 1 Monitoring Schedule

Parameter / Parameter Suite	Monitoring Point	Frequency
Water Level	Onsite Monitoring Wells MW14-101, MW14-102*, MW14- 103, MW18-104, MW18-105, MW18-106, MW18-107, MW19- 108, MW19-109, MW19-110, PIZ21- 001	Monthly during Operating Months (April -November)
	Residential Wells WW1, WW2, WW3, WW4, WW5**, WW6**, WW7**, WW8**, WW9**, WW10**, WW11**, WW12**, WW13**	Manual readings twice annually (April and November). Data loggers installed and recording daily fluctuations.
Field Parameters Routine Potability Tier 1 dissolved metals	Onsite Monitoring Wells MW14-102*, MW19-108, MW19-109, MW19-110	Biannually (twice per year)
	MW18-106, MW18-107	Every 2 years
Petroleum Hydrocarbons	Onsite Monitoring Wells MW14-102*, MW19-108, MW19- 109, MW19-110	Annually
Field Parameters Routine Potability Tier 1 dissolved and total metals	Residential Wells WW1, WW2, WW3, WW4, WW5**, WW6**, WW7**, WW8**, WW13**	Annually until Phase 1 DP expires
	Surface Water BHS1	Annually
Turbidity: Field measurement	Surface Water	Quarterly
Stream Flow Rate	BHS1	Monthly

^{* -} MW14-102 has been dry since it was drilled, it will be monitored as per the schedule and only sampled should groundwater levels rise into the monitoring well.

^{** -} Pending well owner agreement for inclusion in the monitoring program

8.0 Groundwater Response Plan

The groundwater response plan is presented schematically in Figure 7. The following sections describe the components of the plan.

8.1 Baseline Groundwater Sampling

Groundwater sampling has been conducted previously at the site to establish existing conditions and perform an impact assessment. To establish the baseline, historical data has been aggregated for the onsite monitoring wells and residential wells to define the baseline groundwater quality in the sand and gravel and the bedrock, respectively. This allows the natural seasonal and annual variability of the groundwater quality to be established. Routine sampling frequencies will be undertaken on the proposed schedule in Table 5 going forwards. All water quality taken from private wells will be shared with homeowners.

8.2 Establish Control Limits

The initial baseline groundwater monitoring has been used to develop "control limits" (described in Section 5) that can be used to identify groundwater quality issues at the site. Control limits are provided in Table 6 below for those parameters not included in the Alberta Tier 1 or EQG guidelines using all available data to April 2023. These control limits are applied to ensure all groundwater quality parameters remain stable to protect water dependent features not covered by the guidelines, and which includes the tufa formations in the Provincial Park. The control limits are dependent on the parameter considered for each aquifer and incorporate statistically significant deviation from background groundwater quality if natural concentrations are above applicable guideline values. Consideration of natural seasonal variability in measured concentrations will be made so that it can be determined if observed results reflect naturally occurring concentrations or if results are potentially being driven by impacts from operations.

Table 6:	Control Limits for Parameters Not Covered by Provincial Guidelines
Table 0.	Control Elimics for a granicious fiot covered by interior outdefines

Parameter	Units		in Monitoring Wells at oject Site	Spring Water Quality at BHS1 (Downstream of the Spring)				
		Lower Control Limit	Upper Control Limit	Lower Control Limit	Upper Control Limit			
Temp	C°	3.0	7.9	3.0	7.9			
рН		7.2	8.4	7.9	8.4			
HCO₃	mg/L	310	400	200	390			
Ca	mg/L	61	79	43	77			
TDS	mg/L	280	380	190	526			
Turbidity	NTU	0	100*	0	7.1**			

^{*} While turbidity can be measured reasonably accurately in surface water, representative groundwater values are difficult to obtain from monitoring wells, as they are highly method dependent and subject to large fluctuations depending on how much disturbance occurs within the well. Efforts will be made to use best practice in obtaining representative turbidity samples, however historical results in some of the monitoring wells indicate turbidities much higher than the proposed upper control limit can be obtained on occasion.

^{**} From Environmental Quality Guidelines for Alberta Surface Waters - Maximum average increase of 2 NTU from background for longer term exposures used. Maximum increase of 8 NTU from background can be used for short term exceedances (i.e., high runoff events).

In addition to the control limits developed above, annual monitoring data will be reviewed to determine the presence of increasing or decreasing trends in groundwater quality and elevations using Mann-Kendall analysis or equivalent statistical method once a sufficient data set has been established. Increasing trends in parameters of concern will initiate source identification and flag a given well for follow up during subsequent monitoring events.

8.3 Annual Groundwater Monitoring

Annual groundwater monitoring and sampling for Excavation Phase 1 will occur as described in Table 5 after the baseline sampling period. Groundwater monitoring data will be entered and stored in a format suitable for identifying control limit exceedances and trends. Please be aware that this program will be extended in breadth for each successive Phase; however, those steps are subject to renewed approvals at that time.

8.4 Annual Groundwater Monitoring Report

An annual groundwater monitoring report will be prepared and submitted to RVC by April 30 of the year following the year in which the information on which the report is based was collected. It will include data summaries and an interpretation of the results with respect to the environmental performance of the site.

The report will also highlight any recommended changes to the monitoring program to make it more effective or recommendations for any risk management measures to be undertaken in the subsequent year. This is a key component of any adaptive monitoring plan, whereby groundwater is managed based on progressive results, and risk management is undertaken based on real risk.

Individual well owners will receive a summary of the data for their well privately each year.

8.5 Identification of a Problem

If an exceedance of a control limit or increasing trend is detected at a given well, the well will be resampled for the full suite of parameters. If the re-sampling confirms the initial result, AEPA will be notified of the result. If the source can be easily identified and managed, details will be provided to APEA with the notification. If not, a Source Investigation Plan will be provided.

8.6 Source Investigation

Once a control limit exceedance or increasing trend is confirmed by re-sampling, attempts will be made to identify potential sources and remove or manage them if feasible. Source removal might include such activities as removal of surficial soil impact, repair of leaks, etc., however, the operator will be doing daily inspections of equipment, routine maintenance and monitoring at the site which will likely flag issues before impacts show up at the sentinel wells. Depending upon the situation, a detailed investigation of the source zone may be necessary and will be included as part of the Risk Management Plan (Section 8.7).

8.7 Risk Management Plan

As indicated on the flow chart in Figure 7, a risk management plan will only be developed if an issue and its source are identified as being related to the operation. This plan will be developed if exceedances or increasing trends are confirmed and source removal is not feasible.

The first step in any risk management plan will be a preliminary risk assessment to identify any potential receptors and applicable pathways. The preliminary risk assessment will determine if there are any immediate risks to receptors.

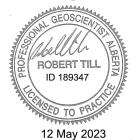
After the preliminary risk assessment is completed, a specific risk management and mitigation process will be developed and implemented to reduce the potential risk to any receptors to levels acceptable to AEPA. Such activities will be commensurate with the problem at hand. For example, a spill of hydrocarbons would entail containment with soaker pads and the subsequent removal of impacted soils as appropriate depending on the nature of the impact. The actions required could include but not be limited to additional sampling, installation of monitoring wells, residential well investigation and rehabilitation, changes to operational practices or reporting. If risks cannot be managed or mitigated to the satisfaction of the Director, this may result in the cessation of operations and/or cancellation of the Registration.

9.0 Summary

The foregoing groundwater monitoring plan has been developed using both industry standard techniques and enhancements based on the unique setting of this site. Monitoring of both groundwater levels (as they might conceptually affect private well performance) and groundwater quality (given the local use of the underlying aquifer by others as a potable water source) will be undertaken. It is expected that the monitoring program will confirm and refine the interpretation of the site found in the supporting hydrogeological report (SLR 2020c). It will also serve to identify unanticipated problems, first and foremost at the site by way of the sentry monitoring well network. Private wells are a much greater distance from the excavation and given that the pit development is above the water table, there is little likelihood of impacts there. The monitoring program is intended to periodically confirm this and provide that data to the pit operator and private well owners alike. A groundwater response plan has been presented that outlines the steps that will be taken should unanticipated conditions develop.

10.0 Statement of Limitations

This report has been prepared and the work referred to in this report has been undertaken by SLR Consulting (Canada) Ltd. (SLR) for Mountain Ash Limited Partnership, hereafter referred to as the "Client". It is intended for the sole and exclusive use of Mountain Ash Limited Partnership. The report has been prepared in accordance with the Scope of Work and agreement between SLR and the Client. Other than by the Client and as set out herein, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted unless payment for the work has been made in full and express written permission has been obtained from SLR.


This report has been prepared in a manner generally accepted by professional consulting principles and practices for the same locality and under similar conditions. No other representations or warranties, expressed or implied, are made.

Opinions and recommendations contained in this report are based on conditions that existed at the time the services were performed and are intended only for the client, purposes, locations, time frames and project parameters as outlined in the Scope or Work and agreement between SLR and the Client. The data reported, findings, observations and conclusions expressed are limited by the Scope of Work. SLR is not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. SLR does not warranty the accuracy of information provided by third party sources.

Sincerely,

SLR Consulting (Canada) Ltd.

Robert Till, M.Sc., P.Geo. Senior Hydrogeologist

Degle

Steve Usher, M.Sc., P.Geo., FGCPrincipal Hydrogeologist

Distribution: 1 electronic copy – Mountain Ash Limited Partnership

1 electronic copy – SLR Consulting (Canada) Ltd.

PERMIT TO PRACTICE SLR CONSULTING (CANADA) LTD. RM SIGNATURE: Emma Kirsh, P.Geol. RM APEGA ID #: 68715 DATE: 2023-May-12 PERMIT NUMBER: P005449 The Association of Professional Engineers and Geoscientists of Alberta (APEGA)

11.0 References

- Alberta Geological Survey. 1999. Geological Map of Alberta, 1:1,000,000 scale.
- Caron, Marie-Eve, 2004. Hydrology of Big Hill Springs. University of Calgary, Alberta, Canada. B.Sc. Project.
- Fouli, Y., 2020. Bighill Creek Water and Sediment Quality Baseline Study Phase II: 2019-2020. Prepared for Bighill Creek Preservation Society.
- Geological Survey of Canada. 2007. Paskapoo groundwater study. Part I: Hydrogeological properties of the Paskapoo Formation determined from six continuous cores. Open File 5392.
- Hamblin, A.P. 2004. Paskapoo-Porcupine Hills formations in western Alberta: synthesis of regional geology and resource potential. Geological Survey of Canada, Open File 4679.
- Ozaray, G.F. and Barnes, R. 1977. Hydrogeology of the Calgary-Golden Area.
- Poschmann, Soren, 2007. Establishing a recharge area for Big Hill Springs, Alberta, Canada. Department of Geology and Geophysics, University of Calgary, Alberta, Canada. B.Sc. Project.
- Shetsen, I. 1981. Sand and gravel resources of the Calgary area, Alberta. Alberta Research Council, OFR 1981-08, 96 p.
- Shetsen, I. 1987. Quaternary Geology, Southern Alberta. 1:500,000 scale map. Alberta Research Council.
- SLR. 2020a. Mountain Ash Limited Partnership Aggregate Operation Biophysical Assessment Report
- SLR. 2023. Wetland Assessment and Impact Report Mountain Ash Limited Partnership Summit Pit. NW and SW 31-026-03 W5M. Rocky View County, Alberta.
- SLR. 2020c. Mountain Ash Limited Partnership Aggregate Operation Hydrogeological Assessment Report
- Turner, E.C. and Jones B., 2005. Microscopic calcite dendrites in cold-water tufa: implications for nucleation of micrite and cement. In: Sedimentology (2005) 52, 1043–1066

Tables

Groundwater Monitoring Plan

Summit Pit Project

Mountain Ash Limited Partnership

SLR Project No. 212.06650.00007

May 11, 2023

Table A1
Sand and Gravel Monitoring Well Groundwater Quality Results

Sand and Gravel Monitoring Well Groundwater Quality Results																
	Guideline			MW1	4-101				MW14-103					MW18-104		
Parameter	(Alberta Tier 1)*	Units	20-Nov-14	16-Aug-22	15-Dec-22	19-Apr-23	20-Nov-14	4-Aug-15	16-Aug-22	14-Dec-22	19-Apr-23	4-Jı	ıl-19	16-Aug-22	14-Dec-22	19-Apr-23
Aluminum	0.05 ¹	mg/L	0.164	0.0072	<0.0030	0.034	5.57	0.109	<0.0030	<0.0030	0.23	3.7	0.0051	<0.0030	<0.0030	< 0.003
Antimony	0.006	mg/L	<0.00050	<0.00060	<0.00060	<0.00060	<0.00050	<0.00050	<0.00060	<0.00060	<0.00060	0.0049	0.0013	<0.00060	<0.00060	<0.00060
Arsenic	0.005	mg/L	0.00035	<0.00020	<0.00020	<0.00020	0.007858	0.000336	<0.00020	<0.00020	0.0003	0.0044	0.00080	0.00025	0.00027	0.00023
Barium	2	mg/L	0.424	0.43	0.4	0.39	0.7	0.332	0.38	0.37	0.39	0.	61	0.48	0.43	0.41
Bicarbonate (as HCO3)	NV	mg/L	382	340	330	370	380	375	380	360	400		10	330	360	370
Boron	1	mg/L	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	0.031	0.025	0.031	<0.020	<0.020	<0.020
Cadmium	0.00037 ¹	mg/L	0.000016	<0.000020	<0.000020	<0.000020	0.00029	<0.000005	<0.000020	<0.000020	0.000031	0.00036	0.000039	<0.020	<0.000020	<0.000020
Calcium	NV	mg/L	76	73	73	70	75	73	76	78	79	1	33	69	70	63
Chloride	100	mg/L	10.5	13.0	13	12	7.8	8.8	17.0	20	22	2:	9.0	17	18	15
Chromium	0.001 ²	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	0.0076	0.0016	<0.0010	<0.0010	<0.0010	0.018	<0.001	<0.0010	<0.0010	<0.0010
Copper	0.007	mg/L	<0.0010	<0.0010	0.002	0.0032	0.0093	0.0013	0.001	<0.0010	0.0035	0.064	0.0025	0.0063	0.0027	0.0026
Hardness	NV	mg/L	329	310	320	300	324	317	340	350	340	2	80	320	330	290
Iron	0.3	mg/L	0.28	<0.060	<0.060	<0.060	12	0.22	<0.060	<0.060	0.21	7.6	0.18	<0.060	<0.060	<0.060
Lead	0.005 ¹	mg/L	0.00031	<0.00020	<0.00020	<0.00020	0.00464	<0.00030	<0.00020	<0.00020	0.00032	0.0049	<0.0002	<0.00020	<0.00020	<0.00020
Mercury	0.000005	mg/L	<0.00010	-	<0.0000019	0.0000028	<0.00010	<0.00020	-	<0.0000019	0.0000041	0.00	0003	-	<0.0000019	<0.0000019
Magnesium	NV	mg/L	33.7	31	33	31	33.4	32.6	36	37	35	3	30	36	37	33
Manganese	0.02	mg/L	0.02	<0.0040	<0.0040	0.012	0.93	0.01	<0.0040	<0.0040	0.048	0.	62	0.017	<0.0040	<0.0040
Molybdenum	NV	mg/L	0.0008	0.00063	0.00061	0.001	0.00184	0.00086	0.00064	0.00069	0.00051	0.015	0.012	0.0034	0.0035	0.0023
Nickel	0.12 ¹	mg/L	<0.00050	0.0027	<0.00050	<0.00050	0.01196	0.00051	<0.00050	<0.00050	<0.00050	0.02	0.0024	0.00089	<0.00050	<0.00050
Nitrate-N	3	mg/L	1.19	1.5	1.5	1.7	5.22	1.801	1.7	1.5	1.6	0.	97	1.6	1.7	1.6
Nitrite-N	0.1 ¹	mg/L	<0.05	<0.010	<0.010	<0.010	<0.05	<0.005	<0.010	<0.010	<0.010	0.0	098	<0.010	<0.010	<0.010
Potassium	NV	mg/L	4.8	4.4	4	3.8	4.3	3.9	3.5	3.6	3.6	4	.1	3.3	3.3	2.9
pН	6.5 - 8.5		7.9	7.58	7.87	7.87	7.8	8	7.63	7.86	7.75	7.	91	7.24	8.19	7.57
Selenium	0.002	mg/L	<0.00060	0.00038	0.00052	0.00048	0.00112	0.00087	0.00098	0.0012	0.00089	0.00049	0.00024	0.00079	0.00064	0.0005
Silver	NV	mg/L	<0.000070	<0.00010	<0.00010	<0.00010	<0.000070	<0.000070	<0.00010	<0.00010	<0.00010	0.00044	<0.0001	<0.00010	<0.00010	<0.00010
Sodium	200	mg/L	6	5.5	5.8	5.9	8.8	7.9	9.6	9.6	9.4	,	13	7.8	8.2	7.1
Sulphate	500 ¹	mg/L	8.88	7.3	7.8	7.1	11.9	10.56	13	13	11	g	.2	77	7.3	6.8
Thallium	NV	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Total Dissolved Solids (calculated)	500	mg/L	337	310	300	320	354	333	350	350	370	3	10	380	330	320
Turbidity	NV	NTU	9.6	-	0.54	580	680	8	-	29	81	1	30	-	1.2	36
Uranium	0.01	mg/L	0.001697	0.0016	0.0014	0.0015	0.002014	0.001563	0.0017	0.0016	0.0017	0.0019	0.0015	0.0019	0.0018	0.0018
Zinc	0.03	mg/L	<0.020	<0.0030	<0.0030	<0.0030	0.033	<0.020	<0.0030	<0.0030	<0.0030	0.072	<0.003	<0.0030	<0.0030	<0.0030
Total Coliforms	<1 (MAC) ³	MPN/100 mL	-	-	-	-	-	<1	-	-	-	>24	1000	-	-	-
E.Coli	<1 (MAC) ³	MPN/100 mL	-	-	-	-	-	<1	-	-	-	•	10	-	-	-

* - Table 2, Alberta Tier 1 Groundwater Remediation Guidelines (2023) applied for Agricultural land use in coarse grained soils

NV = no value

1. Tier 1 guideline is the lowest of the aquatic life guideline and all other guidelines are hardness dependent, aluminum is pH dependent and nitrite as N guideline is chloride dependent for the aquatic life pathway. Guidelines quoted are based on the lowest chronic guideline applied for the range of hardness, pH or chloride observed.

2. Guideline is for chromium (hexavalent) and used for screening purposes when not analyzed

3. No guideline value is provided in Alberta Tier 1 guidelines, so Canadian Drinking Water Guideline value has been included for comparison purposes. (MAC = Maximum Allowable Concentration)

Metal concentrations in groundwater are provided as dissolved metals unless otherwise indicated or by total metal concentrations being indicated in italics. A comparison between total and dissolved metals was undertaken on 4 July 2019 and therefore two columns of metal concentrations are shown.

BOLD RED – Exceeds guideline

Table A1
Sand and Gravel Monitoring Well Groundwater Quality Results

	Guideline				MW18-105			3		er Quality Res MW18-106					MW18-107		
Parameter	(Alberta Tier 1)*	Units	4-Jւ	ıl-19	16-Aug-22	14-Dec-22	19-Apr-23	4-Jı	ıl-19	16-Aug-22	15-Dec-22	19-Apr-23	4-Jı	ul-19	16-Aug-22	15-Dec-22	19-Apr-23
Aluminum	0.05 ¹	mg/L	5.4	<0.003	0.0051	<0.0030	0.017	13	0.0034	<0.0030	<0.0030	0.0059	7	0.0033	<0.0030	<0.0030	0.02
Antimony	0.006	mg/L	0.006	<0.00060	<0.00060	<0.00060	<0.00060	0.0048	<0.00060	<0.00060	<0.00060	<0.00060	0.00079	<0.00060	<0.00060	<0.00060	<0.00060
Arsenic	0.005	mg/L	0.0056	<0.0002	<0.00020	<0.00020	<0.00020	0.017	<0.0002	<0.00020	<0.00020	<0.00020	0.0076	0.00023	<0.00020	<0.00020	<0.00020
Barium	2	mg/L	2	.8	0.36	0.34	0.34	1	.1	0.35	0.31	0.31	0.	79	0.35	0.32	0.32
Bicarbonate (as HCO3)	NV	mg/L	33	20	340	320	320	3	60	350	330	360	3	70	360	330	360
Boron	1	mg/L	0.021	<0.02	<0.020	<0.020	<0.020	<0.020	<0.02	<0.020	0.032	<0.020	<0.020	0.029	<0.020	<0.020	<0.020
Cadmium	0.00037 ¹	mg/L	0.0055	<0.00002	<0.000020	<0.000020	<0.000020	0.00095	<0.00002	<0.000020	<0.000020	<0.000020	0.00033	<0.00002	<0.000020	<0.000020	0.000033
Calcium	NV	mg/L	6	9	64	65	61	7	73	70	72	67	7	71	71	70	68
Chloride	100	mg/L	13	3.0	10	10	9.5	9	.3	11	11	9.7	10	0.0	15	16	15
Chromium	0.001 ²	mg/L	0.0046	<0.0010	<0.0010	<0.0010	<0.0010	0.081	<0.001	<0.0010	<0.0010	<0.0010	0.025	<0.001	<0.0010	<0.0010	<0.0010
Copper	0.007	mg/L	0.11	0.0003	0.0054	0.0013	<0.0010	0.11	0.00072	0.0015	<0.0010	0.0033	0.018	<0.0002	0.0074	0.001	0.0038
Hardness	NV	mg/L	30	00	290	300	280	3	10	310	320	300	3	10	320	320	300
Iron	0.3	mg/L	49	0.16	<0.060	<0.060	<0.060	37	0.16	<0.060	<0.060	<0.060	17	0.15	<0.060	<0.060	<0.060
Lead	0.005 ¹	mg/L	0.025	<0.0002	0.0015	<0.00020	<0.00020	0.019	<0.0002	<0.00020	<0.00020	<0.00020	0.0075	<0.0002	<0.00020	<0.00020	<0.00020
Total Mercury	0.000005	mg/L	0.0		-	<0.0000019	<0.000019	0.00	0032	-	<0.0000019	<0.0000019	0.00	00048	-	<0.000019	<0.0000019
Magnesium	NV	mg/L		32	31	33	30	3	31	33	34	32		32	34	34	32
Manganese	0.02	mg/L	2.	90	<0.0040	<0.0040	<0.0040	1.	90	<0.0040	0.0058	<0.0040	0.	.60	<0.0040	<0.0040	<0.0040
Molybdenum	NV	mg/L	0.0014	0.00096	0.00062	0.00071	0.00061	0.005	0.0012	0.0006	0.00088	0.00073	0.0021	0.00095	0.00069	0.0007	0.00074
Nickel	0.12 ¹	mg/L	0.015	<0.0005	<0.00050	<0.00050	<0.00050	0.036	<0.0005	<0.00050	<0.00050	<0.00050	0.014	<0.0005	<0.00050	<0.00050	<0.00050
Nitrate-N	3	mg/L	2	.6	2.3	2.1	2.3	2	2.3	2.6	2.4	2.7	:	2	2.6	2.3	2.6
Nitrite-N	0.1 ¹	mg/L	<0.	010	<0.010	<0.010	<0.010	<0.	.010	<0.010	<0.010	<0.010	0.0	034	<0.010	<0.010	<0.010
Potassium	NV	mg/L		.9	2.4	2.4	2.4		3.3	3.3	3.2	3.2		3	3.2	3.1	3
pН	6.5 - 8.5			05	7.56	8.01	8.08		87	7.71	7.95	7.86		7.8	7.53	7.79	7.64
Selenium	0.002	mg/L	0.00093	0.00043	0.00037	0.00052	0.0004	0.0011	0.00067	0.00048	0.00085	0.00058	0.00094	0.00081	0.00055	0.00088	0.00065
Silver	NV	mg/L	<0.00010	<0.0001	<0.00010	<0.00010	<0.00010	0.0017	<0.0001	<0.00010	<0.00010	<0.00010	0.0001	<0.0001	<0.00010	<0.00010	<0.00010
Sodium	200	mg/L		.7	5.2	5.3	5		9	6.2	7.1	6.3		3.6	6.2	6.7	7.1
Sulphate	500 ¹	mg/L		.8	4.8	5.6	5.2		7.6	6.3	7.2	7	6	3.6	6	6.7	5.8
Thallium	NV	mg/L	0.00023	<0.00020	<0.00020	<0.00020	<0.00020	0.0002	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Total Dissolved Solids (calculated)	500	mg/L	31	00	290	290	280	3	20	310	310	320	3.	20	320	310	320
Turbidity	NV	NTU	>4	000	-	86	>4000		100	-	6.7	>4000		53	-	19	160
Uranium	0.01	mg/L	0.012	0.0018	0.0016	0.0014	0.0016	0.003	0.002	0.0015	0.0016	0.0016	0.0027	0.0017	0.0015	0.0014	0.0016
Zinc	0.03	mg/L	0.19	<0.003	0.0048	<0.0030	<0.0030	0.13	<0.003	0.0031	<0.0030	<0.0030	0.037	<0.003	<0.0030	<0.0030	<0.0030
Total Coliforms	<1 (MAC) ³	MPN/100mL	<1	00	-	-	-	11	100	-	-	-	>2	400	-	-	-
E.Coli	<1 (MAC) ³	MPN/100mL	<1	00	-	-	-	<	10	-	-	-		<1	-	-	-

* - Table 2, Alberta Tier 1 Groundwater Remediation Guidelines (2023) applied for Agricultural land use in coarse grained soils

NV = no value

1. Tier 1 guideline is the lowest of the aquatic life guideline and all other guidelines. Lead is based on the potable water pathway, as is sulphate in the absence of an assessment for the very high natural groundwater hardness. Cadmium and nickel guidelines are hardness dependent, aluminum is pH dependent and nitrite as N guideline is chloride dependent for the aquatic life pathway. Guidelines quoted are based on the lowest chronic guideline applied for the range of hardness, pH or chloride observed.

2. Guideline is for chromium (hexavalent) and used for screening purposes when not analyzed

3. No guideline value is provided in Alberta Tier 1 guidelines, so Canadian Drinking Water Guideline value has been included for comparison purposes. (MAC = Maximum Allowable Concentration)

Metal concentrations in groundwater are provided as dissolved metals unless otherwise indicated or by total metal concentrations being indicated in italics. A comparison between total and dissolved metals was undertaken on 4 July 2019 and therefore two columns of metal concentrations are shown.

BOLD RED – Exceeds guideline

Table A1
and and Gravel Monitoring Well Groundwater Quality Results

Sand and Gravel Monitoring Well Groundwater Quality Results														
	Guideline				MW19-108				MW1	9-109			MW19-110	
Parameter	(Alberta Tier 1)*	Units	4-Jı	ıl-19	16-Aug-22	14-Dec-22	19-Apr-23	5-Jul-19	16-Aug-22	14-Dec-22	19-Apr-23	10-Jul-19	14-Dec-22	19-Apr-23
Aluminum	0.05 ¹	mg/L	15	0.0051	0.39	<0.0030	0.44	95	0.029	0.0035	0.32	10	<0.0030	< 0.003
Antimony	0.006	mg/L	0.0022	<0.00060	<0.00060	<0.00060	<0.00060	0.0034	<0.00060	<0.00060	<0.00060	<0.00060	<0.00060	<0.00060
Arsenic	0.005	mg/L	0.0086	0.00022	0.00061	<0.00020	0.00039	0.071	0.00023	<0.00020	0.0003	0.0084	<0.00020	<0.00020
Barium	2	mg/L	1	.1	0.39	0.33	0.37	7.2	0.24	0.22	0.25	2.2	0.33	0.32
Bicarbonate (as HCO3)	NV	mg/L	3	90	340	350	370	350	370	370	370	330	320	360
Boron	1	mg/L	0.029	<0.02	<0.020	<0.020	<0.020	0.087	<0.020	<0.020	0.031	<0.020	<0.020	<0.020
Cadmium	0.00037^{1}	mg/L	0.00095	<0.00002	0.000063	<0.000020	0.00005	0.01	<0.000020	0.000024	0.000054	0.0042	<0.000020	<0.000020
Calcium	NV	mg/L		74	79	68	70	77	73	77	72	62	68	62
Chloride	100	mg/L	14	4.0	10	12	12	18	17	17	16	8.4	9.1	8
Chromium	0.001^2	mg/L	0.038	<0.001	0.0011	<0.0010	0.0013	0.19	<0.0010	<0.0010	<0.0010	0.019	<0.0010	<0.0010
Copper	0.007	mg/L	0.038	<0.0002	0.005	<0.0010	0.0036	0.29	0.0013	<0.0010	0.003	0.032	<0.0010	0.0015
Hardness	NV	mg/L	3	20	340	310	310	350	320	340	310	280	310	280
Iron	0.3	mg/L	29	0.16	1.2	<0.060	0.59	190	<0.060	<0.060	0.32	10	<0.060	<0.060
Lead	0.005 ¹	mg/L	0.024	<0.0002	0.0023	<0.00020	0.00089	0.15	<0.00020	<0.00020	0.0006	0.019	<0.00020	<0.00020
Total Mercury	0.000005	mg/L	0.00	0067	-	<0.0000019	0.0000046	0.00208	-	<0.0000019	0.0000048	0.000002	<0.0000019	<0.000019
Magnesium	NV	mg/L	3	32	34	34	33	37	33	36	31	30	33	31
Manganese	0.02	mg/L	0.	74	0.11	0.0055	0.054	8.9	0.0054	0.0068	0.030	7.3	<0.0040	<0.0040
Molybdenum	NV	mg/L	0.0065	0.0029	0.0012	0.0012	0.0034	0.023	0.0022	0.0019	0.0017	0.0015	0.00075	0.00084
Nickel	0.12 ¹	mg/L	0.047	0.0023	0.0035	0.00071	0.0021	0.41	0.00084	0.00065	0.0015	0.065	<0.00050	<0.00050
Nitrate-N	3	mg/L	2	.4	2	2	2.1	1.7	3.2	2.9	3.1	1.9	1.6	1.7
Nitrite-N	0.1 ¹	mg/L	0.0	048	<0.010	<0.010	<0.010	0.065	<0.010	<0.010	<0.010	<0.010	<0.010	<0.010
Potassium	NV	mg/L	3	5.4	3.3	3.1	3.1	6.3	2.9	3	2.8	2.7	2.9	2.9
pН	6.5 - 8.5	_	7.	91	8	8.01	7.88	8.19	7.48	8.07	7.97	7.82	7.96	7.98
Selenium	0.002	mg/L	0.0013	0.00074	0.00079	0.00076	0.00061	0.00059	0.0022	0.002	0.0019	0.00096	0.0006	0.00052
Silver	NV	mg/L	0.0003	<0.0001	<0.00010	<0.00010	<0.00010	0.0025	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010	<0.00010
Sodium	200	mg/L	1	12	8.8	7.4	6.7	18	7.2	7.7	6.8	6	6.2	5.7
Sulphate	500 ¹	mg/L	1	17	8.7	8.3	6.9	26	10	10	10	8.1	6.7	6.1
Thallium	NV	mg/L	0.00028	<0.00020	<0.00020	<0.00020	<0.00020	0.0026	<0.00020	<0.00020	<0.00020	0.00024	<0.00020	<0.00020
Total Dissolved Solids (calculated)	500	mg/L	3	50	320	310	320	360	340	340	340	290	290	300
Turbidity	NV	NTU	6	70	-	48	30	>4000	-	1.5	330	<0.10	3	46
Uranium	0.01	mg/L	0.0047	0.0027	0.0023	0.0018	0.0017	0.016	0.0025	0.0022	0.0025	0.006	0.0015	0.0016
Zinc	0.03	mg/L	0.15	<0.003	0.01	<0.0030	0.0039	1.2	<0.0030	<0.0030	<0.0030	0.14	<0.0030	<0.0030
Total Coliforms	<1 (MAC) ³	MPN/100mL	<	10	-	-	-	120000	-	-		180	-	_
E.Coli	<1 (MAC) ³	MPN/100mL	<	10	-	-	-	100	-	-	-	63	-	-

* - Table 2, Alberta Tier 1 Groundwater Remediation Guidelines (2023) applied for Agricultural land use in coarse grained soils

NV = no value

1. Tier 1 guideline is the lowest of the aquatic life guideline and all other guidelines. Lead is based on the potable water pathway, as is sulphate in the absence of an assessment for the very high natural groundwater hardness. Cadmium and nickel guidelines are hardness dependent, aluminum is pH dependent and nitrite as N guideline is chloride dependent for the aquatic life pathway. Guidelines quoted are based on the lowest chronic guideline applied for the range of hardness, pH or chloride observed.

2. Guideline is for chromium (hexavalent) and used for screening purposes when not analyzed

3. No guideline value is provided in Alberta Tier 1 guidelines, so Canadian Drinking Water Guideline value has been included for comparison purposes. (MAC = Maximum Allowable Concentration)

Metal concentrations in groundwater are provided as dissolved metals unless otherwise indicated or by total metal concentrations being indicated in *italics*. A comparison between total and dissolved metals was undertaken on 4 July 2019 and therefore two columns of metal concentrations are shown.

BOLD RED – Exceeds guideline

Table A2
Paskapoo Formation Residential Well Groundwater Quality Results

Paskapoo Formation Residential Well Groundwater Quality Results Guideline WW1 WW2 WW3 WW4 WW4															
Parameter	Guideline	Units								WW3	T		1		
	(CDWQ)	00	29-Oct-14	4-Aug-15	29-Oct-14	4-Aug-15	10-Jul-19	16-Aug-22	29-Oct-14	4-Aug-15	16-Aug-22	30-Oct-14	4-Aug-15	5-Jul-19	16-Aug-22
Total Aluminum	2.9 (MAC) / 0.1 (OG)	mg/L	0.0068	0.011	<0.0050	<0.0050	0.006	<0.0030	0.0061	<0.0050	<0.0030	<0.0050	<0.0050	0.0041	<0.0030
Total Antimony	0.006 (MAC)	mg/L	0.00088	<0.00050	0.00059	<0.00050	<0.00060	<0.00060	<0.00050	<0.00050	<0.00060	<0.00050	<0.00050	<0.00060	<0.00060
Total Arsenic	0.01 (MAC)	mg/L	0.000126	0.000132	0.000165	0.000205	<0.00020	<0.00020	0.000143	0.000121	<0.00020	0.000192	0.000194	0.00032	<0.00020
Total Barium	2 (MAC)	mg/L	0.282	0.284	0.128	0.142	0.11	0.12	0.221	0.225	0.24	0.385	0.391	0.36	0.41
Bicarbonate (as HCO3)	NV	mg/L	366.6	359.6	380.6	375.1	350	370	391.6	377.7	380	371.8	365.2	340	360
Total Boron	5 (MAC)	mg/L	0.022	<0.020	0.032	<0.020	0.023	0.039	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020	<0.020
Total Cadmium	0.007 (MAC)	mg/L	0.000013	<0.000005	0.000016	0.000024	0.000029	<0.000020	0.00004	0.000024	<0.000020	0.000008	<0.000005	<0.000020	<0.000020
Dissolved Calcium	NV	mg/L	70.3	68.2	63.6	63.4	55	59	73.2	69.7	72	75.3	72	80	75
Chloride	<250 (AO)	mg/L	4.29	4.49	1.38	1.93	2	1.7	10.31	5.88	15	10.86	10.95	12	17
Total Chromium	0.05 (MAC)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0012	<0.0010
Total Copper	2 (MAC) / 1 (AO)	mg/L	0.0317	0.013	0.0022	0.0016	0.0045	0.012	0.125	0.0057	0.0035	0.0017	0.0018	0.034	0.0035
Total Iron	<0.3 (AO)	mg/L	0.015	0.014	0.018	0.04	<0.060	<0.060	<0.010	<0.010	<0.060	0.017	0.044	0.3	<0.060
Total Lead	0.005 (MAC)	mg/L	0.00127	0.00048	<0.00030	<0.00030	0.00054	0.0012	0.00302	<0.00030	<0.00020	<0.00030	<0.00030	0.011	0.00025
Total Mercury	0.001 (MAC)	mg/L	<0.00010	<0.00020	<0.00010	<0.00020	<0.0000020	-	<0.00010	<0.00020	-	<0.00010	<0.00020	<0.0000020	-
Dissolved Magnesium	NV	mg/L	35.1	31.8	37.3	35	30	32	39.9	35.5	37	35.2	31.5	35	33
Total Manganese	0.12 (MAC) / 0.02 (AO)	mg/L	<0.0010	<0.0010	0.004	0.0042	0.012	0.015	0.0014	<0.0010	<0.0040	<0.0010	<0.0010	<0.0040	<0.0040
Total Molybdenum	NV	mg/L	0.00148	0.00147	0.00222	0.00193	0.0014	0.0015	0.00113	0.00104	0.00081	0.00076	0.00066	0.00065	0.00063
Total Nickel	NV	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	0.0006	<0.00050	0.00174	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050	<0.00050
Nitrate-N	10 (MAC)	mg/L	1.67	1.658	0.78	1.054	0.37	0.54	1.87	1.889	1.9	3.02	3.314	3.2	3.4
Nitrite-N	1 (MAC)	mg/L	<0.05	<0.005	<0.05	<0.005	<0.010	0.012	<0.05	<0.005	<0.010	<0.05	<0.005	<0.010	<0.010
Dissolved Potassium	NV	mg/L	3.3	3.2	2.8	2.6	2	2.3	3.1	3	2.9	3.1	2.9	3	2.8
pH ²	7.0 -10.5		8.1	8	8	8.1	7.95	7.58	7.9	8	7.64	8	8	8.13	7.62
Total Selenium	0.05 (MAC)	mg/L	0.00084	<0.00060	0.00112	0.00105	0.00052	0.00037	0.0007	0.00085	0.00068	0.0018	0.00096	0.00093	0.00086
Total Silver	NV	mg/L	<0.000070	<0.00007	<0.00007	<0.00007	<0.00010	<0.00010	<0.00007	<0.00007	<0.00010	<0.00007	<0.00007	0.00012	<0.00010
Dissolved Sodium	<200 (AO)	mg/L	7.2	7	13.8	9.3	17	22	7.8	7.6	7	7.1	6.5	7.7	6.4
Sulphate	<500 (AO)	mg/L	6.95	7.51	15.82	12.85	20	21	10.33	11.09	9.7	7.66	6.77	5.9	5.9
Total Thallium	NV	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Total Dissolved Solids (calculated) ³	<500 (AO)	mg/L	318	310	328	317	300	320	349	330	340	339	328	330	330
Turbidity	1 (OG)	NTU	0.2	0.31	0.2	1.23	0.31	-	0.2	0.25	-	0.6	0.23	0.66	-
Total Uranium	0.02 (MAC)	mg/L	0.001299	0.001241	0.001023	0.001214	0.00091	0.00064	0.001744	0.001688	0.0016	0.001785	0.001672	0.0021	0.0017
Total Zinc	<5 (AO)	mg/L	<0.020	<0.020	0.024	<0.020	0.046	0.013	0.205	<0.020	0.0046	0.029	0.031	0.99	0.028
Total Coliforms	<1 (MAC)	MPN/100 mL	-	<1	-	<1	1	-	-	<1	-	-	<1	11	-
E.Coli	<1 (MAC)	MPN/100 mL	-	<1	-	<1	<1	-	-	<1	-	-	<1	<1	-

NV = no value

OG = Operational Guidance

AO = Aesthetic Objective

MAC = Maximum Allowable Concentration

Canadian Drinking Water Quality CDWQ Guidelines: September 2019

2. pH Objective (CDWQ): 7.0 - 10.5

3. Calculated result only includes measured parameters. Actual TDS may be higher.

BOLD RED – Exceeds guideline

SLR 4 of 5

Table A3
Big Hill Springs Water Quality Results

	, 	Inigo Wat	er Quality Results	•	BHS1		
Parameter	Guideline (Alberta EQG for Surface Water)	Units	30-Oct-14	4-Aug-15	10-Jul-19	15-Dec-22	19-Apr-23
Hardness (as CaCO3)	NV	mg/L	336	317	200	330	310
Total Aluminum ¹	0.05	mg/L	0.0182	0.0144	0.3	-	-
Total Antimony	NV	mg/L	<0.00050	<0.00050	<0.00060	-	-
Total Arsenic	0.005	mg/L	0.000153	0.000146	0.00061	-	-
Total Barium	NV	mg/L	0.304	0.313	0.21	-	-
Bicarbonate (as HCO3)	NV	mg/L	376.1	371	240	360	390
Total Boron ²	1.5	mg/L	0.024	<0.020	<0.020	-	-
Total Cadmium ³	0.00037	mg/L	0.000032	0.000008	0.000034	-	-
Dissolved Calcium	NV	mg/L	74.1	72	48	75	70
Chloride⁴	120	mg/L	9.6	10.12	8.2	16	13
Total Chromium ⁵	0.001	mg/L	<0.0010	<0.0010	0.001	-	-
Total Copper ⁶	0.007	mg/L	<0.0010	0.001	0.0013	-	-
Total Iron	0.3	mg/L	0.027	0.019	0.25	-	-
Total Lead ⁷	0.007	mg/L	<0.00030	<0.00030	<0.00020	-	-
Total Mercury	0.000005	mg/L	<0.00010	<0.00020	0.0000025	-	-
Dissolved Magnesium	NV	mg/L	36.7	33.3	20	36	33
Total Manganese	NV	mg/L	0.0019	0.0012	<0.0040	-	-
Total Molybdenum	0.073	mg/L	0.00141	0.00089	0.00038	-	-
Total Nickel ⁸	0.13	mg/L	<0.00050	<0.00050	0.00088	-	-
Nitrate-N ⁹	3	mg/L	2.83	3.037	1.4	2.7	2.9
Nitrite-N ¹⁰	0.1	mg/L	<0.05	<0.005	<0.010	<0.010	<0.010
Dissolved Potassium	NV	mg/L	3.4	3.3	4.8	3.0	2.8
pН	6.5-9		8.2	8.2	8.07	8.37	8.21
Total Selenium ¹¹	0.001	mg/L	0.00218	0.0013	0.00068	-	-
Total Silver	0.00025	mg/L	<0.000070	<0.000070	<0.00010	-	-
Dissolved Sodium	NV	mg/L	7.8	7.5	5	7.6	7.4
Sulphate ¹²	500	mg/L	9.36	8.36	4.7	8.8	7.2
Total Thallium	0.0008	mg/L	<0.00020	<0.00020	<0.00020	-	-
Total Dissolved Solids (calculated) ¹³	NV	mg/L	342	334	210	340	340
Turbidity ¹⁴	7.1	NTU	0.8	1.07	5.1	1.7	0.19
Total Uranium ¹⁵	0.015	mg/L	0.001953	0.001875	0.0013	-	-
Total Zinc	0.03	mg/L	<0.020	<0.020	<0.0030	-	-
Total Coliforms	NV	MPN	-	2420	>2400	-	-
E.Coli	NV	MPN	-	1733	1600	-	-

NV = no value

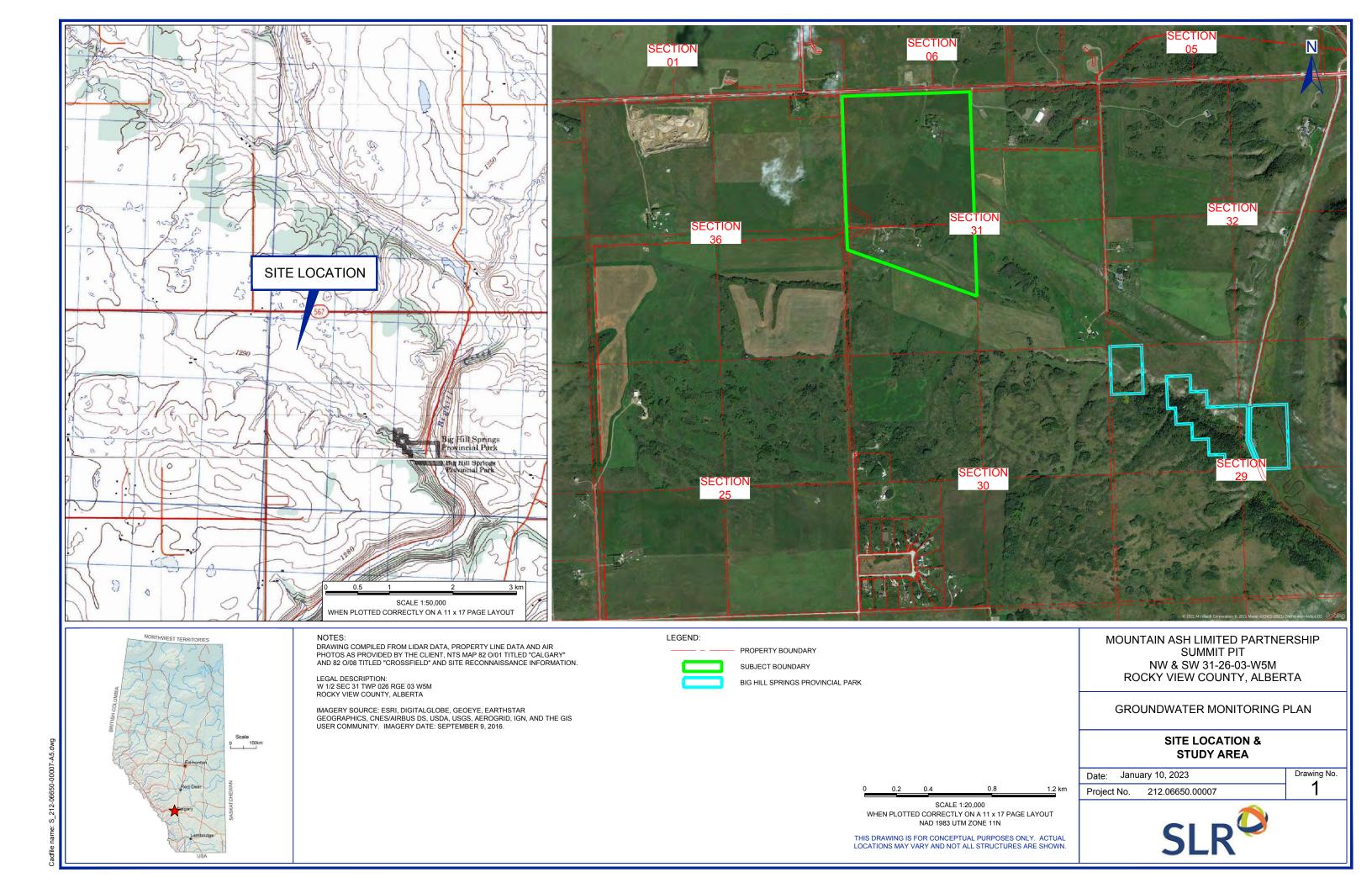
Environmental Quality Guidelines for Alberta Surface Waters, March 2018

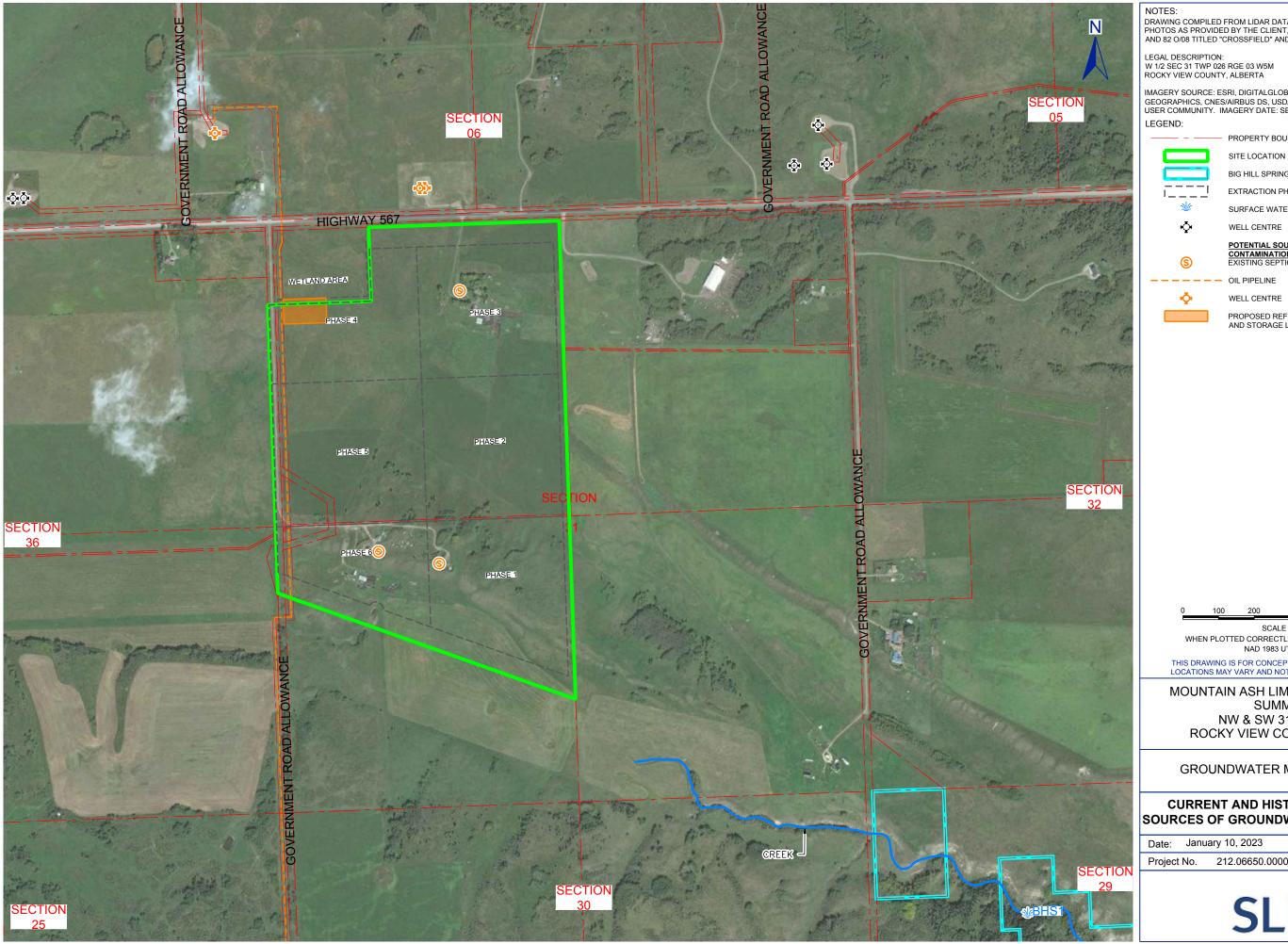
- 1. Aluminum Guideline value is for long term exposure. (Protection of Freshwater Aquatic Life): if pH >= 6.5 then 0.05 mg/L, else if pH <
- 6.5 then use equation
- 2. Boron Guideline value is for long term exposure. Short term exposure value is 29 mg/L $\,$
- 3. Cadmium Guideline value varies with hardness. Based on a typical hardness of 300 to 340 mg/L
- 4. Chloride Guideline value is for long term exposure. Short term exposure value is 640 mg/L $\,$
- 5. Chromium Guideline value is for hexavalent chromium as conservative value. Trivalent chromium guideline is 0.0089 mg/L.
- 6. Copper Guideline is for long term exposure and only applies to waters of hardness >= 50mg/L as CaCO₃
- 7. Lead Guideline varies with hardness. Based on a typical hardness of 300 to 340 $\mbox{mg/L}$
- 8. Nickel Guideline varies with hardness. Based on a typical hardness of 300 to 340 mg/L $\,$
- 9. Nitrate Guideline value is for long term exposure.. Short Term exposure value is 124 for Freshwater
- 10. Nitrite as N guideline varies with chloride. Based on a typical chloride concentration of 8 to 10 mg/L $\,$
- 11. Alert concentration for sensitive environments = 0.001 mg/L. Guideline value = 0.002 mg/L
- 12. Sulphate Guideline value varies with hardness. Based on a typical hardness of 300 to 340 mg/L
- 13. Calculated result only includes measured parameters. Actual TDS may be higher.14. Maximum increase of 8 NTU from background for short term. Maximum average increase of 2 NTU from background for longer term exposures.
- 15. Uranium Guideline value is for long term exposure. Short term exposure value is 0.033 mg/L

BOLD RED – Indicates Exceeds guideline

Figures

Groundwater Monitoring Plan


Summit Pit Project


Mountain Ash Limited Partnership

SLR Project No. 212.06650.00007

May 11, 2023

DRAWING COMPILED FROM LIDAR DATA, PROPERTY LINE DATA AND AIR PHOTOS AS PROVIDED BY THE CLIENT, NTS MAP 82 O/01 TITLED "CALGARY" AND 82 O/08 TITLED "CROSSFIELD" AND SITE RECONNAISSANCE INFORMATION.

IMAGERY SOURCE: ESRI, DIGITALGLOBE, GEOEYE, EARTHSTAR GEOGRAPHICS, CNES/AIRBUS DS, USDA, USGS, AEROGRID, IGN, AND THE GIS USER COMMUNITY. IMAGERY DATE: SEPTEMBER 9, 2016.

PROPERTY BOUNDARY

BIG HILL SPRINGS PROVINCIAL PARK BOUNDARY

EXTRACTION PHASE BOUNDARIES

SURFACE WATER MONITORING POINT

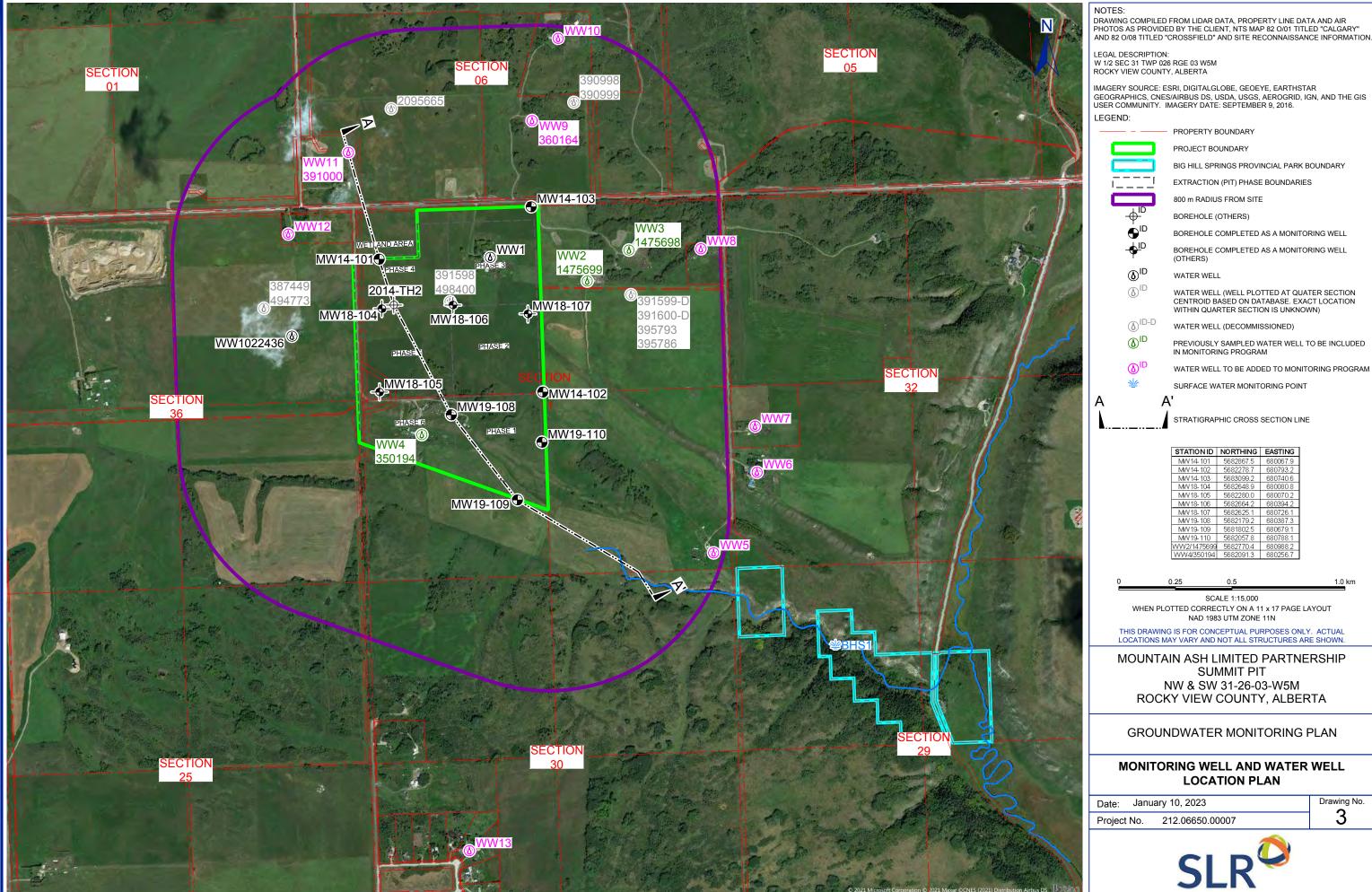
POTENTIAL SOURCES OF GROUNDWATER CONTAMINATION EXISTING SEPTIC TANK

WELL CENTRE

PROPOSED REFUELLING, EQUIPMENT MAINTENANCE AND STORAGE LOCATION

SCALE 1:10,000 WHEN PLOTTED CORRECTLY ON A 11 x 17 PAGE LAYOUT NAD 1983 UTM ZONE 11N

THIS DRAWING IS FOR CONCEPTUAL PURPOSES ONLY. ACTUAL LOCATIONS MAY VARY AND NOT ALL STRUCTURES ARE SHOWN.


MOUNTAIN ASH LIMITED PARTNERSHIP SUMMIT PIT NW & SW 31-26-03-W5M ROCKY VIEW COUNTY, ALBERTA

GROUNDWATER MONITORING PLAN

CURRENT AND HISTORICAL POTENTIAL SOURCES OF GROUNDWATER CONTAMINATION

212.06650.00007

PHOTOS AS PROVIDED BY THE CLIENT, NTS MAP 82 O/01 TITLED "CALGARY" AND 82 O/08 TITLED "CROSSFIELD" AND SITE RECONNAISSANCE INFORMATION.

IMAGERY SOURCE: ESRI, DIGITALGLOBE, GEOEYE, EARTHSTAR GEOGRAPHICS, CNES/AIRBUS DS, USDA, USGS, AEROGRID, IGN, AND THE GIS

BOREHOLE COMPLETED AS A MONITORING WELL

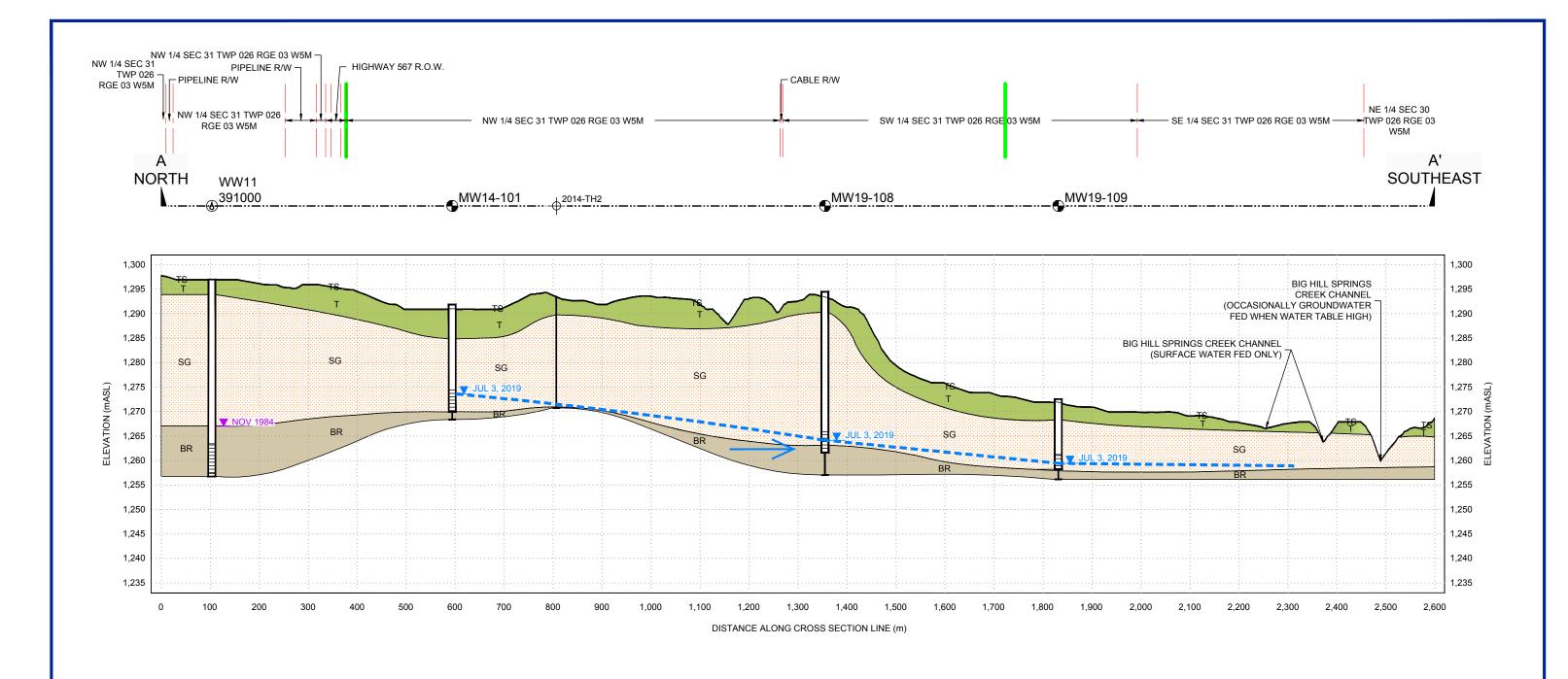
BOREHOLE COMPLETED AS A MONITORING WELL

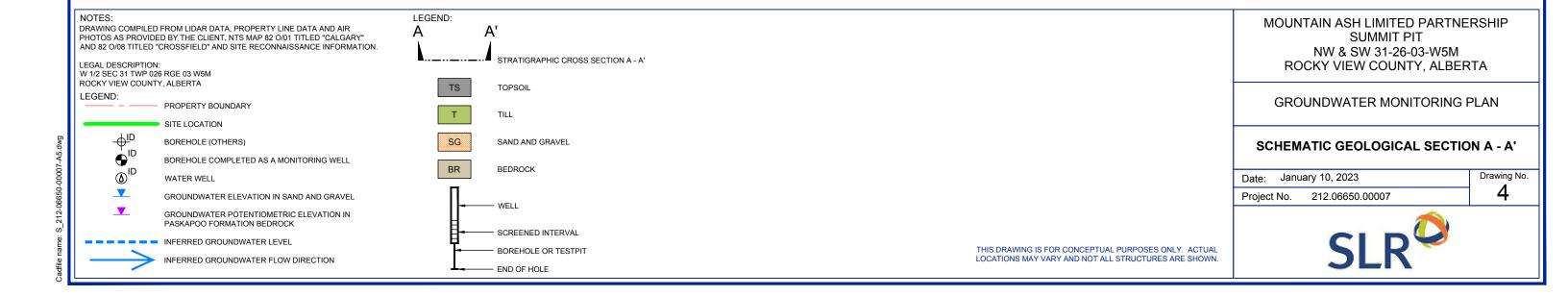
WATER WELL (WELL PLOTTED AT QUATER SECTION CENTROID BASED ON DATABASE. EXACT LOCATION

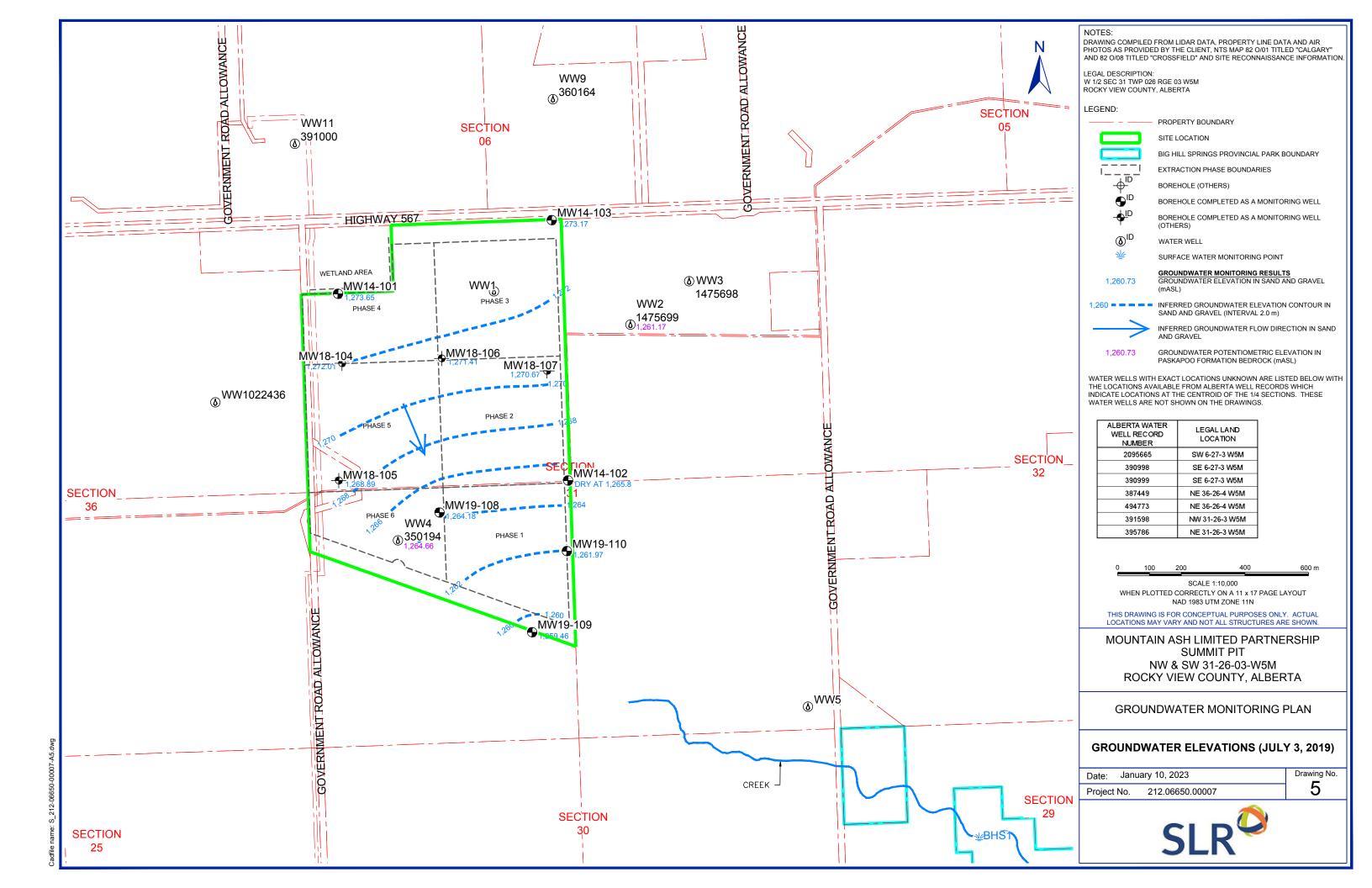
SURFACE WATER MONITORING POINT

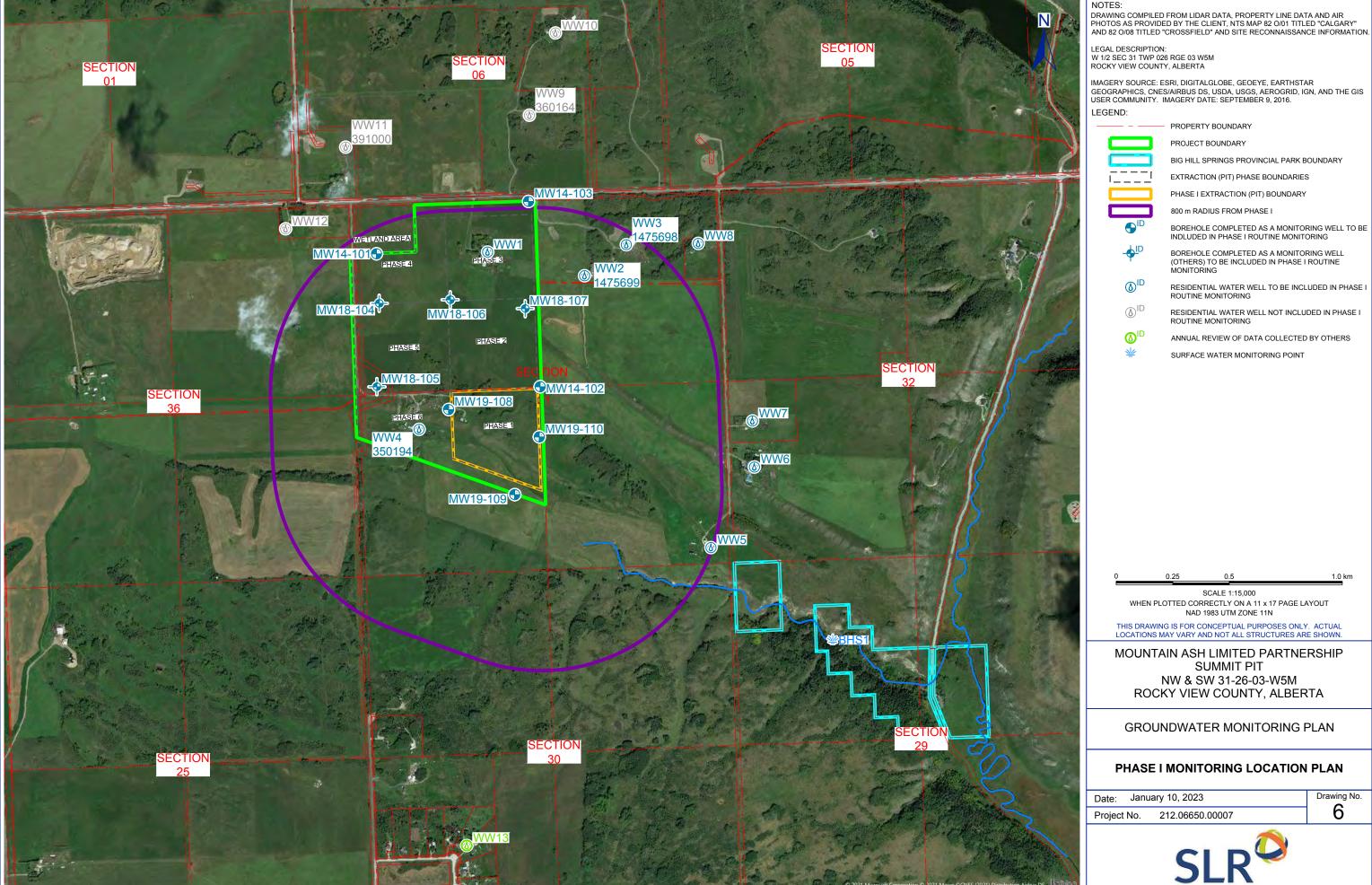
STATION ID | NORTHING | EASTING MW14-101 5682867.5 680067.9 MW14-102 5682278.7 680793.2

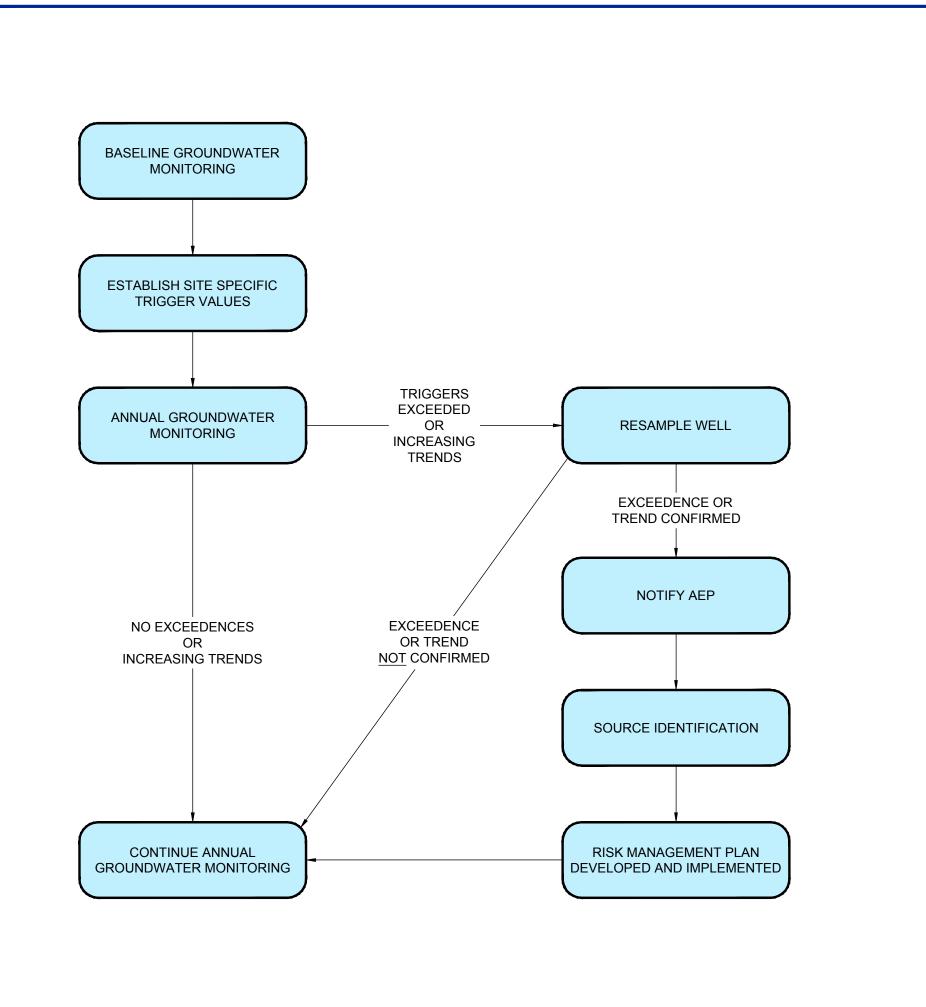
WHEN PLOTTED CORRECTLY ON A 11 x 17 PAGE LAYOUT NAD 1983 UTM ZONE 11N


MOUNTAIN ASH LIMITED PARTNERSHIP NW & SW 31-26-03-W5M ROCKY VIEW COUNTY, ALBERTA


GROUNDWATER MONITORING PLAN


MONITORING WELL AND WATER WELL


1.0 km


RESIDENTIAL WATER WELL NOT INCLUDED IN PHASE I

ANNUAL REVIEW OF DATA COLLECTED BY OTHERS

WHEN PLOTTED CORRECTLY ON A 11 x 17 PAGE LAYOUT

MOUNTAIN ASH LIMITED PARTNERSHIP

1.0 km

NO

DRAWING COMPILED FROM LIDAR DATA, PROPERTY LINE DATA AND AIR PHOTOS AS PROVIDED BY THE CLIENT, NTS MAP 82 O/01 TITLED "CALGARY" AND 82 O/08 TITLED "CROSSFIELD" AND SITE RECONNAISSANCE INFORMATION.

LEGAL DESCRIPTION: W 1/2 SEC 31 TWP 026 RGE 03 W5M ROCKY VIEW COUNTY, ALBERTA

THIS DRAWING IS FOR CONCEPTUAL PURPOSES ONLY. ACTUAL LOCATIONS MAY VARY AND NOT ALL STRUCTURES ARE SHOWN.

MOUNTAIN ASH LIMITED PARTNERSHIP SUMMIT PIT NW & SW 31-26-03-W5M ROCKY VIEW COUNTY, ALBERTA

GROUNDWATER MONITORING PLAN

GROUNDWATER RESPONSE PLAN

Date: January 10, 2023

Project No. 212.06650.00007

7

I D

Appendix A Monitoring Well Construction Logs

Groundwater Monitoring Plan

Summit Pit Project

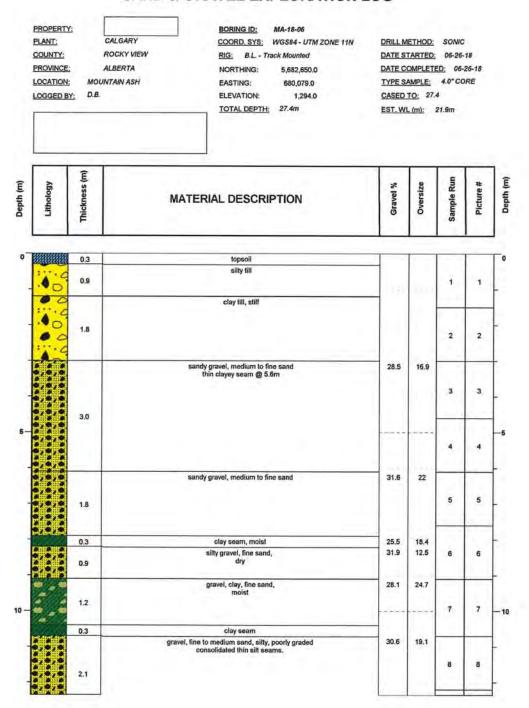
Mountain Ash Limited Partnership

SLR Project No. 212.06650.00007

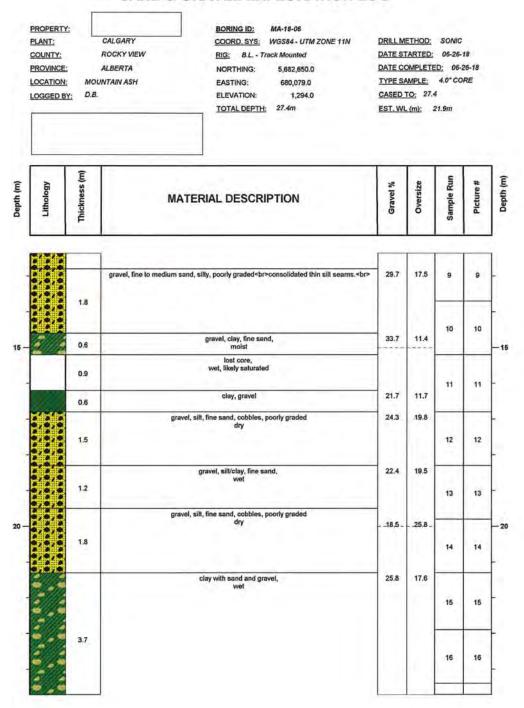
May 11, 2023

	~			CLIENT: Summit Aggregates Resource	D(BOREHOLE LOG						
	SI	_R		PROJECT: Hydrogeological Assessment NW 31-026-3 W5M Alberta	BOREHOLE NO:	MW14	4-1	0 TM COORDIN 568286	69			
SLR	CONSULTII	NG (C	ANADA) L		SURFACE ELEVATION:	1293.53 n		680066	6.4			
	1				TEST DATA	z	딥					
SAMPLE TYPE	□	ery	ᆔ		1201 BATA	WELL	WATER LEVEL					
, E	SAMPLE ID	Recovery	SOIL TYPE	SOIL DESCRIPTION	■SPT Count	. PLE	I H	WELL COMPLETION				
SAMPLE T	AMI	% Re	0		◆ % Moisture	/ELI	/ATI	NOTES				
1 –	Ŋ	1%	Ö			≥ Ō	\$		+			
·									+			
+								stickup, above ground steel	ŀ			
1								ground steel protector	-			
o-			12. 18. 12.	Ground Surface TOPSOIL			4		╁			
				Clay, some silt, occasional gravel, rootlets, brown, moist,	soft /		Ž		F			
				\to firm	0.0		Ž	backfilled with drill	-			
				CLAY TILL Sandy, gravelly (fine to coarse grained) clay, light brown,	dny		Ĭ	cuttings	t			
1 -	WP1			very hard	۵۰y,		Ž		F			
	VVFI		$ \downarrow $	•			Ŋ		+			
						7-7)			ŀ			
- 2-					L	[-			
									ŀ			
	•								ŀ			
]									-			
3-									f			
1												
-									ŀ			
									t			
1-					F				-			
-									-			
+									ŀ			
5-					L				-			
+									-			
1									ŀ			
-									+			
6-			ЩЩ	CAND AND ODAVE		· 			t			
				SAND AND GRAVEL Fine to medium grained sand, fine to coarse grained grav	6.1 el.				-			
-	WP2			well graded, light brown to orangey brown, dry, compact v	vith				ŀ			
7-				occasional hard, calcified bands	L							
7									ŀ			
+									ļ			
1									-			
3-						:			f			
1									F			
]								hydrated bentonite	,			
+								chips	İ			
9-									-			
+									1			
1									ŀ			
0-									+			
+									-			
1									ŀ			
1									-			
						·			F			
-									-			
+									ŀ			
2						▗▗▗▐▋▐			-			
-									-			
+									ļ			
]									-			
DRI	LLING ME	THO	D:	Becker Hammer Notes:■■ GRA	B SAMPLE			1	_			

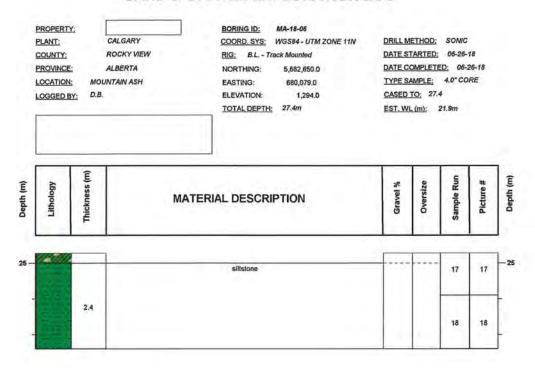
3- 4- 5- WP3 6- 8-	CLIENT: Summit Aggregates Resource PROJECT: Hydrogeological Assessment	BC	DREHOL	LE LOG			
SAMPLE ID SAMPLE	NW 31-026-3 W5M Alberta	BOREHOLE NO:	MW14-101 COORDINAT 5682869 I				
WP3 6- WP4 1- WP5	ING (CANADA) LTD. PROJECT No. 203.50065.00001	SURFACE ELEVATION: TEST DATA	1293.53 m	680066.4			
WP3 6	SOIL DESCRIPTION SOIL DESCRIPTION	■SPT Count ◆ % Moisture	WELL	WATER LEVEL COMPLETION NOTES			
9- 	with occasional hard bands Below 15.2 m: Occasional cobbles Below 16.8 m: Wet			50 mm solid PVC - pipe			
WP5				50 mm 010 slot PVC pipe			
0.00	SANDSTONE 21.03 Fine grained, brown, grey, wet, weak Below 21.6 m: Weathered, clayey, silty, soft		· — — -	bentonite chips			
	End of borehole at 22.3 m Well Completion Details: Screened interval from 16.5 m to 21.0 m below surface Elevation at top of pipe (TOP) = 1294.240 m Groundwater Information: Depth to groundwater from TOP = 17.11 m (2Oct2014)						
DRILLING METHOD:	ETHOD: Becker Hammer Notes: GRAB SAMP	PLE					

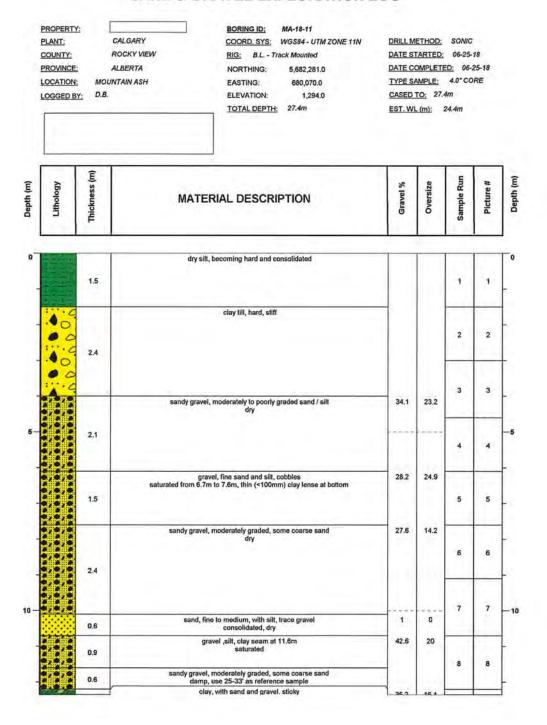

		C :			CLIENT: Summit Aggregates Resource		BOREHOLE LOG							
		SL	R		PROJECT: Hydrogeological Assessment NW 31-026-3 W5M Alberta	BOREHOLE NO	. MV	V14	1 -1	102 TM COORDIN 56822	1A1 80			
_ ;	SLR (CONSULTIN	G (CA	ANADA) L		SURFACE ELEVATIO				680791				
						TEST DATA		ž	Ē		T			
Ē)	SAMPLE TYPE	Q	Recovery) PE	0011			ETIC	WATER LEVEL) A/F1 :				
_	1PLE	SAMPLE ID	900	SOIL TYPE	SOIL DESCRIPTION	■SPT Coun		.L APLE	FER	WELL COMPLETION				
DEPIH (m)	SAN	SAN	% R			◆ % Moistur	е	WELL COMPLETION	WAT	NOTES				
1-	Ė										Ŧ			
								ΙПΙ		stickup, above	ŀ			
-								Ш		ground steel	F			
- -0					Ground Surface			ЦL		protector	ᅪ			
-				711	TOPSOIL					silica sand	Ĺ			
-					CLAY TILL	0.3/				Simod Saina	+			
-					Silty, sandy clay, some gravel, brown, moist, very hard						ļ			
1-											ŀ			
-				$ \phi $							-			
-											-			
2-		WP7									ļ			
-		VVP/								hydrated bentonite chips	·			
-											ļ			
ე. -						L					-			
3-											ŀ			
-											-			
-											E			
4-					SAND	3.96					-			
-		WP8			Medium to coarse grained, well graded, gravelly (fine t coarse, rounded), occasional cobble, brown, moist	0	}	IONANANANANANANANANANANANANANANANANANANA			-			
4				ممر	GRAVEL AND SAND	4.57	Ž	2 2			-			
- -5				600	Well graded, fine to coarse gravel and well graded, fin	e to		2 2			ŀ			
-				000	coarse sand, occasional cobble, rounded, moist		Š							
		WP9		600			Š		2		ŀ			
-							Ď				F			
6- -							- — — - 1				ŀ			
-				2-1	SAND AND GRAVEL	6.4				backfilled with drill	ŀ			
-					Fine grained, trace medium, trace coarse sand. Fine to) 0.4				cuttings	ŀ			
7-		WP10			coarse, rounded gravel, red, moist			A A			F			
							Í				ŀ			
-					From 7.6 to 7.9 m: Rounded, medium to coarse gravel	sandy	Ŕ				F			
- -8					dry	, sandy, 	\$				-			
-											ŀ			
-											-			
-							5	TRANSKANSKANSKANS TRANSKANSKANSKANSK			F			
9-							₇	8 6	į		ŀ			
-										hydrated bentonite chips	F			
-							ļ			560	ŀ			
0-										50 mm solid PVC pipe	F			
-										Pipo	ŀ			
-							ļ	H			F			
- - 1					GRAVEL Poorly graded, medium, rounded, sandy, trace silt, trace	10.7 ce clav ———————					-			
-		WP11		60	coating on gravel, black and dark brown staining		ŀ				F			
					Below 11.3 m: Fine to coarse grained gravel, rounded, fine, dark brown, moist	sandy,					+			
-				P0 01	mo, dan brown, most			目			F			
2-		WP12		%0 C				H			+			
-										F0 010 1 :	ŀ			
-				700			-	$\ \cdot\ $		50 mm 010 slot PVC pipe	-			
	DRII	LLING MET	LHOL): D:	Becker Hammer Notes: G	RAB SAMPLE		. • Д. •		1	上			
					140103.	· • · · · · · · • • · · · · · · · · · ·								
	חחו	LL DATE:	1 (October :	2014 LOGGED BY: MH					et 1 of 2				

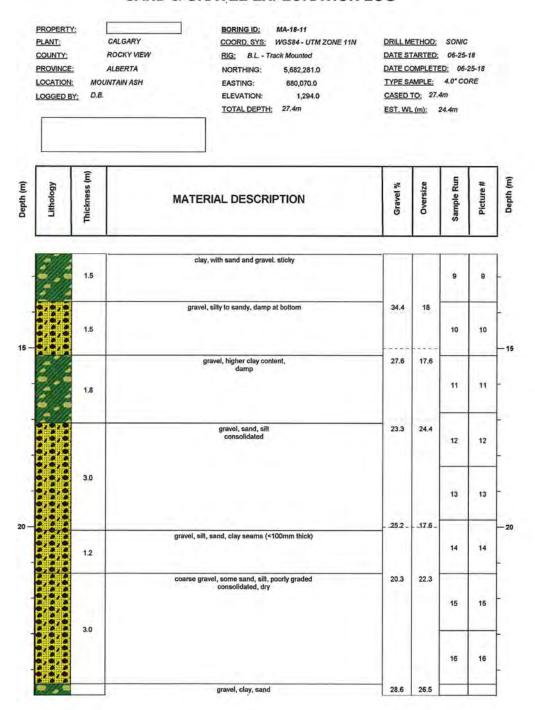
	SL	R			PROJECT: Hydrogeological NW 31-026-3 W5	M Alberta	BOREHOLE NO:	M۷	N14	4-1	LOG 02 ^{TM COORDIN} 56822	
SAMPLE TYPE	NITLU RANDE ID	% Recovery	SOIL TYPE QUA	TD.	PROJECT No. 203.50065.00001 SOIL DESCRIPTION		SURFACE ELEVATION: TEST DATA SPT Count	1283	WELL COMPLETION	WATER LEVEL	680791 WELL COMPLETION	1.6
SAN	SAM	% R		GR	AVEL AND SAND	12.8			WEL CON	WAT	NOTES	i
- - - - 4	WP13			Fine med	e to medium, trace coarse, round dium, trace coarse sand, occasion ow 13.7 m: Increasing cobble	ed gravel. Fine, trace						-1
5-				SAN	NDSTONE	14.93						
	WP14 WP15			We	ak, fine grained, silty, dry m 15.5 to 15.8 m: Higher clay and						silica sand	-
6-	0				coming more competent below 15						bentonite chips	- - -
+			0000	End	of borehole at 16.5 m	16.5						✝
					vation at top of pipe (TOP) = 128							
DRILI	LING MET	ГНОЕ):	Becker	Hammer	Notes:■■ GRAB SAI	MPLE					


CI				CLIENT: Summit Aggregates Resource PROJECT: Hydrogeological Assessment	D(OREHO		L LITM COODDIN	<u> </u>	
		SL	K		NW 31-026-3 W5M Alberta	BOREHOLE NO:			103 ^{TM COORDIN} 568310	
		ONSULTIN	G (CA	NADA) L	TD. PROJECT No. 203.50065.00001	SURFACE ELEVATION:	1299.81 n	1	6807	739
	SAMPLE TYPE	₽	ery	, щ		TEST DATA		WATER LEVEL		
	PLE	PLE	Recovery	₹	SOIL DESCRIPTION	■SPT Count		ER L	WELL COMPLETION	
	SAM	SAMPLE ID	% Re	SOIL TYPE		◆ % Moisture	WELL	WAT	NOTES	
Ŧ										ŧ
									stickup, above ground steel	ŀ
]					Ground Surface				protector	F
+				7118 71	TOPSOIL Silty and clay, trace sand, rootlets, dark brown, moist				silica sand	Ŧ
1				1/ <u>1/ 1/</u>					Silica Saria	ŀ
1				 	CLAY TILL 0.61 Silty, sandy clay, trace rounded gravel, grey, moist, very hard,					ŀ
-					softer below 2.4 m					ŀ
1										ļ
2-										ŀ
1										-
1									hydrated bentonite chips	•
3-		WP16								-
1										-
1										-
-							- — - ·			-
+										-
-				 				Ž Ž		ŀ
;- 								Ž		-
1								Š		-
										ŀ
5-				• -				g V		F
1					Below 6.4 m: Brown		K-71 K-2	n		ŀ
,								Ž		-
1					SAND AND GRAVEL 7.01 Very fine, trace coarse sand. Medium to coarse grained,			Š		ŀ
-					rounded gravel. Some silt, red/brown, dry			Š		ŀ
3-							6	N N		-
1								3		-
1				000	GRAVEL AND SAND 8.53 Fine to medium, (trace coarse) gravel. Poorly graded, very			Ž		ŀ
9-				00	fine sand, brown, moist	<u></u>		Ž		-
-				.0°				Š		F
1								2		ŀ
) — -								Ž		-
		WP17		00				Ď Ž		-
1					Below 10.7 m: Increasing gravel			8		ŀ
-				°0 (3		F
1								Š		
2								Ž		-
1				0.0				N N		-
+								Š		
	 ∣ RILI	LING MET		7	Becker Hammer Notes:■■ GRAB SAM	l IPLE				_

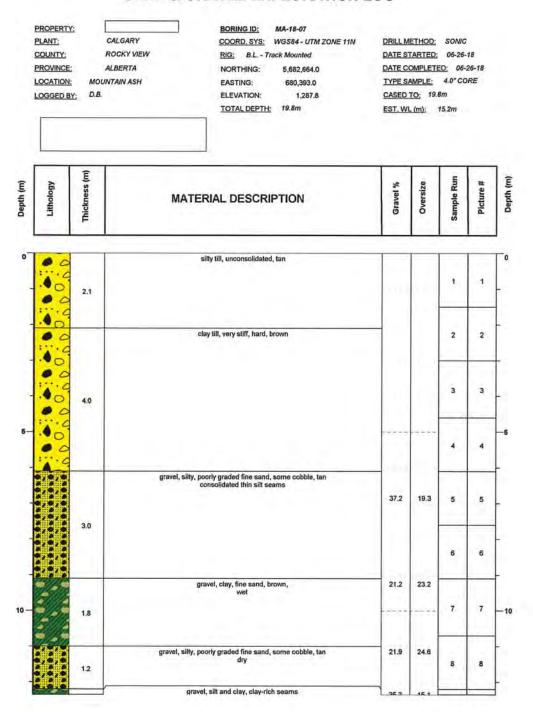
		CI			CLIENT: Summit Aggregates Resource PROJECT: Hydrogeological Assessment	В	JKE	HÜ	LE	E LOG	ידעו
SI	ВС	5L CONSULTIN	G (C	ANADA) I	NW 31-026-3 W5M Alberta	BOREHOLE NO: SURFACE ELEVATION:		V 1 4 9.81 n		103 TM COORDIN 56831 6807	
						TEST DATA			_		T
- 1	SAMPLE TYPE	SAMPLEID	% Recovery	SOIL TYPE	SOIL DESCRIPTION	■SPT Count ◆ % Moisture		WELL COMPLETION	WATER LEVEL	WELL COMPLETION NOTES	
3-					Below 12.8 m: Increasing gravel, some cobble					50 mm solid PVC pipe	-
5-					Below 14.0 m: Decreasing gravel, no cobble						
6-											-
7-					Below 16.8 m: Decreasing gravel						-
8-											-
9-		WP18			SAND AND GRAVEL Poorly graded, very fine sand. Medium with trace fine and trace coarse gravel. Occasional cobble, red/brown, moist						-
10-					nace coarse graves. Cookasional cossile, reductionin, moist						
11 -					Below 21.3 m: Increasing gravel						-
3-											-
44-					Below 23.2 m: 0.08 m clay lens				▼	GW = 23.49 mbg (2Oct2014)	-
25-										50 mm 010 slot PVC pipe	-
6-		WP19			Below 25.3 m: Wet gravel, very angular						
- - D	RIL	LING MET	ГНОІ	D:	Becker Hammer Notes:■■ GRAB SAM	 					-
		LING MET				 PLE					上

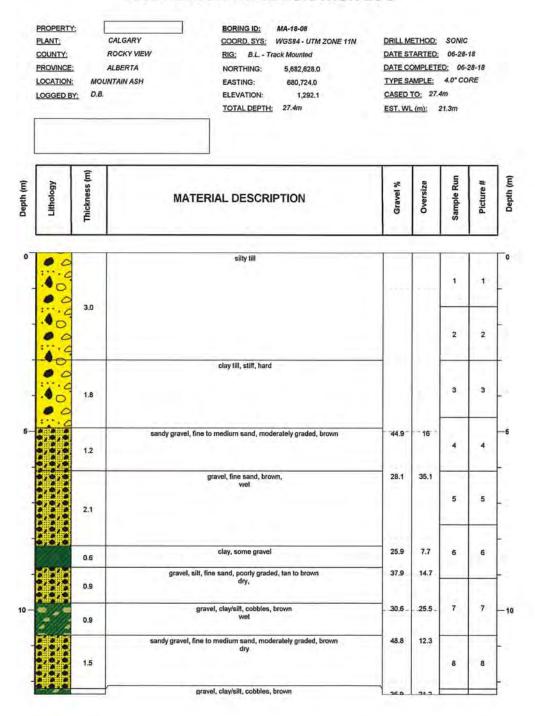

					CLIENT: Summit Aggregates Resource		BC	DRE	HO	LE	LOG
SL	R C	SL ONSULTING	R G (CA	NADA) L	PROJECT: Hydrogeological Assessment NW 31-026-3 W5M Alberta PROJECT No. 203.50065.00001		BOREHOLE NO: SURFACE ELEVATION:		V14 .81 m		03 COORDINA 568310 68073
ļ	PE						TEST DATA		N	Æ	
	<u> </u>		very	/PE	COIL DESCRIPTION		■CDT Count		ĒŢ	E	WELL
	SAMPLE TYPE	SAMPLE ID	% Recovery	SOIL TYPE	SOIL DESCRIPTION		■SPT Count ◆ % Moisture		WELL	WATER LEVEL	WELL COMPLETION NOTES
-									Ш		silica sand
		WP20 WP21		× × ×	WEATHERED SILTSTONE	27.4					hydrated bentonite chips
T		*** 2			Clay and silt, some sand, grey with red striations, moi Below 27.7 m: Siltstone, grey, dry	st 27.7∫					V. III
					End of borehole at 27.7 m	,					
					Well Completion Details: Screened interval from 22.6 m to 27.1 m below surface Elevation at top of pipe (TOP) = 1300.720 m	ce					
					Groundwater Information: Depth to groundwater from TOP = 24.40 m (2Oct201)	4)					
D	RILI	LING MET	HOE):	Becker Hammer Notes:	GRAB SAM	PLE				
D	RILL	L DATE:	1 (October	2014 LOGGED BY: MH				5	She	et 3 of 3

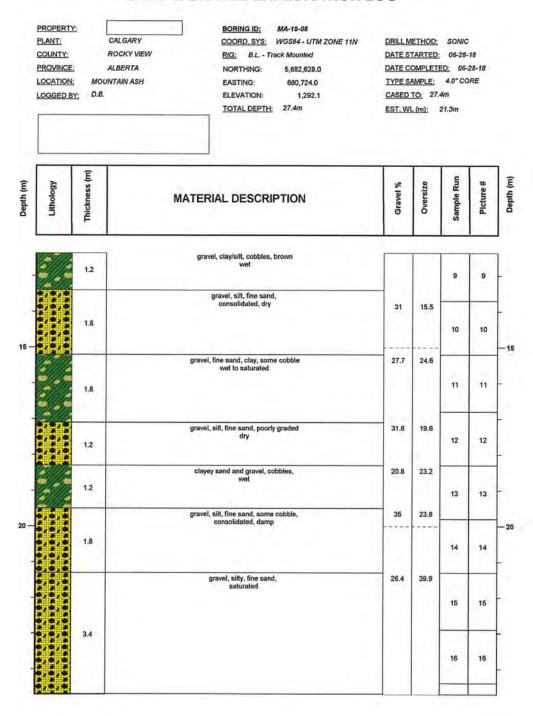

2 OF 3

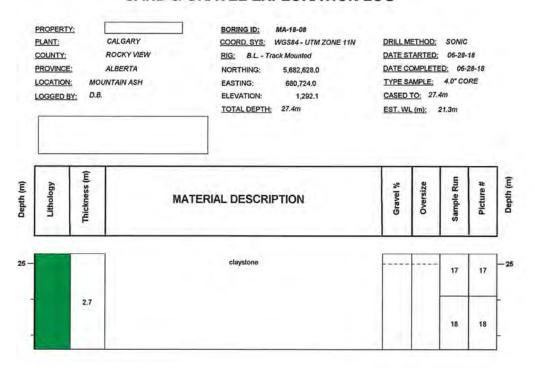


3 OF 3


1 OF 3


3 OF 3


	PROPERTY PLANT: COUNTY: PROVINCE: LOCATION: LOGGED B	: MOUI	CALGARY ROCKY VIEW ALBERTA NTAIN ASH	BORING ID: MA-18-11 COORD. SYS: WGS84 - UTM ZONE 118 RIG: B.L Track Mounted NORTHING: 5,682,281.0 EASTING: 680,070.0 ELEVATION: 1,294.0 TOTAL DEPTH: 27.4m	DATE S DATE C TYPE S CASED	ETHOD: TARTED: OMPLETI AMPLE: TO: 27.	06-25- D: 06- 4.0° CC	-18 -25-18	
(m) indag	Lithology	Thickness (m)	МА	TERIAL DESCRIPTION	Gravel %	Oversize	Sample Run	Picture #	Depth (m)
5 —		1.2		wet			17	17	-25
		1.8		siltstone			18	18	-


2 OF 2

	PROPERTY PLANT: COUNTY: PROVINCE: LOCATION: LOGGED BY	Moul	CALGARY ROCKY VIEW ALBERTA VITAIN ASH	BORING ID: MA-18-07 COORD. SYS: WG584 - UTM ZONE 11N RIG: B.L Track Mounted NORTHING: 5,682,664.0 EASTING: 680,393.0 ELEVATION: 1,267.8 TOTAL DEPTH: 19.8m	DATE S' DATE CO TYPE S CASED	ETHOD: TARTED: OMPLETI AMPLE: TO: 19:	06-26- ED: 06- 4.0° CC	18 26-18	
Depth (m)	Lithology	Thickness (m)	MATE	ERIAL DESCRIPTION	Gravel %	Oversize	Sample Run	Picture #	Depth (m)
		1.5	gra	vel, silt and clay, clay-rich seams wet			9	9	
15 -		1.5	gravel, silty, poorly graddry,	ed fine sand, some cobble - increasing with depth, tan getting wet near the bottom of run	30.3	24.1	10	10	-16
		3.0	medit	gravel, silt and clay, fine sand, im sand seam (>150mm) @ 16.5m wel	11.7	47.3	11	11	-
	0,0,0			siltstone			12	12	
		0.6		sand and gravel, wet				40	
	0,0,0	0.6					13	13	
	Sec. 19	0.3		siltstone / claystone				-	1

3 OF 3

	SI	P		CLIENT: Mountain Ash Limited Partnership PROJECT: Proposed Summit Pit		OREH NANA	<u>10</u> /1() <u>LE</u> 0_1	LOG 08 ^{UTM COORDIN} 6803	JA.
SLR	CONSULTIN	G (CAN	ADA) LTD	NW 31-026-03 W5M Cochrane, AB PROJECT No. 212.06650.00003	BOREHOLE NO: SURFACE ELEVATION:	1293.6			5682	
					TEST DATA			Æ		
DEPTH (m) SAMPLE TYPE	SAMPLE ID	Recovery	TYPE	SOIL DESCRIPTION	■ SPT Count		WELL COMPLETION	WATER LEVEL	WELL	
DEPTH (m) SAMPLE T	MPL	Rec	SOIL T	GOL BEGORII TION	◆ % Moisture		ELL MPI	ATE	COMPLETION NOTES	
3 8	Š	%	S		// Worker	1	≶ຽ	🔰		_
]										-
-									above ground steel	
-									protector	
0-				Ground Surface CLAY TILL						+
1				Fine trace gravel, dark grey brown, minor sample recovery, dry						-
-										
1-										
-										
				@ 1.5 m: Some fine to coarse gravel						
-				@ 1.5 m. Some line to coarse graver					hydrated bentonite chips	
2-					 				chips	
]										
3-										
-										
-				SAND AND GRAVEL 3.35						
1				Fine to coarse sand and gravel, brown, dry		25	ž Ž	ź		
4						. — — 🗜		Ž		
-								Ž Ž		
-		:						ZÍ S		
-		0		SANDY GRAVEL 4.57 Medium to coarse gravel, coarse sand, brown, dry				<u>A</u>		
5-				Medium to coarse gravel, coarse sand, brown, dry		\$		3		
_		1 10	[0/]							
-		Į						2		
-		0	0,7					A		
_								Ž Ž		
6-		0						Š		
-		P	20)							
-			No.]			K.		Z A A		
_ {								Ž S		
7-			C°7					PK C		
]			00				į			
-			0.9							
+		6	30			K		Z Z		
8-			D°7			- — - 13 17		A		
]		0						Ž		
			()°					A 3 3		
		0	Šď					Š		
9-	LI INO MET			alOday.				2		_
UKI	LLING METI	HUD:	Soni	c/Odex Notes: ■ GRAB SAN	VIPLE					
DDII	LL DATE:	June	3, 2019	LOGGED BY: NY				She	eet 1 of 4	

	CI	D		PROJECT: Proposed Sum	imited Partnership	В	OREH	ULE	COUTM COORDIN	JAT
6 : = :	SL		NAPANIE	NW 31-026-03 \	N5M Cochrane, AB	BOREHOLE NO:	IVIVV 1293.64		08 ^{UTM COORDIN} 6803 5682	
- 1	CONSULTI	NG (CA	NADA) LTI	D. PROJECT NO. 212.00030.000	03	SURFACE ELEVATION: TEST DATA		$\overline{}$	3002	T
SAMPLE TYPE	E ID	wery	TYPE	OOIL DECORIST	ON		WELL	COMPLETION WATER LEVEL	WELL	
SAMPLE TY	SAMPLE ID	Recovery	SOIL TY	SOIL DESCRIPTION	JIN	■ SPT Count ◆ % Moisture		MPL TER	COMPLETION NOTES	
S S	S. A.	%	8			- /o ivioistuie	₩ ₩	<u>წ</u>	110120	\downarrow
				GRAVELLY SAND Fine to coarse sand and gravel, yell-	9.14 ow brown, dry					-
					, ,		NG.			ļ
-										-
0-										-
										ŀ
]										
-							N.O.	200		
1-										-
1										ŀ
]								OKONOROKOKOKOKOKOKOKOKOKOKOKOKOKOKOKOKOK		-
-										
2-										-
1										ŀ
]										ŀ
-										
3-										-
1										-
]										ŀ
-										
4-										ŀ
-										-
]										ŀ
-										
5-										-
1							X	1		-
										-
-										-
6-					-					-
+									slough and backfill	-
							1			-
-										
7-					-					-
+										-
1								200		-
-								K		
8-							K			-
+										-
1										-
]								PKOROROROROROROROROROROROROROROROROROROR		t
9-						<u></u>				
DRIL	LLING ME	THOD:	Son	ic/Odex	Notes: GRAB SAME	PLE				
					1		1			

		CI			CLIENT: Mountain Ash Lim PROJECT: Proposed Summit	nited Partnership	В	DREH	<u>JLE</u>	LOG	NA7
		SL	.K		NW 31-026-03 W5	M Cochrane, AB	BOREHOLE NO:			08 ^{UTM COORDIN} 680:	
		ONSULTIN	G (CA	NADA) L		,	SURFACE ELEVATION:	1293.64	\neg	5682	182
=	SAMPLE TYPE	Ω	ځ	ш			TEST DATA	WELL	WATER LEVEL		
DEPIH (III)	E	JE I	cove	LΣ	SOIL DESCRIPTION		■ SPT Count]	띪띰	WELL COMPLETION	
	SAME	SAMPLE ID	% Recovery	SOIL TYPE			◆ % Moisture	WELL	WATE	NOTES	
+					0 40 0 m. T			Ž			+
-					@ 19.2 m: Trace silt present to 20.7 m						
-											
_											
0-											ŀ
-											
-											
1-											
-											
-											
+											
2-											
]											
-											
-											
3-							<u> </u>				
1											
-											
4-											
]											
1											
+											
25-											
1											
]											
-											
6-											
1											
]											
-					SAND	26.8					
7-					Some gravel, brown, fine to coarse san	nd and gravel, dry	 				
1											
]											
-											
8-							 	· — — [6]			
1											
1											
-								kŌ.	KO ∵		
9-							<u> </u>	·			
С	ORILL	ING MET	HOD:	So	ic/Odex	Notes: GRAB SAM	1PLE				
		. DATE:		ne 3, 2019	LOGGED BY: NY	7			Shee		

	CI			CLIENT: Mountain Ash Lin PROJECT: Proposed Summi	nited Partnership	BC	DREHO)LE	LUG	IATE
	SL			NW 31-026-03 W	5M Cochrane, AB	BOREHOLE NO:			08UTM COORDIN	
	ONSULTING	G (CA	NADA) LTI	project No. 212.06650.00003		SURFACE ELEVATION:	1293.64	$\overline{}$	5682	
SAMPLE TYPE	SAMPLE ID	% Recovery	SOIL TYPE	SOIL DESCRIPTION	ı	TEST DATA ■ SPT Count ◆ % Moisture	WELL COMPLETION	WATER LEVEL	WELL COMPLETION NOTES	
	<u> </u>	%	0							- - - -
- - - - 			× × × × × × × × × × × × × × × × × × ×	BEDROCK Siltstone, grey, dry	30.48		. — —		GW = 1263.34 m (5June2019) filter pack sand	-
- - - - - -			^		_					-
- 13- - -			× × × × × × × × × × × × × × × × × × ×							-
- 14- - - - -			× × × × × × × × × × × × × × × × × × ×				. — — -		bentonite pellets	-
- - - - - - - - -			××××××××××××××××××××××××××××××××××××××							- - -
			× × × × × × × × × × × ×							-
				End of borehole at 36.6 m	36.6					
DRIL	LING METH	HOD:	Son	ic/Odex	Notes: GRAB SAMP	<u> </u>				\perp
	- / /			•	110100. — GIVAD GAIVIF					

	CI	D		CLIENT: Mountain Ash Limited Partnership PROJECT: Proposed Summit Pit	ВС			E LOG -109 ^{UTM COORDIN 5681}	NAT
0.5	JL.	N	DA) / TC	NW 31-026-03 W5M Cochrane, AB PROJECT No. 212.06650.00003	BOREHOLE NO: SURFACE ELEVATION:	IVIVV 1271.6		-109 5681 680	
	CONSULTING	(CANAI	JA) LTD.	FROJECTINO. 212.00030.00003	TEST DATA			_	0075
SAMPLE TYPE		wery	H H	OOU PEOOPIPTION			COMPLETION	WELL COMPLETION NOTES	
SAMPLE T	SAMPLE ID	% Recovery	SOIL TYPE	SOIL DESCRIPTION	■ SPT Count ◆ % Moisture	=	MP	COMPLETION NOTES	
S S	SA	%	os		▼ % Moisture	Š	8	NOTES	4
]							7		-
-								above ground steel	,
-				Ground Surface				protector	
0			CI	LAY TILL					7
]			Tell In	race fine gravel, dark brown, moist					-
-									
1		•	 						
1-									-
]									ŀ
-			@	1.5 m: Some fine gravel					
-								hydrated bentonite chips	t
2-									
-									
-			 						
_									
3-									
-									
+			<u> </u>	AND AND GRAVEL 3.66	4	5 9	25		
			∴ SA	AND AND GRAVEL arse sand, fine to coarse gravel, grey brown, dry 3.66					
4-							N.C.		
-							SACACACACAC		
+									
5-									
Ĭ.							MO		
+			<u> </u>		_				
+				RAVELLY SAND 5.49 ne to coarse gravel and sand, grey brown, dry					
6-						\$			
-							1000		
+									
1									
7-						\$	NO NO	slough and backfill	
+							XX.03		
+									
1									
8-					<u> </u>	·\$			ŀ
+							200		
1									}
]							YOKONONONONONONONONONONONONONONONONONONO		ŀ
9-					 				
DRIL	LING METH	HOD:	ODEX A	Air Rotary Drilling Notes:	•		ı⊠		
						1			

		C			CLIENT: Mountain Ash Lin	nited Partnership	В	OREH	OLE	LOG	
		SL	.K		PROJECT: Proposed Summi NW 31-026-03 W5	5M Cochrane, AB	BOREHOLE NO:			09 ^{UTM COORDIN} 56818	
		ONSULTIN	IG (CA	NADA) L	TD. PROJECT No. 212.06650.00003		SURFACE ELEVATION:	1271.68		6806	
Ê Ē	SAMPLE TYPE	₽	ery				TEST DATA	WELL	WATER LEVEL		
		SAMPLE ID	% Recovery	SOIL TYPE	SOIL DESCRIPTION	I	■SPT Count	-		WELL COMPLETION	
	SA	SAN	%	los .			◆ % Moisture		3 8	NOTES	į
]									THORONOMONOM		ŀ
-											_1
-											-
0-											-
-											ľ
+								; ; ; ; =			-
1-								:			-
-											-
				60°	SANDY GRAVEL Fine to coarse gravel and sand, grey b	rown dry					-
2-					Time to obtained graver and barra, grey b	rown, dry	<u> </u>	 :			
-				[0,0]					Ψ	filter pack sand GW = 1259.36 m	-
1										(5June2019)	-
-											ľ
3-								:			ŀ
1				60							ŀ
-				.0°,							L
4-											-
•					BEDROCK Could not determine lithology with min	14.02 imal returns					-
-											
1											-
5-							<u></u>			bentonite pellets	-
-											-
]											ŀ
+	+			Y//>	End of borehole at 15.8 m	15.8					+
					Groundwater Information: Depth to groundwater from TOP = 12.	32 m (5.lune2019)					
					Doparto grantanata nom rec	o <u> </u>					
DI	RILL	ING MET	HOD:	OI	DEX Air Rotary Drilling	Notes:					
						-			_		
וט	KILL	. DATE:	Jul	ne 4, 201	9 LOGGED BY: NY				She	eet 2 of 2	

		CI	P		PROJECT: Proposed Summ	mited Partnership nit Pit		Ν/	EHC)LE	LOG 10 ^{UTM COORDIN} 56820	JAT
S	I R CC	ONSULTING	CAL	ΝΔΠΔ)Ι		5M Cochrane, AB	BOREHOLE SURFACE ELEVAT		91.14		6807	
				tron, E	10. THOUSE THE		TEST DAT			\neg		
	SAMPLE TYPE	SAMPLE ID	Recovery	SOIL TYPE	SOIL DESCRIPTION	N	■ SPT Cou	ınt	WELL	WATER LEVEL	WELL	
DEPIH (M)	AMPI	4MPI	Rec	OIL T	OOIL BLOOKII HO	•	◆ % Moist		ELL	ATE	COMPLETION NOTES	
5	S)	<i>Y</i> S	%	Š					≥ €	§ ≥ ■		+
-												ŀ
-											above ground steel protector	
0					Ground Surfa	ace			Ш		protector	
٦					CLAY TILL Trace gravel, dark brown, moist							-
-					g,,,							
1												
1-												
. 1				•.								
-												ŀ
1				•								
2-							L					
۱,				-								
-												
-				-								
2												
3-												
1					SAND AND GRAVEL	3.	.35					
-					Fine to coarse sand and gravel, yellow	v brown, dry						
1												
4-												
4												
-					GRAVELLY SAND	4.	.57					
5-					Fine to coarse sand and gravel, reddi	sh brown, dry						
٥٦												
4												
-					@ 5.5 m: Yellow brown to 11.6 m						hydrated bentonite chips	
_												
6-												
4												
1												
_												ļ
7-										1		}
-												ŀ
-												ŀ
,												
8-												
-												-
-												ŀ
0-							L			1		ļ
9-	JBII i	ING METH	10D.		DEX Air Rotary Drilling	Notes: GRAB	SAMPLE					┙
	-ı VILL	+ O IVIL II	.00.		Section 1 rotally brilling	Notes. GRAB	ONIVIE LE					
_	וואר	DATE:	Jun	e 4, 201	9 LOGGED BY: NY					She	eet 1 of 4	

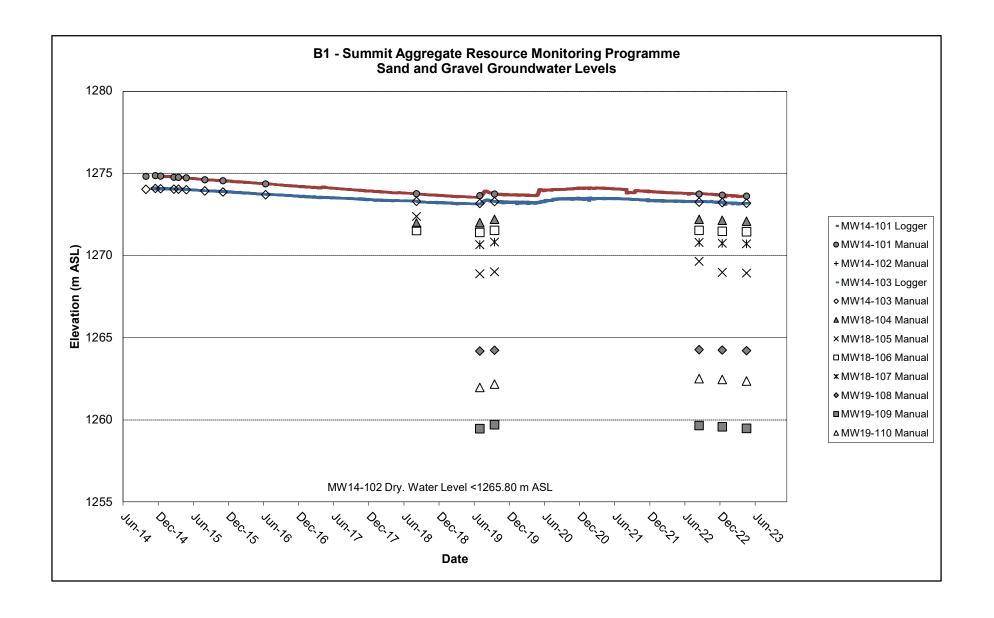
	CI	-		CLIENT: Mountain Ash L	imited Partnership	В	JKEN	IULE	E LOG	NAT'
	SL	K		PROJECT: Proposed Sum NW 31-026-03 V	V5M Cochrane, AB	BOREHOLE NO:			110 ^{UTM COORDIN} 56820	
	CONSULTIN	G (CAN	ADA) LTD.	PROJECT No. 212.06650.000)3	SURFACE ELEVATION:	1291.1		6807	
SAMPLE TYPE	₽	ery	щ			TEST DATA		COMPLETION WATER LEVEL		
SAMPLE T	SAMPLE ID	% Recovery	SOIL TYPE	SOIL DESCRIPTION	ON	■SPT Count	_	레 퓌	WELL COMPLETION	
SAN	SAN	%				◆ % Moisture	II/	8 8	NOTES	
				9.1 m: Clay layer, dark brown, mo	oist to 10.1 m					-
-										-
-										-
0-										
		:								-
-		[:								ŀ
-										ŀ
]										-
		:								-
-		0	GF	RAVEL AND SAND	11.58					ŀ
2-		000	> 0 /	ne to coarse sand and gravel, yello	ow brown, dry					[
-			0.5 0.0							F
-		Pc	20							ŀ
1		0	0.7 0.0							ļ
3-			00							-
-			0.9					100		ŀ
-		0	0 d							ļ
		0	\mathcal{I}							-
4-		0	0 d							-
-		Po	20							ľ
			0.7 0.0							-
-		Po	200							-
5-		0						N C		-
-		0	00							-
]		0	0.9							-
-		0	Ьò							ŀ
6-		0	0.							
		0								-
-		1 P	· ()							ŀ
-		0						NO.		
' -		Ι Ι (.	201							ŀ
-		0	0.7							-
-		0	ŠQ V					2		Ī
3-		1 10								ŀ
-			ŽД							-
-) C	, 1/					1		ļ
1		1 6	(o]					ONONONONONONONONONONONONONONONONONONON		-
9-		0	200							}
DRIL	LING METH			ir Rotary Drilling	Notes: GRAB SAM	IPLE	BX		1	

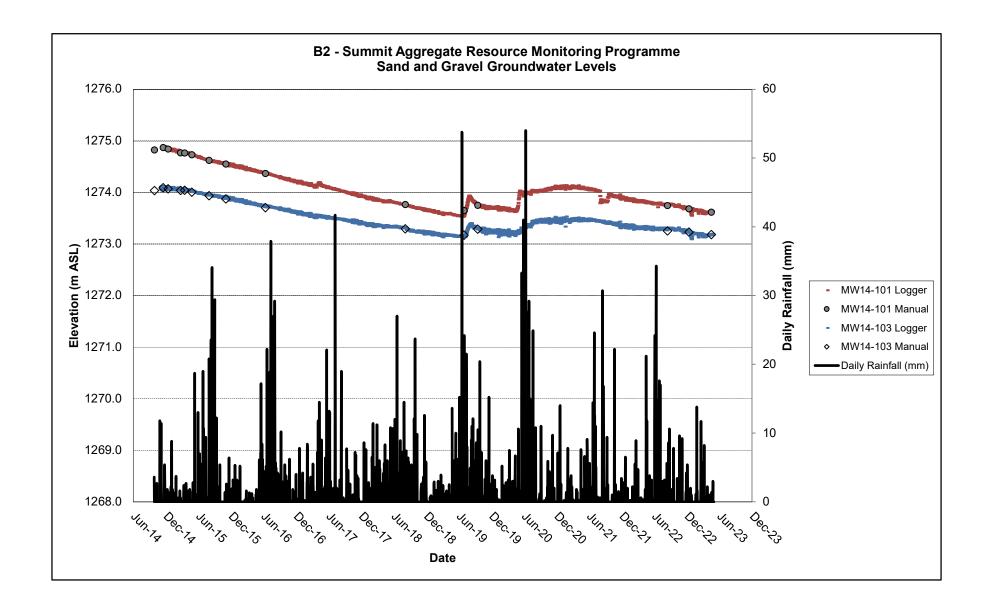
	CI			CLIENT: Mountain Ash Lim PROJECT: Proposed Summit	ited Partnership	BOREHOLE LOG BOREHOLE NO: MW19-110 UTM COORDIN. 56820				
	SL	-K		NW 31-026-03 W5	M Cochrane, AB	BOREHOLE NO:				
	CONSULTIN	IG (CAI	NADA) LTD	PROJECT No. 212.06650.00003		SURFACE ELEVATION:	1291.14	-	680	
SAMPLE TYPE	□	ery	щ			TEST DATA		COMPLETION	1 > 1	
SAMPLE T	SAMPLE ID	% Recovery	SOIL TYPE	SOIL DESCRIPTION		■ SPT Count	_		WELL COMPLETION	
SAN	SAN					◆ % Moisture	WELL	8 8	NOTES	
			000				Ä		slough and backfill	
]										-
]										-
0-			00							ŀ
-			.0°							-
1			00				2	ZQ ZQ		
1			$\Gamma_0 \cap \Lambda_a$							
1-			00	@ 20.7 m: Grey - brown to 29.3 m		L	K			-
']										-
4			50							ŀ
-										ŀ
1			100				j.			İ
2-			.0°			<u> </u>		200		
]			00							-
-										ŀ
-			00							ŀ
3-										ŀ
1			00					K C		
]							20	NO.		
]			00							
4-								HAKAKAKAKAKAKAKAKAKAKAKAKAKAKAKAKAKAKAK		-
-			000							-
-										l
1			200							
5-						L				
5		1 1	~ N 1					ZQ ZQ		
-		1 1	° (°)							ŀ
4										ŀ
+										
6-						<u> </u>				
]			600							-
-			000					22		}
-			°0°/					KOROKOKOKOKOKOKOKOKOKOKO		-
7-			200			 	·#			
1			C°O;							
1							:: 	[:*]		-
]		1 1	; D; d					<u> </u> :		-
8-			200				∷[<u> </u> :		}
-			°0°/							}
+			20 C					 		}
+];]_		
1			000]: <u>Z</u>	GW = 1262.29 m (5June2019)	
9-	LINGMET	1100	$\Gamma \circ \Lambda$	Y Air Patany Drilling	Notes: CDAD CAN			1::		
DKIL	LING MET	טטרו:	ODE	X Air Rotary Drilling	Notes: GRAB SAM	IPLE				
DRII	L DATE:	Jun	e 4, 2019	LOGGED BY: NY				Sł	neet 3 of 4	

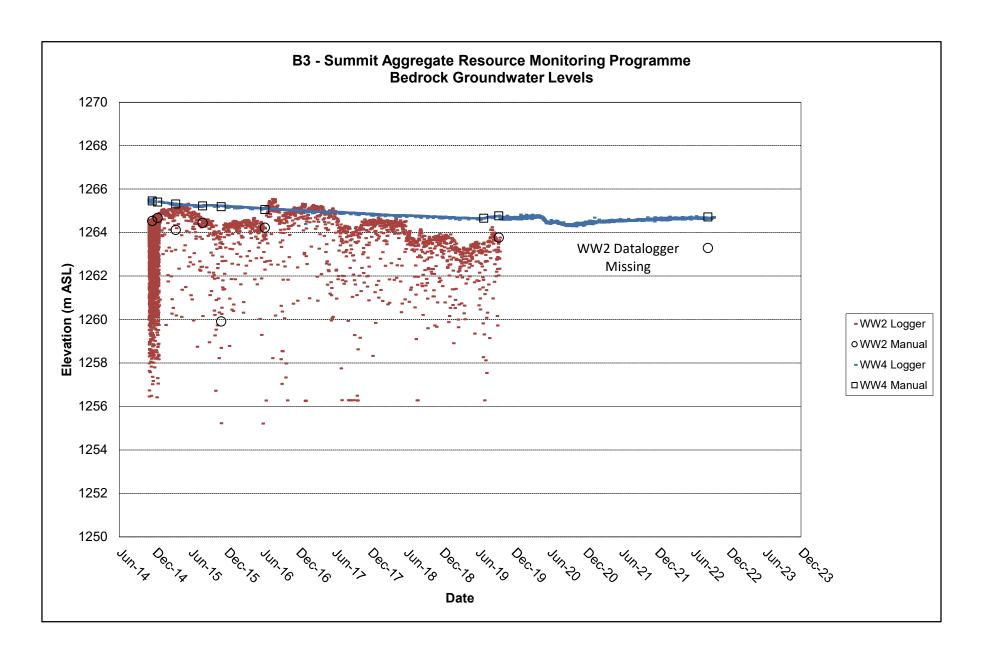
		CI	_		CLIENT: Mountain Ash PROJECT: Proposed Sum	Limited Partnership	ВС	BOREHOLE LOG REHOLE NO: MW19-110 ^{UTM COORDI} 5682			
		<u>SL</u>	.K		NW 31-026-03	W5M Cochrane, AB	BOREHOLE NO:				
- 1		ONSULTING	G (CA	NADA) LTD	PROJECT No. 212.06650.000	03	SURFACE ELEVATION:	1291.14	\neg	680	0788
	SAMPLE TYPE	₽	ery	щ			TEST DATA	WELL	WATER LEVEL		
() <u>-</u> -	APLE	SAMPLE ID	% Recovery	SOIL TYPE	SOIL DESCRIPTI	ON	SPT Count	-		WELL COMPLETION	
i	SAN	SAN	%				◆ % Moisture	, WE	§ §	NOTES	
1				× × × ×	BEDROCK	29.3					-
-				× × ×	Siltstone, grey, dry			i:E			-
-				× × × × × × × × × × × × × × × × × × ×							-
)-				× × ×				·()		filter pack sand	
1											-
]											-
-				× × ×							-
1-				× × × × × ×				·			-
1				× × × × × × × × × × × × × × × × × × ×							
1				× × ×							-
-				× × ×							ŀ
2-								· :			t
1				× × × × × ×							-
]				× × ×							-
-										hantonita nallata	ŀ
;-				× × × × × × × × × × × × × × × × × × ×				· — — ·		bentonite pellets	
Ī					End of borehole at 33.2 m	33.2					
					Groundwater Information:						
					Depth to groundwater from TOP =	28.85 m (5June2019)					
_	י ייםר	INC MET	10D:	005	V Air Potony Drilling	Netes CDAD COM	DI E				
ı	JKILL	ING METH	HUD:	ODE	X Air Rotary Drilling	Notes: GRAB SAM	PLE				
				ne 4, 2019	LOGGED BY: NY	1		1			

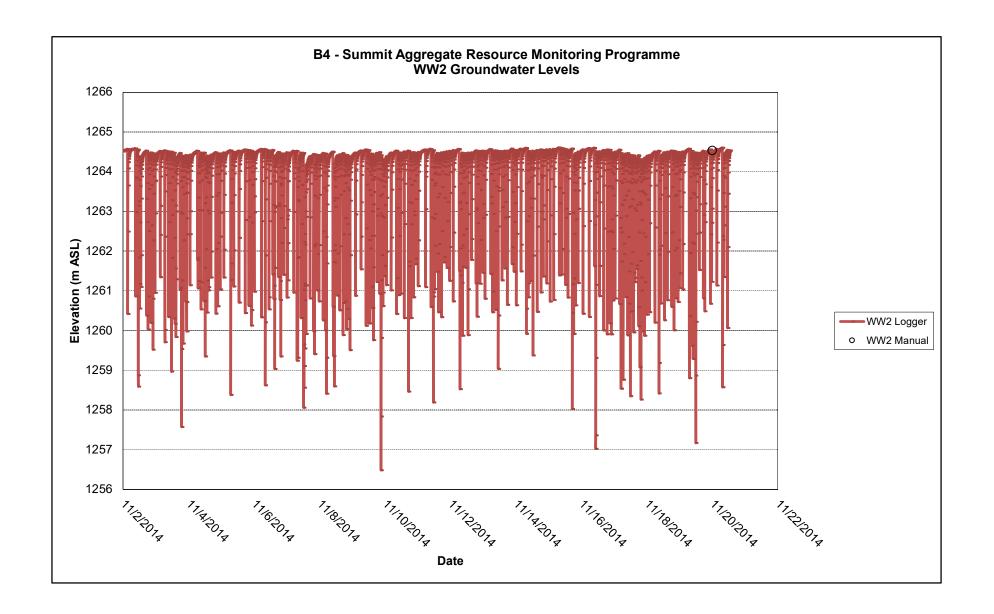
Appendix B Groundwater Hydrographs

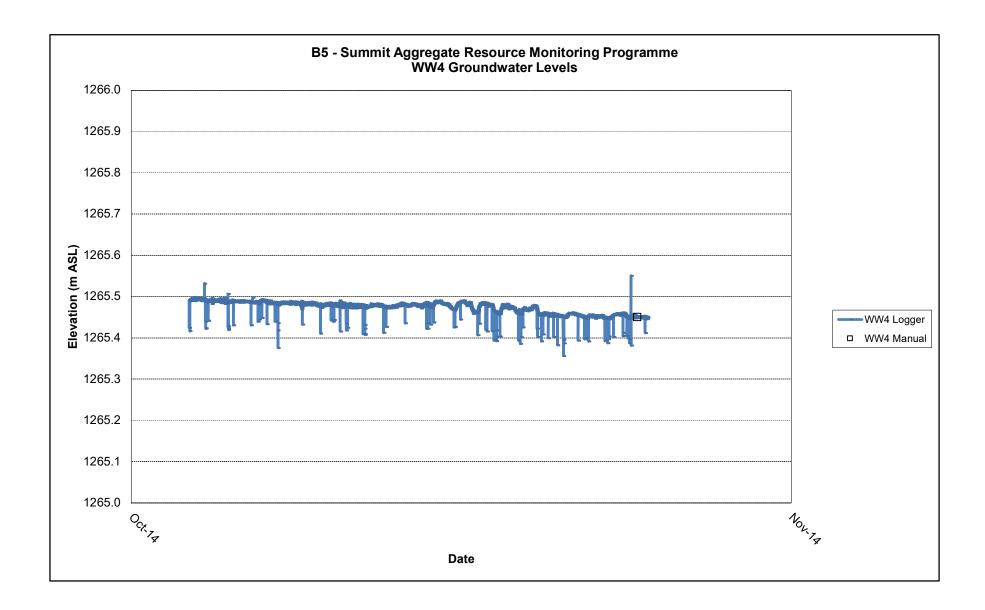
Groundwater Monitoring Plan


Summit Pit Project


Mountain Ash Limited Partnership


SLR Project No. 212.06650.00007


May 11, 2023



Appendix C Alberta Water Well Records

Groundwater Monitoring Plan

Summit Pit Project

Mountain Ash Limited Partnership

SLR Project No. 212.06650.00007

May 11, 2023

Reconnaissance Report

View in Imperial

Export to Excel

Groundwater Wells

Please click the water Well ID to generate the Water Well Drilling Report.

GIC Well	LSD	SEC	TWP	RGE	М	DRILLING COMPANY	DATE COMPLETED	DEPTH (m)	TYPE OF WORK	USE	СНМ	LT	PT	WELL OWNER	STATIC LEVEL (m)	TEST RATE (L/min)	SC_DIA (cm)
350194	SW	31	26	3	5	LOU'S WATER WELL DRILLING	1990-03-09	35.05	New Well	Domestic		9		DAVIDSON, D.W.	15.24	54.55	14.12
<u>360164</u>	SE	6	27	3	5	AERO DRILLING & CONSULTING LTD.	1991-10-08	73.15	New Well	Domestic		10		BARGETZI, ERNIE	33.53	136.38	14.12
387449	NE	36	26	4	5	PARSONS DRLG	1962-08-10	33.83	New Well	Unknown		9		BRISTOW, C.R.	21.95	72.74	0.00
390998	SE	6	27	3	5	ALBERTA SOUTHERN EXPLORATION DRILLING LTD.	1987-02-11	65.53	New Well	Domestic & Stock		11		STRANGE, R.	45.72	36.37	16.84
390999	SE	6	27	3	5	ALBERTA SOUTHERN EXPLORATION DRILLING LTD.	1987-11-19	73.15	New Well	Stock		15		STRANGE, R.	39.62	45.46	16.84
<u>391000</u>	4	6	27	3	5	DIVERSIFIED DRILLING & EXPLORATION CO.	1984-11-07	40.23	New Well	Domestic & Stock	<u>1</u>	7		CIRCLE J RANCHES	28.96	68.19	13.97
<u>391598</u>	NW	31	26	3	5	PARSONS DRILLING		39.62	New Well	Domestic & Stock				MURRAY, R.J.			17.78
391599	NE	31	26	3	5	KRIEGER DRILLING LTD.		49.38	New Well- Decommissioned	Investigatio n		14		PARKER, G.L.	0.00		0.00
391600	NE	31	26	3	5	KRIEGER DRILLING LTD.	1981-10-14	27.43	New Well- Decommissioned	Domestic		9		PARKER, G.L.			0.00
<u>395786</u>	NE	31	26	3	5	PARSONS DRILLING	1981-11-19	62.48	New Well	Domestic & Stock		21		PARKER, G.L.	48.77	68.19	17.78
<u>395793</u>	NE	31	26	3	5	UNKNOWN DRILLER		62.48	Chemistry	Domestic				KIRK, S.			0.00
<u>494773</u>	NE	36	26	4	5	ALKEN BASIN DRILLING LTD.	1999-11-16	30.48	New Well	Stock		4	9	GOETJEN, MORRIE	22.25	63.65	13.97
498400	NW	31	26	3	5	MEDICINE VALLEY WATER WELLS	2001-05-14	74.68	New Well	Domestic		14	24	GIBBS, DAVE	10.82	9.09	13.97
1022436	9	36	26	4	5	AARON DRILLING INC.	2014-05-05	30.48	New Well	Investigatio n		6		LAFARGE CANADA INC			16.81
1475698	16	31	26	3	5	M&M DRILLING CO. LTD.	2003-01-14	39.62	New Well	Domestic		10	24	QUICK WAY FARMS LTD	32.00	45.46	14.13
1475699	15	31	26	3	5	M&M DRILLING CO. LTD.	2003-01-17	53.95	New Well	Domestic		10	24	QUICK WAY FARMS LTD	32.64	24.55	14.13
2095665	SW	6	27	3	5	UNKNOWNDRILLINGCOMP11		25.60	Well Inventory	Domestic & Stock		1		CIRCLE J RANCHES LTD			

Printed on 9/30/2019 3:15:18 PM Page: 1 / 1

Owner Name

DAVIDSON, D.W.

Well Identification and Location

Water Well Drilling Report

GIC Well ID

View in Imperial Export to Excel 350194

GoA Well Tag No. Drilling Company Well ID

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

Date Report Received 1990/03/16 Measurement in Metric Address Postal Code Town Province Country P.O. BOX 970 COCHRANE T0L 0W0

1/4 or LSD SEC TWP Block W of MER Plan Additional Description Location Lot SW 31 026 03

GPS Coordinates in Decimal Degrees (NAD 83) Measured from Boundary of

Elevation Latitude 51.259801 Longitude -114.414277 m m from

How Location Obtained How Elevation Obtained m from Not Verified Not Obtained

Drilling Information

Method of Drilling Cable Tool

Type of Work New Well

Proposed Well Use

Domestic

Formation Log			Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description	
6.10		Boulders	
10.67		Sand & Gravel	
12.19		Sand	
15.24		Gravel	
18.29		Gray Shale	
22.86		Light Green Shale	
28.96		Green Shale	
32.00		Green Shale	
35.05		Green Shale	

Yield Test S	ummary				Measurem	ent in M	etric
Recommende	ed Pump R	ate 0.	00 L/mir	1			
Test Date	Water	Removal Rate	(L/min)	St	atic Water Le	evel (m)	
1990/03/09		54.55					
Well Comple					Measurem	ent in M	etric
,	rilled Fini	shed Well Dept			End L		
35.05 m			1990	/03/02	1990/	03/09	
Borehole							
	er (cm)		From (m)			n)	
0.0			.00		35.0	5	
Surface Casi Steel	пд (іт аррі	icable)	Steel	asing/Li	ner		
Size	OD :	14.12 cm		Size OL	D: <u>11.</u>	43 cm	
Wall Thickne	ess :	0.478 cm	Wall 7	Thicknes	s : 0.3	18 cm	
Bottom	at:	15.24 m		Тор а	nt : 13.	72 m	
				Bottom a	nt : 35.	05 m	
Perforations							
		Diameter or Slot	Slo		Hala au C	1-4	
From (m)	To (m)	Width(cm)			Hole or S Interval(
22.86	35.05	0.318	20.190	(6)	25.40		
Perforated by	Torch	า					
Annular Seal	Driven						
Placed from	n0	.00 m to	15.2	4 m			
Other Seals							
	Type				At (m)		
Saraan Tuna							
Screen Type	OD ·	0.00 cm					
From			(m)		Slot Size	(cm)	
				F			
	ngs		Botto	m Fitting	IS		-
Pack							
Type			Grain	Size			

Contractor	Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name

LOU'S WATER WELL DRILLING

Certification No

0.00

Amount

Copy of Well report provided to owner Date approval holder signed

Printed on 12/24/2014 10:54:47 AM Page: 1 / 2

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel GIC Well ID 350194

GoA Well Tag No.

Drilling Company Well ID Date Report Received

1990/03/16

Owner Name DAVIDSON, D.W. Address P.O. BOX 970 COCHRANE Town Province Country Location 1/4 or LSD SW SEC 31 TWP 026 RGE 03 W of MER 5 Lot Block Block Plan Additional Description Measured from Boundary of m from GPS Coordinates in Decimal Degrees (NAD 83) Latitude Longitude -114.414277 Elevation no	Postal Code T0L 0W0
SW 31 026 03 5 Measured from Boundary of GPS Coordinates in Decimal Degrees (NAD 83) Latitude 51 250901 Langitude 114 414277 Florestices	
Latitude 51 250901 Longitude 114 414277 Elevation	
M from How Location Obtained How Elevation Obtained Not Verified Not Obtained	<u> </u>
Additional Information Measu	rement in Metric
Distance From Top of Casing to Ground Level cm Is Artesian Flow Is Flow Control Installed Rate L/min Describe	
Recommended Pump Rate 0.00 L/min Pump Installed Depth m	<u> </u>
Did you Encounter Saline Water (>4000 ppm TDS) Depth m Well Disinfected Upon Completion Gas Depth m Geophysical Log Taken Submitted to ESRD Submitted to ESRD Sample Collected for Potability Submitted to ESR Additional Comments on Well	
	rement in Metric
Test Date Start Time Static Water Level 1990/03/09 12:00 AM 15.24 m Drawdown (m) Elapsed Time Reco	very (m)
Method of Water Removal Type Bailer Removal Rate 54.55 L/min Depth Withdrawn From 0.00 m If water removal period was < 2 hours, explain why	
Water Diverted for Drilling	
Water Source Amount Taken Diversion Date & Time L	

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name

LOU'S WATER WELL DRILLING

Certification No

Copy of Well report provided to owner Date approval holder signed

Water Well Drilling Report

View in Imperial Export to Excel

Measurement in Metric

GIC Well ID GoA Well Tag No. 360164

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

Drilling Company Well ID Date Report Received

		accu	uracy. The infor	mation on th	is report will be reta	ined in a pub	ic database.			Date Report Received	1991/10/24
Well Identi	fication and L	ocation									Measurement in Metric
Owner Name Address Town BARGETZI, ERNIE 233 RATCLIFF PLACE SE, CALGARY							Province	Country	Postal Code		
Location	1/4 or LSD SE	SEC 06	<i>TWP</i> 027	RGE 03	W of MER 5	Lot	Block 2	<i>Plan</i> 9110979	Additio	onal Description	
Measured fr		f m from m from			GPS Coording Latitude 5 How Location	1.274744	U	es (NAD 83) tude <u>-114.40</u>	5998	Elevation How Elevation Obtain	m ned
		-			Not Verified					Not Obtained	

Drilling Information Method of Drilling Type of Work New Well Rotary Proposed Well Use Domestic

Yield Test Summary

Formation Log			Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description	
9.45		Till & Clay	
21.64		Gravel	
25.30		Brown Shale	
34.75		Gray Shale	
39.62		Gray Sandstone	
44.20		Gray Shale	
51.82		Gray Sandstone	
59.74		Gray Shale	
66.75		Gray Sandstone	
73.15		Gray Shale	

Recommended I	Pump Rate 1:	36.38 L/mir	<u>1</u>				
Test Date	Water Removal Ra			c Water Level (m)			
1991/10/08	136.38			33.53			
Well Completion	on		Measurement in				
Total Depth Drille	ed Finished Well D	,					
73.15 m		1991	/10/08	1991/10/08			
Borehole							
Diameter (rom (m)		To (m)			
0.00				73.15			
Surface Casing Steel	(if applicable)	Well C Steel	asing/Line	r			
Size OD	: 14.12 cm			11.43 cm			
Wall Thickness	.: 0.620 cm	Wall	Thickness :	0.396 cm			
Bottom at	24.99 m		Top at:	18.29 m			
			Bottom at :	73.15 m			
Perforations							
	Diameter of		ot	Hala an Clah			
From (m) T	Slot o (m) Width(cm			Hole or Slot Interval(cm)			
36.58	57.06 0.157	20.190	,	15.24			
Perforated by	Torch						
Annular Seal	Orive Shoe						
Placed from	0.00 m to	24.9	9 m				
Amount _							
Other Seals							
	Type		A	t (m)			
Screen Type							
Size OD	: 0.00 cm						
From (m	1)	To (m)		Slot Size (cm)			
Attachmen	t						
	S		Bottom Fittings				
Pack							
Туре		Grain	Grain Size				
Amount		_					

Contractor	Certification

Name of Journeyman responsible for drilling/construction of well UNKNOWN NA DRILLER

Company Name

AERO DRILLING & CONSULTING LTD.

Certification No

Copy of Well report provided to owner Date approval holder signed

Printed on 10/24/2014 1:38:16 PM Page: 1 / 2

Water Well Drilling Report

View in Imperial Export to Excel

GIC Well ID GoA Well Tag No. Drilling Company Well ID 360164

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database. 1991/10/24 Date Report Received Well Identification and Location Measurement in Metric Owner Name Address Postal Code Town Province Country

BARGETZI	, ERNIE		233 RATCL	IFF PLAC	JE SE, CALGARY					
Location	1/4 or LSD SE	SEC 06	<i>TWP</i> 027	RGE 03	W of MER 5		Block 2	<i>Plan</i> 9110979	Additional Description	1
Measured t	from Boundary	of m from			GPS Coordina Latitude 51.		•		5998 Elevation	m
	-	m from			How Location				How Elevati	
		III IIOIII			Not Verified				Not Obtaine	d
Additional	Information									Measurement in Metric
	rom Top of Ca				cm					
Is Artesia	n Flow					Is F	low Con	trol Installed		
	Rate		L/min							
Recomme	nded Pump Ra	te			136.38 L/min	Pump Ir	nstalled		Depth	m
Recomme	nded Pump Inte	ake Depth (From TOC)		0.00 m	Type			Make	H.P.
									Model (Ou	tput Rating)
Did you	Encounter Salir	ne Water (>	4000 ppm TE	OS)	Depth		m	Well Disinfe	cted Upon Completion	
			G	as						
								S	ubmitted to ESRD	
						S	ample Co	allected for Po	tability	Submitted to ESRD
Addition	nal Comments o	n Well								
Yield Test								Take	n From Ground Level	Measurement in Metric
Test Date		Start Time	2	Stat	tic Water Level				Depth to water leve	el
1991/10/08		12:00 AM		Stat	33.53 m		Draw	down (m)	Elapsed Time Minutes:Sec	Recovery (m)
Method o	f Water Remov	ral .								
	Type _	Air				_				
F	Removal Rate	13	6.38 L/min							
Depth Wit	thdrawn From	3	9.62 m							
If water re	moval period w	as < 2 hour	s explain wh	V						
	o.ui poilou w	\ <u>L</u> 110011	s, explain wil	7						
Water Div	erted for Drilli	ina								
	23G .G. 311111	9								

Water Diverted for Drilling		
Water Source	Amount Taken L	Diversion Date & Time

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name

AERO DRILLING & CONSULTING LTD.

Certification No

Copy of Well report provided to owner Date approval holder signed

Water Well Drilling Report

View in Imperial Export to Excel

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

GIC Well ID GoA Well Tag No. Drilling Company Well ID Date Report Received

387449

Well Identification and Lo	ocation					Measurement in Metric
Owner Name Address BRISTOW, C.R. COCHRANE		Town	1	Province	Country	Postal Code
Location 1/4 or LSD NE	SEC TWP RGE 36 026 04	W of MER Lot 5	Block Plan	n Additional I	Description	
Measured from Boundary of GPS C m from Latitude		GPS Coordinates in De Latitude 51.267032 How Location Obtained Map	Longitude -1	14.426119 E	levation 1. ow Elevation Obta	292.35 m ined
Drilling Information Method of Drilling Cable Tool Proposed Well Use Unknown		Type of Work New Well				
Formation Log	M	easurement in Metric	Yield Test Sum	mary		Measurement in Metric
Depth from Water ground level (m) Bearing	Lithology Description		Recommended F Test Date	Pump Rate Water Removal Rat	0.00 L/min	Static Water Level (m)
4.88	Yellow Clay		1962/08/10	72.74		21.95
21.03	Gravel		Well Completio	n		Measurement in Metric
23.77	Fine Grained Sand			ed Finished Well De	pth Start Date	End Date
25.91	Yellow Clay		33.83 m			1962/08/10
26.82	Blue Clay		Borehole			
27.13	Hard Shale		Diameter (c 0.00		om (m) 0.00	To (m) 33.83
28.04	Sand		Surface Casing		Well Casing/L	
32.00	Blue Shale & Sandstone Ledg	es	our race oasing	(п аррпсаыс)	Well Gashig/L	inci
33.83	Gray Shale		Size OD	. 0.00 cm		0.00 cm
	,		Wall Thickness	: 0.000 cm	Wall Thickne	ss: 0.000 cm
			Bottom at	: 0.00 m	Тор	at: 0.00 m
			Doufovotiono		Bottom	at: 0.00 m
			From (m) To	Diameter or Slot o (m) Width(cm)	Slot	Hole or Slot Interval(cm)
			Perforated by Annular Seal Placed from Amount Other Seals		0.00 m	At (m)
				Type		At (m)
			Screen Type Size OD	: 0.00 cm		
			From (m) 1	Го (m)	Slot Size (cm)
			Attachment			
					Dottom Fittin	
					BUITOTTI FITTIN	gs
			Pack 			
			Type		Grain Size	
			Amount			

Contractor Certification

Name of Journeyman responsible for drilling/construction of well UNKNOWN NA DRILLER

Company Name PARSONS DRLG Certification No

Copy of Well report provided to owner Date approval holder signed

Water Well Drilling Report

GoA Well Tag No.

View in Imperial Export to Excel 387449

GIC Well ID Drilling Company Well ID

The driller supplies the data contained in this report. The Province disclaims responsibility for its

		4000	naoy. The inio	mation on th	o report will be re-	anica in a pabi	io database.			Date Report Re	ceived	
Well Iden	tification and L	ocation									Measu	ement in Metric
Owner Nar BRISTOW			Address COCHRAN	NE		Town			Province	e Coun	try	Postal Code
Location	1/4 or LSD NE	SEC 36	<i>TWP</i> 026	RGE 04	W of MER 5	Lot	Block	Plan	Additio	onal Description		
Measured	from Boundary o	of			GPS Coord	inates in Dec	imal Degree	es (NAD 83 ₎)			
Mododrod	•	m from			Latitude	51.267032	Longi	ude -114.4	26119	Elevation	1292.35 m	<u> </u>
		m from			How Location	on Obtained				How Elevation	Obtained	
		mmom			Мар					Estimated		
Additional	Information										Measu	ement in Metric

NE	36 026	04 5			
Measured from Bou	undary of		in Decimal Degrees (NAD 83)		
	m from		7032 Longitude -114.426		
	m from	How Location Ob	tained	How Elevation (Obtained
		l Map		Estimated	
Additional Informa	ation				Measurement in Metric
Distance From Top	o of Casing to Ground Level	cm			
			Is Flow Control Installed		
	L/min				
Recommended Pu	ımp Rate	0.00 L/min			m
Recommended Pu	mp Intake Depth (From TOC)	0.00 m	Pump InstalledType	Make	H.P.
				Model (Output	Rating)
Did you Encount	er Saline Water (>4000 ppm TDS	S) Depth	m Well Disinfe	ected Upon Completion	
	Ga	as Depth	m Geop	hysical Log Taken	
				ubmitted to ESRD	
			Sample Collected for Po	stability Su	Ibmitted to ESRD
Additional Comm	ments on Well				
Yield Test			Take	n From Ground Level	Measurement in Metric
Test Date	Start Time	Static Water Level		Depth to water level	
1962/08/10	12:00 AM	21.95 m	Drawdown (m)	Elapsed Time	Recovery (m)
			_	Minutes:Sec	
Method of Water				_	
	Type Bailer				
Removal	Rate 72.74 L/min				
Removal					
Removal Depth Withdrawn	Rate 72.74 L/min From 0.00 m		_		
Removal Depth Withdrawn	Rate 72.74 L/min		_		
Removal Depth Withdrawn	Rate 72.74 L/min From 0.00 m		_		
Removal Depth Withdrawn	Rate 72.74 L/min From 0.00 m eriod was < 2 hours, explain why		_		

Water Diverted for Drilling			
_			
Water Source	Amount Taken	Diversion Date & Time	
	L		

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name PARSONS DRLG Certification No

Water Well Drilling Report

View in Imperial Export to Excel

GIC Well ID GoA Well Tag No. 390998

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

Drilling Company Well ID 1987/03/05

				<u>'</u>	· ·				Date Report Receiv	eu 1967/03/03
Well Identification a	nd Location									Measurement in Metric
Owner Name STRANGE, R.		Address P.O. BOX	(981 COCH	IRANE	Town			Province	Country	Postal Code T0L 0W0
Location 1/4 or L SE	SEC 06	<i>TWP</i> 027	RGE 03	W of MER 5	Lot	Block	Plan	Additio	onal Description	
Measured from Bound	m from			GPS Coordir Latitude 5 How Location Not Verified	1.274744	U	es (NAD 83) itude114.4		Elevation How Elevation Obt	mained

Drilling Information Method of Drilling Type of Work New Well Rotary Proposed Well Use Domestic & Stock

Formation Log			Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description	
7.62		Till	
10.36		Gravel	
11.58		Silty Clay	
17.68		Weathered Shale	
27.43		Shale	
39.62		Sandstone	
48.77		Shale	
60.96		Sandstone	
62.48		Shale	
63.70		Sandstone	
65.53		Shale	

rieid Test Su	mmary					IVIE	asurement in i	netric
Recommended	l Pump Ra	te	27.2	8 L/min	_			
Test Date						tatic	Water Level (m)	
1987/02/11		36.37					45.72	
Well Complet	ion					Me	asurement in N	/letric
Total Depth Dri	illed Finis	hed Well D	epth	Start	Date		End Date	
65.53 m				1987	02/10		1987/02/11	
Borehole								
Diameter		F		(m)			To (m)	
0.00			0.0				65.53	
Surface Casin Steel	•	•		Well Ca Plastic	_			
		16.84 cm					12.70 cm	
Wall Thicknes	ss:	0.478 cm		Wall 7	hicknes	ss:	0.630 cm	
Bottom	at :	18.29 m			Тор а	at:	16.76 m	
				L	Bottom a	at:	65.53 m	
Perforations		Diameter of	or					
		Slot		Slo	-		Hole or Slot	
From (m) 47.24		Width(cm 0.000	1)	Lengtl	n(cm)		Interval(cm) 0.10	
Annular Seal Placed from	Driven 0.	00 m to		11.58	3 m_			
Other Seals				_				
	Type					At	(m)	
Screen Type Size O	D :	0.00 cm						
From (То	(m)			Slot Size (cm)	
Attachme	nt							
Top Fitting	gs		_	Botto	m Fitting	gs_		_
Pack								
Туре			_	Grain	Size			
Amount			_					

Contractor	Certification

Name of Journeyman responsible for drilling/construction of well ${\tt UNKNOWN\ NA\ DRILLER}$

Company Name

ALBERTA SOUTHERN EXPLORATION DRILLING LTD.

Certification No

Copy of Well report provided to owner Date approval holder signed

Printed on 10/24/2014 1:39:37 PM Page: 1 / 2

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel GIC Well ID

390998

GoA Well Tag No. Drilling Company Well ID

1987/03/05 Date Report Received

Well Identification and Location					Measurement in Metric
Owner NameAddressSTRANGE, R.P.O. BOX 981	COCHRANE	Town	Province	Country	Postal Code ToL 0W0
	03 5			al Description	
Measured from Boundary of m from m from		in Decimal Degrees (N 4744 Longitude tained	/	Elevation How Elevation Ob Not Obtained	
Additional Information					Measurement in Metric
Distance From Top of Casing to Ground Level Is Artesian Flow Rate L/min	cm		nstalledescribe		
Recommended Pump Rate	27.28 L/min			Depth	m
Recommended Pump Intake Depth (From TOC)	62.48 m	Туре			H.P.
				Model (Output R	ating)
Did you Encounter Saline Water (>4000 ppm TDS, Gas) Depth S Depth	m We	ell Disinfected Upon Geophysical Log Submitted to ed for Potability	Taken ESRD	mitted to ESRD_
Additional Comments on Well Yield Test			Taken From G		Measurement in Metric
Test Date Start Time	Static Water Level			to water level	Wood of the first would
1987/02/11 12:00 AM	45.72 m	Drawdowi		apsed Time Iinutes:Sec	Recovery (m)
Method of Water Removal Type Air Air Removal Rate 36.37 L/min Depth Withdrawn From 0.00 m					
If water removal period was < 2 hours, explain why		_			
Water Diverted for Drilling					
Water Source	Amount Taken L		Diversion	n Date & Time	

Contractor Certification

Name of Journeyman responsible for drilling/construction of well UNKNOWN NA DRILLER

Company Name

ALBERTA SOUTHERN EXPLORATION DRILLING LTD.

Certification No

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel GIC Well ID 390999

GoA Well Tag No. Drilling Company Well ID

1987/12/02

Measurement in Metric

Date Report Received Well Identification and Location Measurement in Metric Address Postal Code Town Owner Name Province Country STRANGE, R. P.O. BOX 981 COCHRANE T0L 0W0 1/4 or LSD SEC TWP Block RGE W of MER Plan Additional Description Location Lot SE 06 027 03 GPS Coordinates in Decimal Degrees (NAD 83) Measured from Boundary of Elevation _ Latitude 51.274744 Longitude -114.405998 m m from How Location Obtained How Elevation Obtained m from Not Verified Not Obtained

Drilling Information Method of Drilling Type of Work New Well Rotary Proposed Well Use Stock

Yield Test Summary

Formation Log			Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description	
5.79		Till	
8.84		Gravel	
9.75		Till	
16.76		Yellow Sandstone	
20.12		Gray Sandstone	
30.48		Shale	
36.88		Sandstone	
39.62		Shale	
40.23		Moist Sandstone	
50.29		Shale	
51.82		Sandstone	
58.22		Shale	
64.01		Shale	
71.32	Yes	Water Bearing Sandstone	
73.15		Shale	

Recommende	ed Pump R	ate31.8	82 L/min	1			
Test Date		r Removal Rate (atic Wate	er Level (m)	
1987/11/19)	45.46			39	.62	
Well Compl	etion				Measur	ement in N	Лet
Total Depth L	Orilled Fini	ished Well Depti	h Start	Date	E	nd Date	
73.15 m			1987	/11/18	19	987/11/19	
Borehole							
	er (cm)	Fron	n (m)		Т	o (m)	
0.0	00	0.	.00		7	73.15	
Surface Cas Steel	ing (if app	licable)	Well Ca Plastic	asing/Li	ner		
		16.84 cm				12.70 cm	
Wall Thickn	ess:	0.478 cm	Wall 7				
Botton	n at :	11.89 m		Тор а	at :	9.14 m	
			I	Bottom a	at:	73.15 m	
Perforations							
		Diameter or	61			CI .	
From (m)	To (m)	Slot Width(cm)	Slo Lengtl		Hole Inter	or Slot	
39.62	73.15	0.157	Lengu	ii(Ciii)		5.24	
Perforated by	/ Othe	r					
-							
Annular Sea		0.00 m to	0.7	5 m			
				5 111			
Other Seals			_				
Other Seals	Type				At (m)		
	Турс				At (III)		
Screen Type)						
Size	OD :	0.00 cm					
From	ı (m)	То	(m)		Slot	Size (cm)	
Attachn	nent						
Top Fitti	ings		Botto	m Fitting	IS		_
Pack							
Туре			Grain	Size			
Amount						_	

Contractor	Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name

ALBERTA SOUTHERN EXPLORATION DRILLING LTD.

Certification No

Copy of Well report provided to owner Date approval holder signed

Printed on 10/24/2014 1:41:07 PM Page: 1 / 2

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

GIC Well ID GoA Well Tag No.

View in Imperial Export to Excel

390999

Drilling Company Well ID Date Report Received

1987/12/02

	on and Location							Measurement in Metr
Owner Name STRANGE, R.		ddress .O. BOX 981 CC	OCHRANE	Town		Province	Country	Postal Code T0L 0W0
Location 1/4 o		TWP RG/ 027 03	5		lock Plan		al Description	
Measured from Bo	oundary of m from m from	_	l I	1.274744	Degrees (NAD 8 Longitude -114	1	Elevation How Elevation Ob Not Obtained	
Additional Inform	nation							Measurement in Metr
Distance From To Is Artesian Flow Rate	op of Casing to Ground L	/min	cm	Is Flo	w Control Installe Describ			
Recommended P Recommended P			31.82 L/min 60.96 m				Depth Model (Output R	м Н.Р.
Additional Com			Depth	m	Well Dis Ge	eophysical Log Submitted to		mitted to ESRD
	ES AT 130-132' @ 1 G	PM, 210-234' @	8-10 GPM.					
Yield Test	ES AT 130-132' @ 1 G	iPM, 210-234' @	2 8-10 GPM.		T	aken From G		Measurement in Metr
Yield Test Test Date 1987/11/19	Start Time 12:00 AM	,	Static Water Level 39.62 m		Trawdown (m)	Depth Ela	round Level to water level apsed Time inutes:Sec	Measurement in Metr
Test Date 1987/11/19 Method of Water Remove Depth Withdrawn	Start Time 12:00 AM	46 L/min	Static Water Level	_		Depth Ela	to water level apsed Time	
Test Date 1987/11/19 Method of Water Remove Depth Withdrawn	Start Time 12:00 AM r Removal Type Air al Rate 45.4 n From 0.0 period was < 2 hours, 6	46 L/min	Static Water Level			Depth Ela	to water level apsed Time	

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name

ALBERTA SOUTHERN EXPLORATION DRILLING LTD.

Certification No

Copy of Well report provided to owner Date approval holder signed

Printed on 10/24/2014 1:41:07 PM Page: 2 / 2

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel

391000

Measurement in Metric

GIC Well ID GoA Well Tag No.

Drilling Company Well ID Date Report Received

1984/12/05

Well Ident	ification and L	ocation									Measurement in Metric
		Address RR2, COC	HRANE	Town				Province Country		Postal Code	
Location	1/4 or LSD 04	SEC 06	<i>TWP</i> 027	RGE 03	W of MER 5	Lot	Block	Plan	Additio	onal Description	
Measured f	rom Boundary o	of			GPS Coordinates in Decimal Degrees (NAD 83)				3)		
m from					Latitude 5	1.272936	Longi	tude <u>-114.</u> 4	420414	Elevation	m
m from					How Location Obtained				How Elevation Obtained		
		-			Мар					Not Obtained	

Drilling Information Method of Drilling Type of Work Cable Tool New Well Proposed Well Use Domestic & Stock

Yield Test Summary

Formation Log		Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description
3.05		Yellow Clay
7.32		Cemented Gravel
19.51		Gravel
20.12		Cemented Gravel
29.87		Gravel & Boulders
32.92		Brown Shale & Sandstone
40.23	Yes	Brown Water Bearing Sandstone

Recommended I	Pump Ra	ate0.0	00 L/min	<u> </u>				
		Removal Rate (tatic Wa	ter Level (m))	
1984/11/07		68.19	28.96					
Well Completion					Measu	rement in I	Metric	
Total Depth Drille	ed Finis	shed Well Depth	n Start	tart Date End Date				
40.23 m			1984/	/10/15	•	1984/11/07		
Borehole								
Diameter (cm)	Fron				To (m)		
0.00			00			40.23		
Surface Casing Steel	(if appl	icable)	Well Ca Steel	Ŭ				
		13.97 cm				11.43 cm		
Wall Thickness	::	0.620 cm	Wall 7					
Bottom at	t:	31.09 m		Тор а	at :	0.00 m	•	
			E	Bottom a	at:	40.23 m		
Perforations								
		Diameter or Slot	Slo	\+	Hole	or Slot		
From (m) T	o (m)	Width(cm)		n(cm)	Hole or Slot Interval(cm)			
	39.62	0.396			25.40			
Perforated by	Torch	1						
Annular Seal [Drivon							
		.00 m to	1 22	? m				
_								
Other Seals			_					
3 30010	Type				At (m)			
	,,,,				()			
Screen Type								
Size OD	: <u> </u>	0.00 cm						
From (m	1)	То	(m)		Slot	Size (cm)		
Attachmen	t							
Top Fittings	3		Botto	m Fitting	gs		_	
Pack							_	
Туре			Grain	Size				
Amount								

Contractor	Certification

Name of Journeyman responsible for drilling/construction of well UNKNOWN NA DRILLER

Company Name

DIVERSIFIED DRILLING & EXPLORATION CO.

Certification No

Copy of Well report provided to owner Date approval holder signed

Page: 1 / 2 Printed on 12/24/2014 10:52:45 AM

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

391000

1984/12/05

GIC Well ID GoA Well Tag No. Drilling Company Well ID Date Report Received

View in Imperial Export to Excel

Well Identification and Location Measurement in Metric Address Town Postal Code Owner Name Province Country RR2, COCHRANE CIRCLE J RANCHES 1/4 or LSD SEC TWP W of MER RGE Block Plan Additional Description Location Lot 04 06 027 03 GPS Coordinates in Decimal Degrees (NAD 83) Measured from Boundary of Elevation _ Latitude 51.272936 Longitude -114.420414 m m from How Elevation Obtained How Location Obtained m from Not Obtained Additional Information Measurement in Metric Distance From Top of Casing to Ground Level cm Is Artesian Flow Is Flow Control Installed Rate Describe Recommended Pump Rate 0.00 L/min Pump Installed Depth m Recommended Pump Intake Depth (From TOC) 0.00 m H.P. Model (Output Rating) m Well Disinfected Upon Completion Did you Encounter Saline Water (>4000 ppm TDS) Depth m____ Gas ____ Depth Geophysical Log Taken Submitted to ESRD Sample Collected for Potability Submitted to ESRD Yes Additional Comments on Well Yield Test Taken From Ground Level Measurement in Metric Depth to water level Test Date Start Time Static Water Level Drawdown (m) Elapsed Time Recovery (m) 1984/11/07 12:00 AM 28.96 m Minutes:Sec Method of Water Removal Type Bailer 68.19 L/min Removal Rate Depth Withdrawn From 32.00 m If water removal period was < 2 hours, explain why Water Diverted for Drilling Water Source Amount Taken Diversion Date & Time

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name

DIVERSIFIED DRILLING & EXPLORATION CO.

Certification No

UNKNOWN NA DRILLER Company Name

PARSONS DRILLING

Water Well Drilling Report

GIC Well ID

View in Imperial Export to Excel

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

GoA Well Tag No. Drilling Company Well ID Date Report Received

391598

Well Identification and Location						Measurement in Metric
Owner Name MURRAY, R.J.	Address 511 19ST NW, CALGARY	Town		Province	Country	Postal Code
Location 1/4 or LSD SEC NW 31	TWP RGE W of ME 026 03 5	ER Lot BI	lock Plan	Additional De	escription	
Measured from Boundary of		ordinates in Decimal	•	· ·	uation 1	200.02
m from		51.267033 cation Obtained	Longitude -1		vation <u>1</u> w Elevation Obta	290.83 m
m from	Map				imated	
D 30: 1.4						
Drilling Information Method of Drilling	Type of	Work				
Cable Tool	New We					
Proposed Well Use Domestic & Stock						
Formation Log	Measuremen	t in Metric Yie	eld Test Sum	mary		Measurement in Metric
Depth from Water Litholog	gy Description		commended F		L/min	Shakin Makan Lavral (m)
ground level (m) Bearing			Test Date	Water Removal Rate	(L/MIN) S	Static Water Level (m)
		We	ell Completio	n		Measurement in Metric
		Tota	tal Depth Drille	ed Finished Well Dep	th Start Date	End Date
			62 m rehole			
			Diameter (c	m) Fro	m (m)	To (m)
			0.00		0.00	39.62
		Ste	_	(if applicable)	Well Casing/L Steel	.iner
			Size OD		Size C	
		W	Vall Thickness		Wall Thickne	
			Bottom at	20.82 111	Bottom	
		Per	rforations			
				Diameter or Slot	Slot	Hole or Slot
				0 (m) Width(cm) 8.10 0.000	Length(cm)	Interval(cm) 0.00
			rforated by	0.100	'	0.00
			nular Seal D	rive Shoe		
			Placed from _	0.00 m to	0.00 m	
			Amount		_	
		Oth	her Seals	Туре		At (m)
				.,,,,		, tt ()
		Scr	reen Type			
			Size OD			
			From (m)) To) (m)	Slot Size (cm)
			Attachment			
			, ,		Bottom Fittin	ngs
		Pad			Croin Sins	
			Type Amount		Grain Size	
					_	
Contractor Contification						
Contractor Certification	r drilling/construction of well		Certific	ration No		

Printed on 10/24/2014 1:42:30 PM Page: 1 / 2

Water Well Drilling Report

GIC Well ID GoA Well Tag No.

View in Imperial Export to Excel

Drilling Company Well ID Date Report Received

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

Well Identification and	d Location						Measur	ement in Metric
Owner Name MURRAY, R.J.	Address 511 19ST N	NW, CALGARY	Town		Province	Countr	У	Postal Code
Location 1/4 or LSD NW	SEC TWP 31 026	RGE W of MER 03 5				nal Description		
Measured from Boundar	y of m from m from	Latitude		l Degrees (NAD 83 Longitude -114.		Elevation How Elevation (Estimated		_
Additional Information	1						Measur	ement in Metric
Is Artesian Flow	Casing to Ground Level		Is Fl	ow Control Installe Describ				
Recommended Pump F		L/mi	<u>in</u> Pump Ins	stalled		Depth	m	_
Recommended Pump II	ntake Depth (From TOC)	m	Туре		Make		H.P.	
						Model (Output		
Did you Encounter Sa	aline Water (>4000 ppm Ti		h r	m Well Disi		Taken		
Additional Comments	s on Well		Sal	mple Collected for	Potability	Su	Ibmitted to ES	RD
Yield Test				Ta	aken From G	Fround Level	Measur	ement in Metric
Test Date	Start Time	Static Water Level m						
Method of Water Rem	oval		<u> </u>					
	L/min m							
	was < 2 hours, explain wh	ny						
Water Diverted for Dr	illing							
Water Source		Amount Taken			Diversio	n Date & Time		

Contractor Certification

Name of Journeyman responsible for drilling/construction of well ${\tt UNKNOWN\ NA\ DRILLER}$

PARSONS DRILLING

Company Name

Certification No

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel

GIC Well ID

GoA Well Tag No.

Date Report Received

Drilling Company Well ID

ation									Measure	ement in Metric
Owner Name Address PARKER, G.L. P.O. BOX 123 CC			Town HRANE				Province	Country		Postal Code T0L 0W0
SEC 31	<i>TWP</i> 026	RGE 03	W of MER 5	Lot	Block	Plan	Additio	onal Description		
					•			Elevation	1295.40 m	
					_			How Flevation O	htained	-
om				. 0.5.000					J. 10 0	
S	SEC	Address P.O. BOX 1 SEC TWP 1 026	Address P.O. BOX 123 COCH SEC TWP RGE 1 026 03	Address P.O. BOX 123 COCHRANE SEC TWP RGE W of MER 1 026 03 5 GPS Coordin Latitude 5	Address P.O. BOX 123 COCHRANE SEC TWP RGE W of MER Lot 1 026 03 5 GPS Coordinates in Deci. Latitude 51.267033 How Location Obtained	Address Town P.O. BOX 123 COCHRANE SEC TWP RGE W of MER Lot Block 1 026 03 5 GPS Coordinates in Decimal Degree Latitude 51.267033 Longin How Location Obtained	Address	Address	Address Town Province Country P.O. BOX 123 COCHRANE SEC TWP RGE W of MER Lot Block Plan Additional Description 1 026 03 5 GPS Coordinates in Decimal Degrees (NAD 83) Latitude 51.267033 Longitude -114.402748 Elevation How Location Obtained How Elevation Obtained	Address P.O. BOX 123 COCHRANE SEC TWP RGE W of MER Lot Block Plan Additional Description 1 026 03 5 GPS Coordinates in Decimal Degrees (NAD 83) Latitude 51.267033 Longitude -114.402748 Elevation Detained How Location Obtained How Elevation Obtained

Drilling Information Method of Drilling Type of Work New Well-Abandoned Rotary Proposed Well Use Investigation Yield Test Summary Formation Log Measurement in Metric Measurement in Metric 0.00 L/min

-		
Depth from ground level (m)	Water Bearing	Lithology Description
0.30		Topsoil
1.22		Gray Clay
4.27		Brown Clay
6.71		Brown Sandy Clay
11.89		Sandy Gravel
17.07		Medium Grained Gravel
18.90		Fine Grained Gravel
19.20		Sandstone
24.69		Fine Grained Sand
32.92		Fine Grained Gravel
36.27		Shale
36.58		Dark Shale
43.59		Clay & Shale
49.38		Unknown

Test Date		Removal Rate			atic	Water Level (m)	
1981/10/10			(=,)			0.00	
Well Completion	n				Mea	asurement in N	/letric
Total Depth Drille	ed Finis	shed Well Dep	th Start	Date		End Date	
49.38 m							
Borehole							
Diameter (cm)		m (m)).00			To (m) 49.38	
Surface Casing	(if appl			asing/Li	ner	75.50	
Siza OD		0.00 cm		Siza Ol	n .	0.00 cm	
Wall Thickness			Wall 7			0.000 cm	
		0.00 m				0.00 m	
	5.00 III					0.00 m	
Perforations							
		Diameter or Slot	Slo	ot .		Hole or Slot	
From (m) T	o (m)	Width(cm)	Length	n(cm)	1	Interval(cm)	
Other Seals	0.	00 m to _) m_	At ((m)	
Screen Type							
		0.00 cm					
From (m	1)	To) (m)			Slot Size (cm)	
Attachmen	t						
Top Fittings				m Fitting	js		_
Pack							
Туре			Grain	Size			
Amount							

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name

KRIÉGER DRILLING LTD.

Certification No

Copy of Well report provided to owner Date approval holder signed

Page: 1 / 2 Printed on 10/24/2014 1:43:45 PM

Water Well Drilling Report

GIC Well ID GoA Well Tag No. Drilling Company Well ID

View in Imperial Export to Excel 391599

Date Report Received

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

vven identilic	alion and Li	ocalion									weasurement in we
Owner Name PARKER, G.L			Address P.O. BOX 1	23 COCH	RANE	Town			Province	Country	Postal Code T0L 0W0
	1/4 or LSD NE	<i>SEC</i> 31	<i>TWP</i> 026	RGE 03	W of MER 5	Lot	Block	Plan		Description	
Measured from		f m from m from				51.267033	•	ees (NAD 83) iitude114.40	2748	Elevation How Elevation Ob	
_		m irom			Мар					Estimated	
Additional In	formation										Measurement in Me
Distance Froi Is Artesian F	m Top of Casi Flow				cm	I:	s Flow Cor	ntrol Installed			
	Rate		L/min								
Recommende	ed Pump Rate	9			0.00 L/mir					Depth	m
Recommende	ed Pump Intal	ke Depth (From TOC)		0.00 m	Туре			Make	Model (Output F	H.P.
Did you En	anuntar Calina	a Matar (4000 nnm TI	201	Dont			Mall Disinf			Pating)
Dia you ⊑n	counter Saline	e vvater (>		Gas		1	m	Geor	ectea Opon Ci ohvsical Loa T	ompletion aken	
									Submitted to E		
							Sample C	ollected for P	otability	Sub	mitted to ESRD
	Comments or		ATED NOS		R SURFACE CA	SINC					
	FOR 13 MILD	TIAND W	TIER, NO 3	FLC3 I OF	C SOIN ACE OF	SING		T-1-	F 0		Management
Yield Test		Ot- of Time	_	04-45-	14/			Tak	en From Gro Depth t	ound Level o water level	Measurement in Me
Test Date 1981/10/10		Start Time 12:00 AM		Statio	0.00 m		Drav	vdown (m)		osed Time nutes:Sec	Recovery (m)
Method of W	ater Remova	al									
	Type A		L/min								
	moval Rate _ rawn From _										
If water remo	val period wa	s < 2 hours	s, explain wh	У							
Water Divert	ed for Drillin	na									
Water Source		J		Amo	ount Taken				Diversion I	Date & Time	

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

Company Name KRIÉGER DRILLING LTD.

UNKNOWN NA DRILLER

Certification No

Water Well Drilling Report

View in Imperial Export to Excel

391600

GIC Well ID GoA Well Tag No.

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

Drilling Company Well ID

		4000	naoy. The inioi	madon on d	no report win be rete	инса ита раб	ilo database.			Date Report Rece	eived 198	1/11/25
Well Identi	fication and L	ocation									Measure	ement in Metric
Owner Name Address PARKER, G.L. P.O. BOX 123 COCHRAN					HRANE					e Country	/	Postal Code T0L 0W0
Location	1/4 or LSD NE	SEC 31	<i>TWP</i> 026	RGE 03	W of MER 5	Lot	Block	Plan	Additio	onal Description		
Measured fi		m from			GPS Coordir Latitude 5	1.267033	•	es (NAD 83) tude114.4		Elevation How Elevation C	1295.40 m	
		m from			Map	n Obtained				Estimated	Diamed	

Drilling Information			
Method of Drilling	Type of Work	Plugged	1981/10/14
Rotary	New Well-Abandoned	Plugged with	Unknown
Proposed Well Use Domestic		Amount	

Formation Log			Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description	
0.30		Topsoil	
10.06		Sandy Till	
17.68		Clay & Shale	
20.12		Clay & Gravel	
21.03		Shale	
22.86		Clay & Silt	
24.08		Gray Clay	
26.82		Clay & Gravel	
27.43		Lost Circulation	

Yield Test S	Yield Test Summary Measurement in Metric							
Recommende	ed Pump R	ate	L/mir	<u> </u>				
Test Date	Water	Removal Rate (L/min)	St	tatic Wate	er Level (m))	
Well Comple					Measure	ement in I	Metric	
Total Depth D				nd Date				
27.43 m			1981	/10/11	19	981/10/14		
Borehole								
Diamete 0.0		Fron 0.	n (m)	-		o (m) 27.43		
Surface Cas			Well Ca	asing/Li	_	.7.73		
		0.00 cm				0.00 cm	-	
Wall Thickn	ess:	0.000 cm	Wall 7	Thicknes	s:	0.000 cm		
Botton	n at :	0.00 m				0.00 m		
			1	Bottom a	at:	0.00 m		
Perforations		Dit						
		Diameter or Slot	Slo	ot	Hole (or Slot		
From (m)	To (m)	Width(cm)						
	n 0	. 00 m _to		0 m				
Other Seals								
	Type				At (m)			
Screen Type Size		0.00 cm						
	(m)	То	(m)		Slot 9	Size (cm)		
Attachn	nent							
				m Fitting	gs		_	
Pack								
Туре _			Grain	Size				
Amount								

Contractor	Certification

Name of Journeyman responsible for drilling/construction of well UNKNOWN NA DRILLER

Company Name

KRIÉGER DRILLING LTD.

Certification No

Copy of Well report provided to owner Date approval holder signed

Printed on 10/24/2014 1:44:25 PM Page: 1 / 2

Water Well Drilling Report

GIC Well ID

View in Imperial Export to Excel

GoA Well Tag No.

391600

Drilling Company Well ID

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database. Date Report Received 1981/11/25 Well Identification and Location Measurement in Metric Address Postal Code Owner Name Town Province Country T0L 0W0 PARKER, G.L. P.O. BOX 123 COCHRANE 1/4 or LSD SEC TWP W of MER RGE Lot Block Plan Additional Description Location NE 31 026 GPS Coordinates in Decimal Degrees (NAD 83) Measured from Boundary of Elevation Latitude 51.267033 Longitude -114.402748 1295.40 m m from How Location Obtained How Elevation Obtained m from Estimated Additional Information Measurement in Metric Distance From Top of Casing to Ground Level Is Artesian Flow Is Flow Control Installed Rate Describe Recommended Pump Rate L/min Pump Installed Depth m Recommended Pump Intake Depth (From TOC) m H.P. Model (Output Rating) m Well Disinfected Upon Completion Did you Encounter Saline Water (>4000 ppm TDS) Depth ____m___ Depth Geophysical Log Taken Gas Submitted to ESRD Sample Collected for Potability Submitted to ESRD Additional Comments on Well Yield Test Taken From Ground Level Test Date Start Time Static Water Level Method of Water Removal Type L/min Removal Rate Depth Withdrawn From m If water removal period was < 2 hours, explain why Water Diverted for Drilling

	water Diverted for Drilling		
	Water Source	Amount Taken L	Diversion Date & Time
_			

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name KRIÉGER DRILLING LTD. Certification No

Water Well Drilling Report

View in Imperial Export to Excel GIC Well ID

395786

GoA Well Tag No.

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database. Date Report Received

Drilling Company Well ID 1982/02/02

Well Ident	tification and L	ocation									Measurement in Metric
Owner Name Address PARKER, G.L. P.O. BOX 123 COC		123 COCH	Town HRANE			Province	Country	Postal Code			
Location	1/4 or LSD NE	SEC 31	<i>TWP</i> 026	RGE 03	W of MER 5	Lot	Block	Plan	Additio	onal Description	
Measured	from Boundary o	of			GPS Coordinates in Decimal Degrees (NAD 83)						
	•	m from			Latitude	51.267033	Longi	tude <u>-114.</u>	102748	Elevation	m
		m from			How Location	on Obtained				How Elevation Of	btained
				- 1	Мар					Not Obtained	

Drilling Information Method of Drilling Type of Work New Well Cable Tool Proposed Well Use Domestic & Stock

Formation Log			Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description	
1.83		Brown Clay & Boulders	
3.35		Gray Clay & Boulders	
3.96		Boulders	
10.97		Brown Clay & Gravel	
13.72		Gravel	
15.54		Brown Shale	
21.64		Gray Hard Shale	
23.16		Gray Hard Sandstone	
25.30		Gray Shale	
26.82		Gray Sandstone	
27.74		Gray Shale	
28.65		Gray Sandstone	
29.26		Gray Soft Sandstone	
30.78		Gray Hard Sandstone	
34.75		Gray Firm Shale	
36.88		Gray Hard Sandstone	
43.89		Gray Firm Shale	
45.11		Gray Hard Sandstone	
54.86		Gray Shale	
56.39	Yes	Gray Water Bearing Sands	tone
62.48		Gray Shale	

Yield Test Sur	nmary				Measu	urement in	Metric
Recommended	Pump Rat	e 0.0	00 L/mir	<u>1</u>			
Test Date	Water R	Removal Rate ((L/min)	S	tatic Wa	ater Level (m	1)
1981/11/19		68.19			4	18.77	
Well Completion					Measu	urement in	Metric
Total Depth Drill	led Finish	ned Well Depti				End Date	
62.48 m	1981	/11/05		1981/11/19			
Borehole							
Diameter (n (m)			To (m)	
0.00 Surface Casing Steel		able)	.00 Well Co Steel	asing/L	iner	62.48	
Size OL) : <u> </u>	7.78 cm		Size O	D :	12.70 cm	_
Wall Thickness	s :0	.587 cm	Wall	Thicknes	ss :	0.556 cm	_
Bottom a	t : 1	3.72 m		Тора	at :	0.00 m	_
				Bottom a	at:	62.48 m	_
Perforations							
		Diameter or Slot	SI	ot	Hol	e or Slot	
From (m)	Го (m)				Interval(cm)		
48.16		0.953				40.64	
Perforated by	Torch						
_	0.0	0 m to		2 m			
			_				
Other Seals							
	Type				At (m))	
Screen Type							
) <i>:</i>	0.00 cm					
From (n			(m)		Slo	t Size (cm)	
Attachmor	n f						
				m Fittin	ne		_
			טווטם	iii i itali			_
Pack			Our !-	Cimo			
Type			Grain	Size			
Amount	0.00						

Contractor	Certification

Name of Journeyman responsible for drilling/construction of well UNKNOWN NA DRILLER

Company Name PARSONS DRILLING Certification No

Copy of Well report provided to owner Date approval holder signed

Printed on 10/24/2014 1:45:00 PM Page: 1 / 2

Water Well Drilling Report

View in Imperial Export to Excel

GIC Well ID GoA Well Tag No. 395786

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

Drilling Company Well ID Date Report Received 1982/02/02

	and Location					Measurement in Metric
Owner Name PARKER, G.L.	Address P.O. BOX 1	23 COCHRANE	Town	Province	Country	Postal Code
Location 1/4 or L	SD SEC TWP 31 026	03 5	Lot Block		nal Description	
Measured from Bound	dary of m from m from	GPS Coordinate Latitude 51.2 How Location O Map		s (NAD 83) ade <u>-114.402748</u>	Elevation How Elevation Ob Not Obtained	
Additional Informati	on					Measurement in Metric
Is Artesian Flow	of Casing to Ground Level	cm		ol Installed		
Recommended Pum Recommended Pum	p Rate p Intake Depth (From TOC)	0.00 L/min 60.96 m	Pump Installed Type			m H.P.
					Model (Output F	Pating)
Did you Encounter		DS) Depth Depth Depth	m m		g Taken	
i					Cub	''' '' '' ''
Additional Comme	nts on Well WATER QUALITY AS TUR	BID	Sample Coll	lected for Potability	Subi	mitted to ESRD
		BID	Sample Col.	Taken From (Ground Level	Measurement in Metric
DRILLER REPORTS		Static Water Level 48.77 m		Taken From (Dep		
Yield Test Test Date 1981/11/19 Method of Water Re Ty Removal R	Start Time 12:00 AM	Static Water Level		Taken From (Dep	Ground Level th to water level Elapsed Time	Measurement in Metric
Yield Test Test Date 1981/11/19 Method of Water Re Ty Removal R Depth Withdrawn Fr	Start Time 12:00 AM emoval //pe Bailer ate 68.19 L/min	Static Water Level 48.77 m		Taken From (Dep	Ground Level th to water level Elapsed Time	Measurement in Metric
Yield Test Test Date 1981/11/19 Method of Water Re Ty Removal R Depth Withdrawn Fr	Start Time 12:00 AM Prove Bailer ate 68.19 L/min om 48.77 m	Static Water Level 48.77 m		Taken From (Dep	Ground Level th to water level Elapsed Time	Measurement in Metric
Yield Test Test Date 1981/11/19 Method of Water Re Ty Removal R Depth Withdrawn Fr If water removal period	Start Time 12:00 AM Prove Bailer ate 68.19 L/min om 48.77 m	Static Water Level 48.77 m		Taken From (Deproown (m)	Ground Level th to water level Elapsed Time	Measurement in Metric

Contractor Certification

Name of Journeyman responsible for drilling/construction of well ${\tt UNKNOWN\ NA\ DRILLER}$

Printed on 10/24/2014 1:45:00 PM

Company Name PARSONS DRILLING Certification No

Copy of Well report provided to owner Date approval holder signed

Page: 2 / 2

Company Name

UNKNOWN DRILLER

Water Well Drilling Report

View in Imperial Export to Excel GIC Well ID

Copy of Well report provided to owner Date approval holder signed

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

GoA Well Tag No. Drilling Company Well ID Date Report Received

395793

Well Ident	ification and L	ocation.	Address			Town	n		Province	Country	Measurement in Metric Postal Code
KIRK, S.	16			1295 COC	HRANE	7000			TTOVINGE	Country	TOL OWO
Location	1/4 or LSD NE	SEC 31	<i>TWP</i> 026	<i>RGE</i> 03	W of MER 5	Lot	Block	Plan	Additional E	Description	
Measured f	rom Boundary o	m from m from			GPS Coordii Latitude 5 How Locatio Not Verified	51.267033	Long	es (NAD 83) itude <u>-114.4</u>	02748 Ele Ho	evation ow Elevation Ob ot Obtained	
Drilling Info	ormation										
Method of Unknown					Type of Wo Chemistry	rk					
Proposed Domestic	Well Use										
Formation	Log			Me	easurement in	Metric		st Summar	-		Measurement in Metric
Depth from ground leve	Water Bearing	Litholog	gy Descriptio	on			Recomm Test D		Rate ter Removal Rate		Static Water Level (m)
							Total Dep 62.48 m		Finished Well Dep	oth Start Date	Measurement in Metric End Date
							Borehole Dia	meter (cm)	Fro	om (m)	To (m)
							Surface	0.00 casing (if a		0.00 Well Casing	62.48
							Wall Th		0.000 cm 0.00 m	Wall Thickr To Bottoi	p at : 0.00 m m at : 0.00 m Hole or Slot
								Seal I from	0.00 m to	0.00 m	- At (m)
							Screen 1				
								From (m)	0.00 cm	o (m)	Slot Size (cm)
							Atta	achment		Rottom Fits	tings
							Pack				
	Certification										
	urneyman resp NA DRILLER	onsible for	drilling/cons	struction of	well			Certification	n No		

Printed on 10/24/2014 1:45:55 PM Page: 1 / 2

Water Well Drilling Report

View in Imperial Export to Excel

GIC Well ID GoA Well Tag No. Drilling Company Well ID Date Report Received

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

Well Identific	ation and L	ocation										Meas	surement in Metric
Owner Name KIRK, S.			Address P.O. BOX	1295 COCH	IRANE		Town			Province	Coui	ntry	Postal Code T0L 0W0
	1/4 or LSD NE	SEC 31	<i>TWP</i> 026	RGE 03	W of ME 5		Lot	Block	Plan		onal Description		
Measured fron		m from m from				51.2 cation C	267033	•	es (NAD 83 itude114.4	·	Elevation How Elevation Not Obtained	n Obtained	m
Additional Inf	ormation											Meas	urement in Metric
Distance Fron Is Artesian F					cm	_	Is	Flow Cor		d 			
Recommende Recommende	,	е				_/min n		_			Depth	m	
Did you End	counter Saline	e Water (>4		DS) Gas							n Completion g Taken o ESRD		
Additional (Comments or	า Well						Sample C	ollected for I	Potability	;	Submitted to E	ESRD
Yield Test									Ta	ken From (Ground Level	Meas	urement in Metric
Test Date		Start Time		Statio	: Water Lev	rel m							
	Type noval Rate		<u>L/mi</u> n				_						
Depth Withdr	rawn From		m										
If water remov	val period wa	s < 2 hours,	explain wl	hy									
Water Diverte	ed for Drillir	ng											
Water Source				Amo	ount Taken					Diversion	on Date & Time		

Contractor Certification

Name of Journeyman responsible for drilling/construction of well ${\tt UNKNOWN\ NA\ DRILLER}$

Company Name UNKNOWN DRILLER Certification No

Water Well Drilling Report

View in Imperial Export to Excel

GIC Well ID GoA Well Tag No. 494773

The driller supplies the data contained in this report. The Province disclaims responsibility for its

Drilling Company Well ID

accuracy. The information on	this report will be retained in a public database	Date	Report Received	1999/11/25
Well Identification and Location			M	easurement in Metric
Owner Name Address GOETJEN, MORRIE RR1, AIRDRIE	Town	Province	Country CANADA	Postal Code T4B 2A3
Location 1/4 or LSD SEC TWP RGE	W of MER Lot Block	Plan Additional De	scription	
NE 36 26 4	5 GPS Coordinates in Decimal Degree	oos (NAD 92)		
Measured from Boundary of	_		ration	m
m from	How Location Obtained		Elevation Obtained	
m from	Not Verified		Obtained	
Drilling Information				
Method of Drilling	Type of Work			
Rotary	New Well			
Proposed Well Use Stock				
	leasurement in Metric Yield Te	est Summary	M	easurement in Metric
		•	 37 L/min	
Depth from Water Lithology Description ground level (m) Bearing	Test			c Water Level (m)
3.05 Brown Clay	1999/:	11/16 63.65		22.25
23.16 Coarse Grained Gravel	Well Co	mpletion	M	easurement in Metric
29.26 Yes Water Bearing Gravel		pth Drilled Finished Well Deptl		End Date
30.48 Brown Shale	30.48 m		1999/11/15	1999/11/16
	Borehol	е		
	Dia		n (m)	To (m)
	Sunface		00 Well Casing/Line	30.48
	Steel	Casing (if applicable)	well Casing/Line	r
		Size OD : 13.97 cm	Size OD:	0.00 cm
	Wall TI	nickness: 0.620 cm	Wall Thickness :	0.000 cm
	В	ottom at : 28.04 m	Top at :	0.00 m
			Bottom at :	0.00 m
	Perforat	Diameter or		
		Slot	Slot	Hole or Slot
	From (m) To (m) Width(cm)	Length(cm)	Interval(cm)
	Perforate	ed by		
		Seal Driven & Bentonite		
		d from to	28.04 m	
		mount	_	
	Other Se	Type	Δ	t (m)
		Турс		c (III)
	Screen	Typo		
		Size OD: 0.00 cm		
			(m)	Slot Size (cm)
			(···/)	SIDE SIZE (CITI)
	Att	achment		
	Тор	Fittings	Bottom Fittings	
	Pack			
	Туре		Grain Size	
	Amou			

Contractor Certification

Name of Journeyman responsible for drilling/construction of well UNKNOWN NA DRILLER

Company Name

ALKÉN BASIN DRILLING LTD.

Certification No

Copy of Well report provided to owner Date approval holder signed

Printed on 10/24/2014 1:46:32 PM Page: 1 / 2

Water Well Drilling Report

GIC Well ID

View in Imperial Export to Excel

GoA Well Tag No.

494773

Drilling Company Well ID

AIDEILA	THE UTILETS	supplies the data of the information on	contained in this report. The this report will be retained	e Province disclaims re in a public database.	sponsibility for its	Drilling Company We Date Report Receive	
Well Identification	and Location						Measurement in M
<mark>Owner Name</mark> GOETJEN, MORRIE		ress , AIRDRIE		Town	Province	Country CANADA	Postal Co T4B 2A3
Location 1/4 or I	LSD SEC T 36 20	WP RGE	W of MER L 5	.ot Block	Plan Addition	onal Description	
Measured from Bour	ndary of		l .	s in Decimal Degree			
	m from	_			ude <u>-114.426119</u>	Elevation	
	m from	_	How Location Ob	tained		How Elevation Obta	ained
			Not Verified			Not Obtained	
dditional Informa	tion						Measurement in M
	of Casing to Ground L		cm				
Is Artesian Flow				Is Flow Cont	rol Installed		
Rate	L/n	<u>iin</u>			Describe		
Recommended Pun	np Rate		36.37 L/min	Pump Installed	Make	Depth	m
Recommended Pun	np Intake Depth (From		27.43 m	Туре	Make		Н.Р.
						Model (Output Ra	nting)
Did you Encounte	r Saline Water (>4000	ppm TDS)	Depth	m	Well Disinfected Upon	n Completion	
			Depth				
					Submitted :		
				Sample Co	llocted for Potability	Suhm	sitted to ESPD
Additional Comm	ents on Well			Sample Co		Subili	itted to ESRD
		OP OF CASIN	G TO GROUND LEVEL	_: 2'.			
ield Test						Ground Level oth to water level	Measurement in M
Test Date	Start Time	St	atic Water Level	Draw	·	Elapsed Time	Recovery (m)
1999/11/16	12:00 AM		22.25 m	Diawo		Minutes:Sec	Recovery (III)
						1:00	26.82
Method of Water R						2:00	24.38
	Type Air					3:00	23.16
Removal I	Rate 63.65	<u>L/mi</u> n				4:00 5:00	22.71 22.56
Depth Withdrawn F	From 30.48	m				6:00	22.40
*				_		7:00	22.25
lf water removal per	riod was < 2 hours, exp	olain why				8:00	22.25
,	, ,	-				10:00	22.25

Water Diverted for Drilling			
Water Source	Amount Taken	Diversion Date & Time	

Contractor Certification

Name of Journeyman responsible for drilling/construction of well UNKNOWN NA DRILLER

Company Name

ALKÉN BASIN DRILLING LTD.

Certification No

Water Well Drilling Report

View in Imperial Export to Excel GIC Well ID

498400

GoA Well Tag No.

Drilling Company Well ID 2001/06/22

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

			•			-				Date Report Receiv	eu 2001/00/22
Well Identif	fication and L	ocation									Measurement in Metric
Owner Name GIBBS, DAV			Address P.O. BOX	1773 SPRL	JCE VIEW	Town			Province	Country	Postal Code T0M 1V0
Location	1/4 or LSD NW	SEC 31	<i>TWP</i> 026	RGE 03	W of MER 5	Lot	Block	Plan	Additio	onal Description	
Measured fro	om Boundary o	of			GPS Coordir	nates in Dec	imal Degre	es (NAD 83)			
		m from			Latitude 5	1.267033	Longi	tude <u>-114.4</u>	14280	Elevation	m
		m from			How Location	n Obtained				How Elevation Ob	tained
					Not Verified					Not Obtained	

Drilling Information Method of Drilling Type of Work Cable Tool New Well Proposed Well Use Domestic Yield Test Summary Measurement in Metric

Formation Log			Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description	
4.57		Brown Clay & Rocks	
8.23		Gray Sandstone	
13.72		Gray Shale	
19.51		Gray Sandy Shale	
22.86		Gray Shale	
24.08		Gray Sandstone	
29.87		Gray Shale	
30.78		Blue Shale	
34.14		Gray Silty Shale	
54.56		Gray Shale	
57.30		Gray Sandstone	
67.67		Gray Shale	
71.63		Gray Sandy Shale	
74.68		Gray Shale	

Recommend	ed Pump Ra	ate 9.0	09 L/mir	<u> </u>			
		Removal Rate (St	tatic Water Leve	el (m)	
2001/05/14	1	9.09			10.82		
Well Compl	etion				Measuremen	t in Metri	
Total Depth L	Drilled Fini	shed Well Deptl			End Dat		
74.68 m			2001	/05/07	2001/05	/14	
Borehole							
	er (cm)		n (m)		To (m)		
0.0 Surface Cas			00 Well Ca	asing/Li	74.68 iner		
Steel	• • • • • • • • • • • • • • • • • • • •	•	Plastic	_			
Size	OD :	13.97 cm		D: 11.43			
			Wall 7	Thicknes	0.602	cm	
Bottor	n at :	24.69 m		Тор а	at : 19.81	m	
			Bottom at : 74.68			m	
Perforations	•						
From (m) 24.69	To (m) 74.68	Diameter or Slot Width(cm) 0.635	Slot		Hole or Slot Interval(cm 20.32		
Perforated by		0.000			20.02		
Annular Sea		.00 m to	24.60) m			
		.00 111 10		9 111			
Other Seals			_				
	Type		At (m)				
C							
Screen Type Size	OD :	0.00 cm					
	n (m)		(m)		Slot Size (c	m)	
Attach	nont						
				m Eittin	70		
	irigs		Botto	ııı Hıtting	gs		
Pack							
Туре			Grain Size				
Amount							

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name

MEDICINE VALLEY WATER WELLS

Certification No

Copy of Well report provided to owner Date approval holder signed

Page: 1 / 2 Printed on 10/24/2014 1:47:51 PM

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel 498400

GIC Well ID GoA Well Tag No.

Drilling Company Well ID 2001/06/22 Date Report Received

o Rate o Intake Depth Saline Water (TWP 026 Dund Level L/min (From TOC) >4000 ppm TDS Ga	9 5 6 6 7 7 6 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6	PS Coordinatifude 51 by Location of Verified cm 9.09 L/min 1.63 m Depth Depth	.267033 Obtained	Block bimal Degree Longi s Flow Con c Installed m m	Plan Pes (NAD 83) itude -114.414 per control Installed Describe Geoph Su collected for Potential	Depute Make Months of the Make Months of the Make Invisional Log Take Abmitted to ESR	h oldel (Output Rabletion	Measurement in Me m H.P. ating)
and the state of t	026 Dund Level L/min (From TOC) >4000 ppm TDS Ga	9 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ex Coordinatitude 51 by Location of Verified cm 9.09 L/min 1.63 m Depth Depth	Ates in Dec 1.267033 Obtained	s Flow Con o Installed m m	ves (NAD 83) itude114.414 itude114.414 itude114.414 itude114.414 itude114.414 itude114.414	280 Elev How Not Deput Make Montage h oldel (Output Rabletion	Measurement in Me m H.P ating)	
m from m from on f Casing to Gro o Rate o Intake Depth Saline Water (L/min (From TOC) >4000 ppm TDS Ga	La Hd No No S	cm 9.09 L/min 1.63 m Depth Depth	.267033 Obtained	s Flow Con o Installed _ m m	trol Installed	Depi Make Mot Mot Mot Mot Mot Mot Mot Mo	ch Elevation Obtained Characteristics of the content of the conte	Measurement in Me m H.P ating)
m from on f Casing to Gro o Rate o Intake Depth Saline Water (L/min (From TOC) >4000 ppm TDS Ga	Ho No	ew Location of Verified cm 9.09 L/min 1.63 m Depth Depth	Obtained I. Pump Type	s Flow Con o Installed _ m m	well Disinfed Geoph Su	Depi Make Mot Mot Mot Mot Mot Mot Mot Mo	ch Elevation Obtained Characteristics of the content of the conte	Measurement in Me m H.P ating)
on f Casing to Gro Rate Intake Depth Saline Water (Ints on Well DISTANCE FE	L/min (From TOC) >4000 ppm TDS Ga	9 7/	cm 9.09 L/min 1.63 m Depth Depth	l. Pump Type	m m	Well Disinfed Geoph Su	Depi	obtained h odel (Output Repletion	Measurement in Me m H.P ating) mitted to ESRD
o Rate o Intake Depth Saline Water (L/min (From TOC) >4000 ppm TDS Ga	5) 7'	9.09 L/min 1.63 m	Ритр Туре	m m	Well Disinfed Geoph Su	Depi Make	h odel (Output Re pletion n Subn	m H.P ating) mitted to ESRD
o Rate o Intake Depth Saline Water (L/min (From TOC) >4000 ppm TDS Ga	5)ss	9.09 L/min 1.63 m Depth Depth	Ритр Туре	m m	Well Disinfed Geoph Su	Department Department	h odel (Output Ra oletion n C Subn	m H.P ating) mitted to ESRD
o Rate o Intake Depth Saline Water (L/min (From TOC) >4000 ppm TDS Ga	5)ss	9.09 L/min 1.63 m Depth Depth	Ритр Туре	m m	Well Disinfed Geoph Su	Department Department	h odel (Output Ra oletion n C Subn	m H.Pating)
o Rate o Intake Depth Saline Water (L/min (From TOC) >4000 ppm TDS Ga	5 7' (6)	9.09 L/min 1.63 m Depth Depth	Ритр Туре	m m	Well Disinfed Geoph Su	Department Department	h odel (Output Ra oletion n C Subn	m H.Pating)
o Rate o Intake Depth Saline Water (nts on Well DISTANCE FE	(From TOC) >4000 ppm TDS Ga	5 7' (6)	9.09 L/min 1.63 m Depth Depth	Ритр Туре	m m	Well Disinfed Geoph Su ollected for Pot	Make	h odel (Output Ra oletion n Subn	m H.Pating)
Saline Water (: nts on Well DISTANCE FE	>4000 ppm TDS Ga ROM TOP OF C	7′ (S) (S)	Depth Depth	Туре	m m	Well Disinfed Geoph Su ollected for Pot	Make	odel (Output Re oletion n D Subn	H.Pating)
Saline Water (nts on Well DISTANCE FR	>4000 ppm TDS Ga ROM TOP OF C	8) ss	Depth Depth		m m	Well Disinfed Geoph Su ollected for Pot	Mocted Upon Comp nysical Log Take abmitted to ESR dability	odel (Output Ri oletion n D Subn	ating)
nts on Well DISTANCE FF	Ga ROM TOP OF C		Depth		m	Geoph Su ollected for Pot	cted Upon Comp nysical Log Take ubmitted to ESR tability	oletion n D Subn	nitted to ESRD
nts on Well DISTANCE FF	Ga ROM TOP OF C		Depth		m	Geoph Su ollected for Pot	nysical Log Take ubmitted to ESR tability	n D Subn	mitted to ESRD
DISTANCE F	ROM TOP OF C					Su	ubmitted to ESR.	Subn	mitted to ESRD
DISTANCE F		ASING TO GF	ROUND LE	VEL: 1'.	Sample Co	ollected for Pot	tability	Subn	
DISTANCE F		ASING TO GE	ROUND LE	VEL: 1'.	Sample Co				
DISTANCE F		ASING TO GF	ROUND LE	VEL: 1'.					
		ASING TO GF	ROUND LE	VEL: 1'.		Takei	n From Group	d I aval	Measurement in Me
Start Tin	ne					Takei	n From Group	al I accal	Measurement in Me
Start Tin	ne								
Start Tin	ne					ranoi	Depth to w		Wododiomont in we
12:00 A		Static Wate	er Level 0.82 m		Draw	vdown (m)	Elapsed Minute	l Time	Recovery (m)
marral							1:0		54.32
									53.77 53.28
	0.00 1/:-			_					52.88
							5:0	00	52.40
om	0.00 m								52.09
									51.82
od was < 2 nou	rs, explain wny								51.58
									51.19 50.81
									50.38
									50.05
									49.50
									48.05
							25:	00	46.09
									44.84
									43.08
									41.53
									39.01
									36.32
									33.19
									30.57
									28.79 26.93
							120	.00	20.33
Drilling									
		Amount T	Taken				Diversion Date	& Time	
		Amount					Divorsion Date	, a mine	
Referen	rom	Type Bailer Rate 9.09 L/min rom 0.00 m Tipod was < 2 hours, explain why	Type Bailer Rate 9.09 L/min 0.00 m iod was < 2 hours, explain why Drilling	Type Bailer Rate 9.09 L/min Type 0.00 m siod was < 2 hours, explain why	Type Bailer Rate 9.09 L/min rom 0.00 m riod was < 2 hours, explain why Drilling Amount Taken	Type Bailer Rate 9.09 L/min rom 0.00 m iod was < 2 hours, explain why Drilling Amount Taken	Type Bailer Rate 9.09 L/min From 0.00 m	State 9.09 L/min 4:0 5:0	Since Sinc

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name

MEDICINE VALLEY WATER WELLS

Certification No

Copy of Well report provided to owner Date approval holder signed

Printed on 10/24/2014 1:47:51 PM Page: 2 / 2

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel GIC Well ID

1022436

GoA Well Tag No. Drilling Company Well ID Date Report Received

2014/09/24

Measurement in Metric

Well Identi	fication and L	ocation									Measurement in Me	etric
Owner Nam LAFARGE (e CANADA INC		Address 115 QUAF	RRY PARK	BLVD	Town CALG			Province ALBERTA	Country CANADA	Postal Cod T2C 5G9	le
Location	1/4 or LSD 9	SEC 36	<i>TWP</i> 26	RGE 4	W of MER 5	Lot	Block	Plan	Additio	nal Description		
Measured from Boundary of m from					GPS Coordin Latitude 5	nates in Dec 1.265686	•	es (NAD 83 itude114.	<i>'</i>	Elevation	m	
		m from			How Location Hand held au		GPS 20-30ı	m		How Elevation Ob Hand held autono	ntained mous GPS 20-30m	

Drilling Information Method of Drilling Type of Work New Well Rotary - Air Proposed Well Use Investigation Yield Test Summary

Formation Log			Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description	
0.30		Topsoil	
4.27		Brown Moist Clay	
25.30		Gravel	
28.35		Moist Gravel	
29.26		Sandstone	
30.48		Shale	

	Rate	L/111111	
Test Date Wa	ter Removal Rate (L/min)	Static Water Level (m)
Well Completion			Measurement in N
Total Depth Drilled F			
30.48 m 2	8.35 m	2014/05/01	2014/05/05
Borehole			
Diameter (cm)	From	n (m)	To (m)
20.02 15.56	0. 25	.60	25.60 30.48
Surface Casing (if a			
Steel	орпсаыс)	Wen Gasing/i	inci
Size OD:	16.81 cm	Size	DD: <u>cm</u>
Wall Thickness:	0.478 cm	Wall Thickne	ess: cm
Bottom at :	25.60 m		at: m
			at: m
Perforations			
	Diameter or	.	
From (m) To (m	Slot Width(cm)	Slot	Hole or Slot
Perforated by			
Annular Seal Ceme			
Annular Seal Ceme	0.00 m to		
Annular Seal Placed from Amount Other Seals	0.00 m to		At (m)
Annular Seal Ceme Placed from Amount Other Seals	0.00 m to		
Annular Seal Placed from Amount Other Seals	0.00 m to 150.00 Gallons		At (m)
Annular Seal Placed from Amount Other Seals Type Drive Screen Type Stainl	0.00 m to 150.00 Gallons		At (m)
Annular Seal Placed from Amount Other Seals Screen Type Stainl Size OD: From (m)	0.00 m to	(m)	At (m)
Annular Seal Placed from Amount Other Seals Screen Type Stainl Size OD: From (m) 26.21	0.00 m to	(m)	At (m) 25.60
Annular Seal Placed from Amount Other Seals Type Drive Screen Type Stainl Size OD: From (m) 26.21 Attachment Tel	0.00 m to	(m) .43	At (m) 25.60 Slot Size (cm) 0.025
Annular Seal Placed from Amount Other Seals Screen Type Stainl Size OD: From (m) 26.21	0.00 m to	(m)	At (m) 25.60 Slot Size (cm) 0.025
Annular Seal Placed from Amount Other Seals Type Drive Screen Type Stainl Size OD: From (m) 26.21 Attachment Tel	0.00 m to	(m) .43	At (m) 25.60 Slot Size (cm) 0.025
Annular Seal Placed from Amount Other Seals Type Drive Screen Type Stainl Size OD: From (m) 26.21 Attachment Tel Top Fittings Pack	0.00 m to	(m) .43	At (m) 25.60 Slot Size (cm) 0.025 ngs Tail Pipe

Contractor Certification

Name of Journeyman responsible for drilling/construction of well ${\sf CHRIS}\,$ ${\sf QUINLAN}\,$

Company Name AARON DRILLING INC. Certification No

48135A

Copy of Well report provided to owner Yes

Date approval holder signed

2014/09/24

Water Well Drilling Report

GIC Well ID

View in Imperial Export to Excel 1022436

GoA Well Tag No.

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

Drilling Company Well ID 2014/09/24 Date Report Received

Well Identification and Location	n				·	Measurement in Metric
Owner Name LAFARGE CANADA INC	Address 115 QUARRY PAR	K BLVD	Town CALGARY	Provinc ALBER	,	Postal Code T2C 5G9
Location 1/4 or LSD SEC 9 36	<i>TWP</i> RGE 26 4	5		Plan Addit	ional Description	
Measured from Boundary of m from m from		Latitude <u>51.2</u> How Location C		tude -114.424418	Elevation How Elevation Obtained Hand held autonor	ained
Additional Information						Measurement in Metric
Distance From Top of Casing to C Is Artesian Flow Rate				trol Installed		
Recommended Pump Rate Recommended Pump Intake Dep		L/min m		_	Depth	
Did you Encounter Saline Wate	r (>4000 ppm TDS) Gas		m m	Well Disinfected Upo Geophysical L Submitted	og Taken	
Additional Comments on Well PUMP TEST PERFORMED BY W	/ATERLINE RESOURC	ES	Sample Co	ollected for Potability _	Subn	nitted to ESRD
Yield Test				Taken From	Ground Level	Measurement in Metric
Test Date Start 7	Fime St	atic Water Level m				
Method of Water Removal Type			 -			
Removal Rate Depth Withdrawn From						
If water removal period was < 2 h	ours, explain why					
Water Diverted for Drilling						
Water Source CITY OF CALGARY		mount Taken 092.18 L			sion Date & Time 04/29 8:00 AM	

Contractor Certification

Name of Journeyman responsible for drilling/construction of well ${\sf CHRIS}\,$ ${\sf QUINLAN}\,$

Company Name AARON DRILLING INC. Certification No

48135A

Copy of Well report provided to owner Yes

Date approval holder signed 2014/09/24

Printed on 12/24/2014 10:48:54 AM Page: 2 / 2

of Alberta

Government Water Well Drilling Report

GIC Well ID

View in Imperial Export to Excel

GoA Well Tag No.

					is report will be reta	2	Date Report Received				
Well Ident	tification and L	ocation									Measurement in Metric
Owner Nar QUICK WA	Name Address WAY FARMS LTD P.O. BOX 1719				Town BROOKS				Country CA	Postal Code T1R 1C5	
Location	1/4 or LSD	SEC	TWP	RGE	W of MER	Lot	Block	Plan	Additional L	Description	

Postal Code T1R 1C5 GPS Coordinates in Decimal Degrees (NAD 83) Measured from Boundary of Elevation ____ Latitude 51.267444 Longitude -114.400639 m m from How Elevation Obtained How Location Obtained m from Hand held autonomous GPS 20-30m Not Obtained

Drilling Information Method of Drilling Type of Work New Well Rotary Proposed Well Use Domestic Yield Test Summary

Formation Log			Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description	
2.13		Clay	
21.03		Clay & Gravel	
23.16		Clay	
26.82		Gray Shale	
28.65		Gray Sandy Shale	
31.39		Gray Shale	
31.70		Sandstone	
33.53		Shale	
35.97		Sandstone	
39.62		Shale	

rieid rest Sullili					easurement in Me	uiic
Recommended Pu	mp Rate	36.	37 L/min			
Test Date	Water R	emoval Rate	(L/min)	Static Water Level (m)		
2003/01/15		45.46		32.00		
Well Completion				M	easurement in Me	tric
Total Depth Drilled	Finish	ed Well Dept	h Start	Date	End Date	
39.62 m			2003/	01/10	2003/01/14	
Borehole						
Diameter (cn	1)	Fror	n (m)		To (m)	
22.23			.00		39.62	
Surface Casing (i Steel			Well Ca Unknow			
Size OD:					cm	
Wall Thickness:			Wall 7			
Bottom at :	3	5.97 m		Top at:	m_	
			E	Bottom at :	m	
Perforations						
		Diameter or Slot	Slo	nt .	Hole or Slot	
From (m) To	(m)	Width(cm)			Interval(cm)	
32.00 35	.97	0.318			25.40	
Perforated by	Torch					
Annular Seal Dri	iven & B	entonite				
Placed from	0.00	0 m to	31.39	9 m		
Other Seals						
Т	уре			Α	t (m)	
Screen Type						
Size OD:		cm				
From (m)		То	(m)		Slot Size (cm)	
Attachment _						
Top Fittings				m Fittings		
Pack						
Type Unknown			Grain	Size		
Amount	U	nknown				

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

WILLIAM PENROD

Company Name

M&M DRILLING CO. LTD.

Certification No

A000187

Water Well Drilling Report

View in Imperial Export to Excel GIC Well ID

1475698

GoA Well Tag No. Drilling Company Well ID Date Report Received

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

Well Identification and Location	n					Measurement in Metric
Owner Name QUICK WAY FARMS LTD	Address P.O. BOX 1719		Town BROOKS	Province AB	Country CA	Postal Code T1R 1C5
Location 1/4 or LSD SEC 16 31	7WP RGE 026 03	5	t Block Plan		al Description	
Measured from Boundary of			in Decimal Degrees (NAD	· ·		
m from	<u>1 </u>		444 Longitude -114	4.400639	Elevation	
m from	ı	How Location Obta	ained		How Elevation Ob	otained
	<u> </u>	Hand held autonon	nous GPS 20-30m	<u> </u>	Not Obtained	
Additional Information						Measurement in Metric
Distance From Top of Casing to		60.96 cm				
Is Artesian Flow			Is Flow Control Install	led		
Rate						
Recommended Pump Rate		36.37 L/min	Pump Installed		Depth	m
Recommended Pump Intake Dep			Туре			
					Model (Output F	Rating)
Did you Encounter Saline Wate	er (>4000 nnm TDS)	Denth	m Well Di	sinfected Llnon (
Did you Encounter Gaine Water	Gas				Taken	
		Дерит		Submitted to		
4.4%			Sample Collected for	or Potability	Subi	mitted to ESRD
Additional Comments on Well						
FIELD TEST HARD WATER TOS	S 250, GPS # 51.2671333	s, N-51-16.0-2.8, W-11	14-24-2.3, -114.40038333	, BOREHOLE D	DIAMETER 8.75" TO	O 103' & 6.25" TO 130'
Yield Test			7	Taken From G	round Level	Measurement in Metric
	Time - Otal	i= 14/= (= = 1 = = = 1			to water level	
Test Date Start 2003/01/15 12:00		ic Water Level 32.00 m	Drawdown (m		apsed Time linutes:Sec	Recovery (m)
Made Lating Barrel			32.39		1:00	32.81
Method of Water Removal			32.59		2:00	32.69
Type Pump			32.69 32.75		3:00 4:00	32.65 32.61
Removal Rate			32.83		5:00	32.60
Depth Withdrawn From	35.05 m		32.85		6:00	32.56
			32.89		7:00	32.51
If water removal period was < 2 h	nours, explain why		32.90 32.92		8:00 9:00	32.49 32.47
			32.94		10:00	32.47
			32.99		12:00	32.40
			33.02		14:00	32.37
			33.05		16:00	32.34
			33.08		20:00	32.32
			33.13		25:00	32.28
			33.06		30:00	32.26
			33.19		35:00	32.23
			33.24 33.27		40:00 50:00	32.21 32.20
			33.28		60:00	32.16
			33.31		75:00	32.12
			33.32		90:00	32.10
			33.34		105:00	32.09
			33.35		120:00	32.06
Metan Disconta di Con Dellino						
Water Diverted for Drilling						
Water Source	An	nount Taken		Diversion	Date & Time	

Contractor Certification

Name of Journeyman responsible for drilling/construction of well WILLIAM $\,$ PENROD $\,$

Company Name M&M DRILLING CO. LTD. Certification No

A000187

Water Well Drilling Report

GIC Well ID GoA Well Tag No.

View in Imperial Export to Excel

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

Drilling Company Well ID Date Report Received

1475699

Well Identi	fication and L	ocation									Measurement	in Metric
Owner Nam QUICK WAY	ne Y FARMS LTD		Address P.O. BOX	1719		Town BROC	OKS		Province AB	Country CA	Posta T1R 1	l Code C5
Location	1/4 or LSD 15	SEC 31	<i>TWP</i> 026	RGE 03	W of MER 5	Lot	Block	Plan		onal Description K WELL		
Measured fi		m from m from			GPS Coordir Latitude 5 How Location Hand held au	1.267556 n Obtained	Long	itude <u>-114.</u> 4	·	Elevation How Elevation Ob Not Obtained	m otained	
•												

Drilling Information Method of Drilling Type of Work New Well Rotary Proposed Well Use Domestic

Formation Log		Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description
2.44		Clay & Rocks
27.43		Lost Circulation Gravel
28.96		Shattered Shale
32.92		Brown Sandstone
34.75		Gray Sandstone
45.72		Shale & Sandstone Ledges
47.24	Yes	Water Bearing Sandstone
50.29	Yes	Water Bearing Shale
50.90	Yes	Water Bearing Sandstone
53.95		Shale

riela rest Sun	•				neasurement in w	Cuic
Recommended F	Pump Rat	e <u>27</u>	.28 L/min			
Test Date	Water R	emoval Rate	(L/min)	Static Water Level (m)		
2003/01/20		24.55		32.64		
Well Completic	n			٨	Measurement in M	etric
Total Depth Drille	ed Finish	ed Well Dep	th Start	Date	End Date	
53.95 m			2003/	01/15	2003/01/17	
Borehole						
Diameter (cm)	Fro	m (m)		To (m)	
22.23			0.00		53.95	
Surface Casing Steel		•	Well Ca Plastic	asing/Lin	er	
Size OD	:1	4.13 cm		Size OD	: 11.43 cm	
			Wall 7	hickness	: 0.544 cm	
Bottom at	:3	0.18 m		Top at	23.47 m	
			E	Bottom at	: 53.95 m	
Perforations						
		Diameter or Slot	Slo	\ +	Hole or Slot	
From (m) T	o (m)				Interval(cm)	
43.28		0.635			25.40	
Perforated by	Saw					
Annular Seal	Oriven & E	entonite				
Placed from _	0.0	0 m to	30.18	3 m		
Amount			_			
Other Seals						
	Type			,	At (m)	
Screen Type						
Size OD	:	cm				
From (m)	To) (m)		Slot Size (cm)	
Attachmen	t					
Top Fittings				m Fittings		_
Pack						
Type Unknow	vn		Grain	Size		
Amount	ι	Inknown				

Contractor	Certification
Contractor	Certification

Name of Journeyman responsible for drilling/construction of well WILLIAM PENROD

Company Name

M&M DRILLING CO. LTD.

Certification No

A000187

Well Identification and Location

Address

Water Well Drilling Report

View in Imperial Export to Excel

1475699

Measurement in Metric

Postal Code

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

GIC Well ID GoA Well Tag No. Drilling Company Well ID Date Report Received

Owner Nar.	ne Y FARMS LTD		Address P.O. BOX	1719		Tow.	n OKS		Province AB	Country CA	Postal Co T1R 1C5
Location	1/4 or LSD 15	SEC 31	<i>TWP</i> 026	RGE 03	W of MER 5	Lot	Block	Plan	Addition STOCK	nal Description	
Manaumadi			020		GPS Coordir	nates in De	ecimal Degre	es (NAD 83)	31000	VVLLL	
vieasurea i	from Boundary (or m from						tude -114.405	667	Elevation	m
					How Location					How Elevation O	
		m from			Hand held at			n		Not Obtained	otanio a
dditional	Information										Measurement in N
	From Top of Cas	sina to Grou	ınd Level		60.96 cm						acuroe
Is Artesia			_				Is Flow Con	trol Installed			
	Rate		L/min					Describe		<u> </u>	
Recomme	nded Pump Ra				27.28 L/mir	n Pun	np Installed			Depth	m
			From TOC)		42 67 m	Tvr	ne		Make		H.P.
recomme	naea r amp inte	ake Deptii (i	10111 100)	-	42.07 111	- ' ' Y F			wake	Model (Output F	Rating)
Did vou	Encounter Solin	an Motor /s	4000 nnm 7	TDC)	Donth			Wall Diginfo	otad I Inan	Completion	
ый уби	Liicouriter Saiii	ie water (>				'		vveli Disirile		T.	
				Gas	Depth		m			Taken	
								S	ubmitted to	ESRD	
ield Test	:							Take		round Level	Measurement in I
Test Date		Start Time	9	Stat	ic Water Level		_			n to water level	
2003/01/2	0	12:00 AM			32.64 m		Draw	down (m)		lapsed Time Inutes:Sec	Recovery (m)
								35.07		1:00	36.99
Method o	f Water Remov	ral						35.73		2:00	36.20
	Type I	Pump						35.83		3:00	36.12
I	Removal Rate	2	4.55 L/min					36.01		4:00	36.02
Denth Wi	thdrawn From	5	3 34 m					36.22		5:00	35.91
Dopar vvi	_		0.04 111					36.37 36.49		6:00 7:00	35.79 35.72
If water re	moval period wa	as < 2 hours	s explain w	hv				36.62		8:00	35.61
	svai poiloa W	L 1100110	s, explain W	,				31.24	_	9:00	35.45
								36.86		10:00	35.41
								36.96		12:00	35.29
								37.11		14:00	35.16
								36.91		16:00	
										20:00	35.05
								37.40		20.00	
								37.40 37.58		25:00	35.05
											35.05 34.88
								37.58		25:00	35.05 34.88 34.75
								37.58 37.76		25:00 30:00	35.05 34.88 34.75 34.59
								37.58 37.76 37.90		25:00 30:00 35:00	35.05 34.88 34.75 34.59 34.50
								37.58 37.76 37.90 38.01		25:00 30:00 35:00 40:00	35.05 34.88 34.75 34.59 34.50 34.40
								37.58 37.76 37.90 38.01 38.28 38.43 38.71		25:00 30:00 35:00 40:00 50:00 60:00 75:00	35.05 34.88 34.75 34.59 34.50 34.40 34.27 34.14 34.03
								37.58 37.76 37.90 38.01 38.28 38.43		25:00 30:00 35:00 40:00 50:00 60:00	35.05 34.88 34.75 34.59 34.50 34.40 34.27 34.14

Contractor	Certification
Contiductor	Continuation

Water Diverted for Drilling

Water Source

Name of Journeyman responsible for drilling/construction of well

WILLIAM PENROD

Company Name M&M DRILLING CO. LTD. Amount Taken

Diversion Date & Time

120:00

Certification No A000187

39.24

Copy of Well report provided to owner

Date approval holder signed

33.74

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel GIC Well ID

1556533

GoA Well Tag No. Drilling Company Well ID

2014/06/04

		accu	racy. The infor	mation on th	nis report will be reta	ained in a pub	lic database.			Date Report Received	d 2014/06/04
Well Ident	ification and L	ocation									Measurement in Metric
Owner Nan SOUTH RC			Address P.O. BOX	460		Town MEDI	CINE HAT		Province ALBERTA		Postal Code T1A 7G2
Location	1/4 or LSD 4	SEC 32	<i>TWP</i> 26	RGE 3	W of MER 5	Lot	Block	Plan		nal Description RVATION HOLE #5	
Measured f		m from m from			GPS Coordir Latitude 5 How Location Differential co	1.258118 n Obtained	Longi	tude <u>-114.3</u>	·	How Elevation Obtain	270.00 m ined I handheld GPS 5-10m

Drilling Information Method of Drilling Type of Work Rotary - Mud Other Proposed Well Use Monitoring

Formation Log			Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description	
0.30		Black Topsoil	
6.40		Brown Clay	
11.89		Gray Gravel	
13.72		Gray Shale	

Yield Test Summary		Measurement in Metric	
Recommended Pump F	Rate	L/min_	
Test Date Wate			tatic Water Level (m)
Well Completion			Measurement in Metric
Total Depth Drilled Fin			End Date
13.72 m 13.	72 m	2014/05/08	2014/05/08
Borehole			
Diameter (cm) 14.29	From 0.0		To (m) 13.72
Surface Casing (if app		Well Casing/L	
1 - N		Plastic	
Size OD :	cm	Size O	D: 6.35 cm
Wall Thickness :	cm	Wall Thicknes	
Bottom at :	m		at : -0.91 m
D. C. office		Bottom	at: 13.72 m
Perforations	Diameter or		
	Slot	Slot	Hole or Slot
From (m) To (m)	Width(cm)	Length(cm)	Interval(cm)
Perforated by Annular Seal Bentoni Placed from Amount Other Seals	•		
Type			At (m)
,,,			
Screen Type Slotted	PVC		
Size OD :			
From (m)	To (m)	Slot Size (cm)
10.67	13.		0.254
Attachment Attac			
Top Fittings Riser	Pipe	Bottom Fitting	gs Plug
Pack			
Type Sand		Grain Size 1	0-20
Amount 200.00	Pounds		

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

CHAD NIEMANS

Company Name

NIEMANS DRILLING (1980) LTD.

Certification No

46340A

Copy of Well report provided to owner

Date approval holder signed 2014/06/04

Printed on 1/13/2015 2:18:43 PM Page: 1 / 2

Water Well Drilling Report

View in Imperial Export to Excel

GIC Well ID GoA Well Tag No. 1556533

The driller supplies the data contained in this report. The Province disclaims responsibility for its

Drilling Company Well ID

accuracy. The information on this report will be retained in a public databas Date Report Received 2014/06/04 Well Identification and Location Measurement in Metric Address Postal Code Owner Name Town Province Country SOUTH ROCK LTD P.O. BOX 460 MEDICINE HAT **ALBERTA** CANADA T1A 7G2 1/4 or LSD SEC TWP W of MER Additional Description RGE Block Plan Location Lot **OBSERVATION HOLE #5** 4 32 26 3 GPS Coordinates in Decimal Degrees (NAD 83) Measured from Boundary of Elevation _ Longitude -114.396505 Latitude 51.258118 1270.00 m m from How Location Obtained How Elevation Obtained m from Differential corrected handheld GPS 5-10m Differential corrected handheld GPS 5-10m Additional Information Measurement in Metric Distance From Top of Casing to Ground Level Is Artesian Flow Is Flow Control Installed Rate Describe Recommended Pump Rate L/min Pump Installed Depth m Recommended Pump Intake Depth (From TOC) m H.P. Model (Output Rating) m ____ Well Disinfected Upon Completion Yes Did you Encounter Saline Water (>4000 ppm TDS) Depth Depth m ___ Geophysical Log Taken Gas Submitted to ESRD Sample Collected for Potability Submitted to ESRD Additional Comments on Well LOCKABLE PROTECTOR PIPE INSTALLED AND CONCRETED INTO THE GROUND. Yield Test Taken From Ground Level Test Date Start Time Static Water Level Method of Water Removal Type L/min Removal Rate Depth Withdrawn From m

Water Diverted for Drilling			
Water Source	Amount Taken	L	Diversion Date & Time
TOWN OF OKOTOKS	1818.44		2014/05/08 7:00 AM

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

If water removal period was < 2 hours, explain why

CHAD NIEMANS

Company Name

NIEMANS DRILLING (1980) LTD.

Certification No

46340A

Yes

Copy of Well report provided to owner

Date approval holder signed 2014/06/04

Printed on 1/13/2015 2:18:43 PM Page: 2 / 2

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel GIC Well ID

1556534

GoA Well Tag No. Drilling Company Well ID

2014/06/04

		accu	racy. The infor		Date Report Receiv	ved 2014/06/04					
Well Identi	ification and L	ocation									Measurement in Metric
Owner Name Address SOUTH ROCK LTD P.O. BOX 460		460	Town MEDICINE HAT			Province ALBERT		Postal Code T1A 7G2			
Location	1/4 or LSD 4	SEC 32	<i>TWP</i> 26	RGE 3	W of MER 5	Lot	Block	Plan		onal Description RVATION WELL #6	
Measured f	Measured from Boundary of m from m from					GPS Coordinates in Decimal Degrees (NAD 83) Latitude 51.257155 Longitude -114.394328 How Location Obtained Differential corrected handheld GPS 5-10m				Elevation How Elevation Ob Differential correct	1277.00 m tained ed handheld GPS 5-10m

Drilling Information Method of Drilling Type of Work Rotary - Mud Other Proposed Well Use Monitoring

Formation Log		Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description
5.79		Brown Sandy Clay & Rocks
8.84		Gray Gravel
10.97		Gray Shale

Yield Test Sun	nmary			Mea	surement in N	Metric	
Recommended I	Pump Ra	ate	L/min				
Test Date	Water	Removal Rate (L/min)	Static \	Water Level (m))	
Well Completion					surement in N	Metric	
Total Depth Drill					End Date		
	10.9	97 m	2014/05	/12	2014/05/12		
Borehole							
Diameter (14.29	cm)	From 0.0			To (m) 10.97		
Surface Casing	(if annl		Well Casii	na/l iner	10.97		
	()		Plastic				
Size OD);[]	cm	Si	ze OD :	6.35 cm 0.518 cm		
Wall Thickness	_	cm	Wall Thic	kness :	0.518 cm		
Bottom at	t :	m		Top at:	-0.91 m		
			Bot	tom at :	10.97 m		
Perforations		Diameter or					
		Slot	Slot	Н	lole or Slot		
From (m) T	o (m)	Width(cm)	Length(c	m) I	nterval(cm)		
Perforated by							
Annular Seal	Bentonite	e Chips/Tablets					
		.91 m to		<u>n</u>			
Amount _		200.00 Pounds	<u>:</u>				
Other Seals							
	Type			At (m)		
Screen Type							
		6.35 cm					
From (m	1)	To ((m)	9	Slot Size (cm)		
Attachmen	t Attach	ed To Casing		-1			
		Pipe	Bottom F	-ittings Pl	ug	'	
Pack				5 · <u></u>	<u> </u>		
Type Sand			Grain Size 10-20				
Amount		Pounds	514111 612	10 20			
7	_00.00						

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

CHAD NIEMANS Company Name

NIEMANS DRILLING (1980) LTD.

Certification No

46340A

Copy of Well report provided to owner

Date approval holder signed 2014/06/04

Printed on 1/13/2015 2:20:48 PM Page: 1 / 2

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel GIC Well ID

1556534

GoA Well Tag No.

Drilling Company Well ID Date Report Received 2014/06/04

Well Identification a	and Location									ſ	Measurement in Meti
Owner Name SOUTH ROCK LTD		Address P.O. BOX	460			Town MEDICINE HA	ΑT	Province ALBERTA		ountry ANADA	Postal Code T1A 7G2
Location 1/4 or L 4	SD SEC 32	<i>TWP</i> 26	RGE 3	W of ME 5		Lot Bloci		OBSER	nal Description		
Measured from Boun	dary of m from m from			Latitude How Loc	<u>51.2</u> ation 0	es in Decimal De 257155 Lo Obtained ected handheld G	ngitude <u>-1</u>	· ·	Elevation How Eleva Differential	tion Obtain	
Additional Informat	ion									ľ	Measurement in Metr
Distance From Top of Is Artesian FlowRate				91.44 cm	_			alled			
Recommended Pum	p Rate			L	_/min	Pump Installe	ed		Depth		m
Recommended Pum	p Intake Depth	(From TOC)		r	n	Туре		Make	Model (O	H.	P
Did you Encounter Additional Comme	ents on Well	\I\	Gas	Ā	epth	Sample		Disinfected Upon Geophysical Log Submitted to	Taken		od to ESRD
Yield Test				_				Taken From G	Ground Leve	el N	Measurement in Metr
Test Date	Start Ti	me	Stat	<i>tic Water Lev</i> r	e/ n						
Method of Water Ro	emoval ype										
	ate										
Depth Withdrawn Fr	rom	m									
If water removal peri	od was < 2 ho	urs, explain wi	hy								
Water Diverted for	Drilling										
Water Source TOWN OF OKOTOK	S			nount Taken 27.66	L				n Date & Tin /12 7:00 AM	пе	

Contractor Certification

Name of Journeyman responsible for drilling/construction of well ${\sf CHAD\ NIEMANS}$

Company Name

NIEMANS DRILLING (1980) LTD.

Certification No

46340A

Copy of Well report provided to owner Yes

Date approval holder signed 2014/06/04

Printed on 1/13/2015 2:20:48 PM Page: 2 / 2

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel GIC Well ID

1556535

GoA Well Tag No.

Drilling Company Well ID 2014/06/04 Date Report Received

Well Ident	tification and L	ocation									Measurement in Metric
			Town MEDI			Province ALBERT		Postal Code T1A 7G2			
Location	1/4 or LSD 4	SEC 32	<i>TWP</i> 26	RGE 3	W of MER 5	Lot	Block	Plan		onal Description RVATION WELL #7	
Measured	Measured from Boundary of m from			_	1.255906	Longi	es (NAD 83 tude114.	,		1273.00 m	
		How Location Obtained Differential corrected handheld GPS 5-10m					How Elevation Obtained Differential corrected handheld GPS 5-10m				

Drilling Information Method of Drilling Type of Work Rotary - Mud Other Proposed Well Use Monitoring

Formation Log			Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description	
3.66		Brown Clay & Rocks	
11.28		Gray Gravel	
12.19		Gray Shale	

New Completion	Yield Test Summa	ry	Measurement in Metric					
Well Completion Measurement in Metric Total Depth Drilled Finished Well Depth 2014/05/13 Start Date 2014/05/13 End Date 2014/05/13 12.19 m 12.19 m To (m) To (m) Surface Casing (if applicable) From (m) To (m) Surface Casing (if applicable) Well Casing/Liner Plastic Well Casing/Liner Plastic Size OD: 6.35 cm Wall Thickness: 0.518 cm 0.518 cm Bottom at: 12.19 m Top at: -0.91 m Bottom at: 12.19 m Perforations Perforated by Annular Seal Bentonite Chips/Tablets Placed from 0.91 m to 8.23 m Amount 250.00 Pounds Other Seals Type At (m) Screen Type Plastic Size OD: 6.35 cm From (m) To (m) Slot Size (cm) 9.14 12.19 0.000 Attachment Attached To Casing Riser Pipe Bottom Fittings Plug Pack Type Sand	Recommended Pum	p Rate	L/min					
Total Depth Drilled Finished Well Depth Start Date 2014/05/13				Static Water Level (m)				
Total Depth Drilled Finished Well Depth Start Date 2014/05/13								
Total Depth Drilled Finished Well Depth Start Date 2014/05/13	Well Completion		-	Measurement in Metric				
12.19 m	•	Finished Well Dentl	Start Date					
Diameter (cm) From (m) To (m)	,	,						
Surface Casing (if applicable) Size OD :	Borehole							
Plastic Size OD :	Diameter (cm)	From	n (m)	To (m)				
Plastic Size OD :	Suufana Caaina (if a	annii anhia)	Well Cooling/	lan.				
Wall Thickness:	Surface Casing (if a	іррпсавіе)		.mer				
Wall Thickness:	Size OD:	cm	Size C	DD: 6.35 cm				
Bottom at :	Wall Thickness :							
Perforations Diameter or Slot Slot Length(cm) Hole or Slot Interval(cm)								
Perforations Diameter or Slot Slot Hole or Slot Interval(cm)								
From (m) To (m) Slot Length(cm) Hole or Slot	Perforations							
From (m) To (m) Width(cm) Length(cm) Interval(cm) Perforated by Annular Seal Bentonite Chips/Tablets Placed from 0.91 m to 8.23 m Amount 250.00 Pounds Other Seals Type Plastic Size OD: 6.35 cm From (m) To (m) Slot Size (cm) 9.14 12.19 0.000 Attachement Attached To Casing Top Fittings Riser Pipe Bottom Fittings Plug Pack Type Sand								
Perforated by Annular Seal Bentonite Chips/Tablets Placed from 0.91 m to 8.23 m Amount 250.00 Pounds Other Seals Type At (m) Screen Type Plastic Size OD: 6.35 cm From (m) To (m) Slot Size (cm) 9.14 12.19 0.000 Attachment Attachded To Casing Top Fittings Riser Pipe Bottom Fittings Plug Pack Type Sand Grain Size 10-20	Fuerry (m) To (m)							
Annular Seal Bentonite Chips/Tablets Placed from	From (m) 10 (m	i) Wiath(cm)	Lengtn(cm)	Interval(cm)				
Type At (m) Screen Type Plastic Size OD: 6.35 cm From (m) To (m) Slot Size (cm) 9.14 12.19 0.000 Attachment Attachded To Casing Top Fittings Riser Pipe Bottom Fittings Plug Pack Type Sand Grain Size 10-20	Annular Seal Bent	0.91 m to	8.23 m					
Screen Type Plastic Size OD: 6.35 cm From (m) To (m) Slot Size (cm) 9.14 12.19 0.000 Attachment Attached To Casing Top Fittings Riser Pipe Bottom Fittings Plug Pack Type Sand Grain Size 10-20	Other Seals		_					
Size OD :	Тур	e	At (m)					
Size OD : 6.35 cm From (m) To (m) Slot Size (cm) 9.14 12.19 0.000 Attachment Attached To Casing Top Fittings Riser Pipe Bottom Fittings Plug Pack Type Sand Grain Size 10-20								
From (m) To (m) Slot Size (cm) 9.14 12.19 0.000 Attachment Attached To Casing Top Fittings Riser Pipe Bottom Fittings Plug Pack Type Sand Grain Size 10-20	Screen Type Plast	tic						
9.14 12.19 0.000 Attachment Attached To Casing Top Fittings Riser Pipe Bottom Fittings Plug Pack Type Sand Grain Size 10-20	Size OD:							
Top Fittings Riser Pipe Bottom Fittings Plug Pack Type Sand Grain Size 10-20		To 12	(m) .19					
Pack Type Sand Grain Size 10-20	Attachment Att	tached To Casing						
Type Sand Grain Size 10-20	Top Fittings Ri	ser Pipe	Bottom Fittin	ngs Plug				
	Pack							
	Type Sand		Grain Size 1	10-20				
		.00 Pounds	_					

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

CHAD NIEMANS

Company Name

NIEMANS DRILLING (1980) LTD.

Certification No

46340A

Copy of Well report provided to owner Yes

Date approval holder signed 2014/06/04

Printed on 1/13/2015 4:52:27 PM Page: 1 / 2

Water Well Drilling Report

GIC Well ID GoA Well Tag No.

View in Imperial Export to Excel

1556535

Drilling Company Well ID

The driller supplies the data contained in this report. The Province disclaims responsibility for its

		accu	racy. The inito	madon on th	is report will be rete	iii lea iii a pubi	iic database.			Date Report Rec	eived	2014/06/04
Well Identi	ification and L	ocation.									Mea	surement in Metric
		Address P.O. BOX	460	<i>Town</i> MEDICINE HAT			Province ALBERT		,	Postal Code T1A 7G2		
Location	1/4 or LSD 4	SEC 32	<i>TWP</i> 26	RGE 3	W of MER 5	Lot	Block	Plan		onal Description RVATION WELL#	7	
Measured from Boundary of m from m from					GPS Coordir Latitude 5 How Location Differential co	51.255906 n Obtained	Longii	tude <u>-114.3</u>		Elevation How Elevation (0 m dheld GPS 5-10m
	Information										Mea	surement in Metric
Distance F	rom Ton of Cas	ing to Gro	uind Laval		01 // cm							

	m from	How Location C			How Elevation Obtained		
		Differential corr	ected handheld GPS	S 5-10m Differen	tial corrected handheld GPS 5-10m		
Additional Informa	ation				Measurement in Metric		
Distance From Top Is Artesian Flow	o of Casing to Ground Level	91.44 cm	Is Flow Cor	ntrol Installed			
Rate _	L/min			Describe			
Recommended Pu	mp Rate	L/min	Pump Installed	Depth	m		
Recommended Pu	mp Intake Depth (From TOC)	m	Туре	Make	Н.Р.		
				Model	(Output Rating)		
Did you Encount	er Saline Water (>4000 ppm TDS	Depth	m	Well Disinfected Upon Completi	on Yes		
	Ga	s Depth	m	Geophysical Log Taken _			
	11.00	7 8 1		Submitted to ESRD			
			Sample C	ollected for Potability	Submitted to ESRD		
Additional Comm	ments on Well			1/4			
INSTALLED LOCK	ABLE PROTECTOR CASING AN	ND CONCRETED INTO TH	HE GROUND.				
Viold Toot				Taken From Cround I	Accourage and in Matric		
Yield Test				Taken From Ground L	evel Measurement in Metric		
Test Date	Start Time	Static Water Level m					
Method of Water	Removal						

Method of Water Removal	
Type	
Removal Rate	L/min
Depth Withdrawn From	<u>m</u>
If water removal period was < 2 I	hours, explain why
Material Con Dell's a	

Water Diverted for Drilling Amount Taken Diversion Date & Time Water Source TOWN OF OKOTOKS 1818.44 2014/05/12 7:00 AM

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

CHAD NIEMANS

Company Name

NIEMANS DRILLING (1980) LTD.

Certification No

46340A

Copy of Well report provided to owner

Date approval holder signed

2014/06/04 Yes

Printed on 1/13/2015 4:52:27 PM Page: 2 / 2

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel GIC Well ID 2095665

GoA Well Tag No.

Drilling Company Well ID 2014/12/04 Date Report Received

Well Identification and Location				M	leasurement in Metric
Owner Name Address CIRCLE J RANCHES LTD RR 2	Town COCH	IRANE	Province ALBERTA	Country CANADA	Postal Code T0L 0W0
Location 1/4 or LSD SEC TWP RGE SW 6 27 3	W of MER Lot 5	Block Plan	Additional Des M. GILES	scription	
Measured from Boundary of m from m from	GPS Coordinates in Dec Latitude 51.274608 How Location Obtained Not Verified	imal Degrees (NAD 83) Longitude -114.4	17737 Eleva How	ation Elevation Obtaine Obtained	
Drilling Information Method of Drilling Unknown Proposed Well Use	Type of Work Well Inventory				
Domestic & Stock					
Formation Log M	leasurement in Metric	Yield Test Summar	У		easurement in Metric
Depth from ground level (m) Water Lithology Description Bearing		Recommended Pump Test Date Wa	Rate ter Removal Rate (I	L/min Stat	ic Water Level (m)
25.60 Old Well					
		Well Completion Total Depth Drilled F 25.60 m	Finished Well Depth		easurement in Metric End Date
		Borehole Diameter (cm)	From	(m)	To (m)
		Surface Casing (if a	pplicable)	Well Casing/Line	er
		Size OD :	cm	Sizo OD	cm
		Wall Thickness :		Wall Thickness :	
		Bottom at :			m
				Bottom at :	m
		Perforations	Diamatanan		
		From (m) To (m)	Diameter or Slot) Width(cm)	Slot Length(cm)	Hole or Slot Interval(cm)
		Perforated by			
		Annular Seal			
		Placed from		m	
		Other Seals		_	
		Туре	е	Α	t (m)
		Screen Type			
		Size OD :			
		From (m)	To ((m)	Slot Size (cm)
		Attachment			
		Top Fittings		Bottom Fittings	
		Pack			
		Туре		Grain Size	
	L	Amount			
Contractor Certification					

Printed on 10/24/2014 1:50:56 PM Page: 1 / 2

Certification No

Copy of Well report provided to owner Date approval holder signed

Name of Journeyman responsible for drilling/construction of well

UNKNOWN DRILLER11 Company Name

UNKNOWNDRILLINGCOMP11

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel 2095665

GIC Well ID GoA Well Tag No.

Drilling Company Well ID 2014/12/04 Date Report Received

Well Identification and Location					Mea	surement in Metric
Owner Name Add	dress 2	Town COCH	IRANE	Province ALBERTA	Country CANADA	Postal Code T0L 0W0
	TWP RGE W of 1 27 3 5		Block Plan	Additional Desc M. GILES	cription	
Measured from Boundary of m from m from	Latitud	de <u>51.274608</u> Location Obtained	imal Degrees (NAD 83) Longitude <u>-114.4</u>	17737 Elevat	tion Elevation Obtained btained	<u>m</u>
Additional Information					Mea	surement in Metric
Distance From Top of Casing to Ground L Is Artesian Flow Rate Lfr	nin	cm	s Flow Control Installed Describe			
Recommended Pump Rate		L/min Pump	Installed			
Recommended Pump Intake Depth (Fron	n TOC)		9	Make		
				Mode	el (Output Rating)	
Did you Encounter Saline Water (>4000	9 ppm TDS) Gas	Depth	m Geo	fected Upon Comple physical Log Taken Submitted to ESRD		
Additional Comments on Well			Sample Collected for F	Potability	Submitted to	ESRD
ORIGINAL WELL REPORT NOT IN GIC. APPLICATION RECEIVED ON DECEMB WERE GETTING 1 GPM CONSISTENTL DEEP. ALREADY DRILLED ANOTHER V	ER 04, 1984. OWNER REP Y. OWNER REPORTS TH	ORTS THIS WELL	. WAS BAILED OUT TO	4 FEET OF WATER	R, TOOK 1 DAY TO	RECOVER,
Yield Test			Tak	en From Ground	Level Mea	surement in Metric
Test Date Start Time	Static Water L	evel m				
Method of Water Removal Type						
Removal Rate	L/min					
Depth Withdrawn From	<u>m</u>					
If water removal period was < 2 hours, ex	plain why					
Water Diverted for Drilling						
Water Source	Amount Take	en I		Diversion Date &	ß. Time	

Contractor Certification

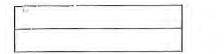
Name of Journeyman responsible for drilling/construction of well UNKNOWN DRILLER11

Company Name UNKNOWNDRILLINGCOMP11

Certification No

Appendix D Residential Well Assessment Questionnaires

Groundwater Monitoring Plan


Summit Pit Project

Mountain Ash Limited Partnership

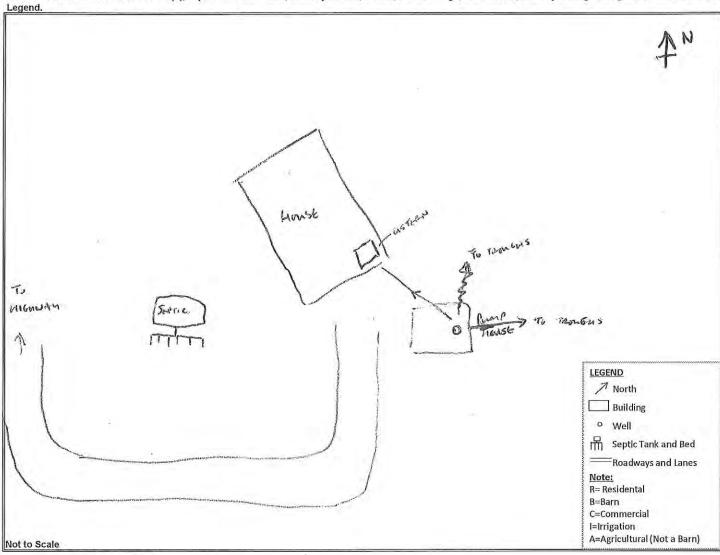
SLR Project No. 212.06650.00007

May 11, 2023

Water Well Reconnaissance Survey

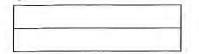
	SITE RECONNAISSANCE CHECKLIST	
Project Name:	WATERMAN AGGREGATE RESONACE	
Project Number:	203-50065.00001 SLR Staff: R. Tim	
Street Address:	35-13 - MW31-26-3 WSM - 35,81 BIG HILL SPRING	5 FOAD
Property Type:	Private Residence Commerical/Industrial Other	
Person/Resident Interviewed:	There THORESON, BRUCE WATERMAN	
Date of Visit:	29 BET 2014 Time: 10:15	
1. Well Owner Information		
Name:	BREICE WATERMAN	-
Street Address:		
Contact Number:	Home: Business: Cell:	
Email Address:		
2. Well User/Occupant of t	ne Residence Using the Well	
	Same as Well Owner	,
if different from well owner ple	ease fill out details below:	
Name:	JULIE THORESON	
Street Address:		
Contact Number:	Home: Business: Cell: *	
Email Address:		The second second
3. Well Details		
Well Location	Lot: Nw31-26-3 WSM Concession: Township:	
3A. Well Use		
Water Use: NO DRINKING	Domestic: No. of people using water from the well:	
uses bottled water	Livestock: No. of livestock using water from the well: 7 hives	ies 4 sheep 4
	Lawn Watering: Acres/area covered: Approximate Amount:	

3A. Well Use Continued					
Additional Equipment:	Pool: Other:	Jacuzzi/Hot Tu	ıb;	Landscape water	feature/fountain:
Private waste and water disp	osal:	Type (ex. Spe	otic tank): Se	OTIC TANK	-
System description:	1006 GAL	TANK			44
Distance to Well	75=ft	Dir	ection from well	(N, S, E, or W)	٥
Well is	Uphill		ownhill	Same Grade	as the waste water system
3B. Well Construction Det	tails				
Construction/Installation Date	: Lukwowa	· PRE-1960	Contracto	or:	
Type of Installation:	Drilled	Dug 🗌	Othe	er:	
Diameter:	6/8 mcm		Well Depth (n	n): \$ ~ 400A	
Screen? WKNOWN	YES 🗆	NO 🗆	area return to	V	Record Number:
Screen? Wakie				IVIOE	Record Number.
	Screen length (m)				
	Depth to top of sci	reen (m)			
ls the well accesible for samp	oling?	YES	NO V	Confi	med Inferred
If no provide details:	WELL HEAD	APPROX. MAT	54 篇 2	a BEON GROW	OD LEVEZ IN A PIT
Location of measurement (top					
		iiu suriace)		•	
SLR staff member collecting t	the measurement:	•			
Date of <u>original</u> measurement	:		Original/initial wat	ter level depth (m)	
Subsequent water level meas	urements				
	Date				
	Depth (m)				
	Staff				
3C. Pumping Equipment				-1	
Pump Type;	Suction-lift			Pumping Capacity	į
	Positive-submerge	ence		Age	
Anna de companya da anti-	1 outilive summer ge			A.g.	G
low is the pump lubricated?	-			20 20.	CENTO
Depth of intake setting:	Original (m)		Present (m)	100+ ft Pump	ing Rate (L/s)
Storage Tank:	Type:	CISTER	N	Capacity: IC	OO GAL
Additional Features:	Chlorinator	□ w	ater softener	Water filter	Filter type:
e see all a grande e la cada de l		REATME		= water a man	Charles A. Contraction



4. Well History	
How long have you owned, operated or lived on Have you ever experienced any <u>previous</u> problem of so, when?	
What was the cause of the previous problem:	Drought Pump Failure Plugging Increased usage Interference Contamination
SAND IN CISTERN, PIPE	wality changes were apparent? (Note any differences in taste, odour, colour or clarity) S ETC n? んいいん トナ これいれい みてんり
What were the effects of this action? Did you ever have your well? If so why?	CLEARED PROBLEM BUT PROBLEM CAME BACK deepend, YES NO SHOCKED or a new well YES NO NO NO NO NO NO NO NO NO NO NO NO NO
Outline briefly any previous repairs or changes i 5. Sample Details — TAKEN From K. Date: 29/10/14	
Sample Name/Number: WW I Field Analysis Harnes	Number of Bottles: Z ss Iron Conductivity oH Temperature Other
6. Contact Details	
Permission for future monitoring? Well Aware Booklet: Perferred contact time/method: Contact by: preferred contact	res NO Call/contact ahead site visit call/contact ahead site visit

7. Well Location Sketch


Notes: shown location of water well(s), septic tanks and beds, laneways/roads, fences, site buildings, north arrow, and any distinguishing site features. Include Legend

Well GPS

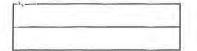
8.	Site	Pho	togra	ph	Log

Numbe	r of Photos Taken:	
Photograph Number/Name	<u>Description</u>	
	-	
	•	

Water Well Reconnaissance Survey

	SI	TE RECON	NAISSANCE CH	IECKLIST			
Project Name:	WATERMAN	AGGR	EGATE RE	SOURCE			
Project Number:	203.50065	10000	SLR Staff:	R.Ti			
Street Address:	SE 31-26-	3 WS.	M				
Property Type:	Private Residence	e 🗸	Commerical/Indu	strial Oth	er		
Person/Resident Interviewed:	MRS PARV	CER					-
Date of Visit:	PHONE CALL	10 DEL 2014	Time:	16:30		٥.	
1. Well Owner Information							
Name:	MRS PAR	VER					
Street Address:	Box 123	5	56 31 26	3 W5	19		
Contact Number:	Home;	, a _	Business:		Cell:		
Email Address:	·						
2. Well User/Occupant of t	he Residence Us	ing the Wel	I				
If different from well owner plants Name: Street Address:	Same as Well Ow						
Contact Number:	Home:		Business:		Cell:		
Email Address:			Duoiniou.				
3. Well Details							
Well Location	Lot: IN House	5	€ 31-26-3 Concession:	WSM	Township:		
3A. Well Use	weres)						
Water Use:	Domestic:		No. of people us	ing water from	the well:	2	
	Livestock:	1	No. of livestock	using water fro	m the well:	(00 HEAD)	CATTLE
	Lawn Watering:		Acres/area cove	red:	Approxima	ite Amount:	
	Irrigation:		Acres/area cove	red:	Approxima	te Amount:	
3	ARTESIAN	WELLS	5				

3A. Well Use Continued							
Additional Equipment:	Pool: Other:	Jacuzzi/Hot 1	Tub:	Landsca	ape water fea	ture/fountain:	
Private waste and water dispo	osal:	Type (ex. Spe	ectic tank): 52	PTIC TI	ank		
System description:	_						
Distance to Well	100 ft	- 0	irection from we	ıll (N, S, E, or	· W)	DEPENDS	on werl
Well is	Uphill 🗹		Downhill 🗌	Same G	irade	as the waste w	ater system
3B. Well Construction Det	ails						
Construction/Installation Date:	192015		Contra	ctor: Ow.	NER		
Type of Installation:	Drilled	Dug 🖊		ther:			
Diameter:	6" 012 8"		Well Depth	(m): 20 -			
Screen?	YES 🗸	NO 🗌			MOE Rec	ord Number:	
	Screen length (m)						
	Depth to top of sc	reen (m)					
ls the well accesible for sampl	ling?	YES	NO 🗸		Confirme	d Inferi	red
If no provide details:	IN THE	E hons	6				
Location of measurement (top	of pipe (TOP), grou	nd surface):				540	
SLR staff member collecting t							
Date of <u>original</u> measurement:			Original/initial v	vater level de	 pth (m) -3	ARTESIAN	1 - 10ft 1
Subsequent water level measu						n	Granes
	Date						
	Depth (m)	1				-	
	Staff	4				1	
3C. Pumping Equipment							
Pump Type:	Suction-lift Positive-submerge	Submen;	SiBLE	Pumping Age	g Capacity		
How is the pump lubricated?							
Depth of intake setting:	Original (m)		Present (m)	7.2	Pumping	Rate (L/s)	
Storage Tank: $\lambda 0$	Type:			Capacit	ty:		
Additional Features: NO	Chlorinator		Nater softener	Water fil		Filter type:	
	CONTY				35-74	- 0.00 Mes	-



4. Well History				
How long have you owned, operated or lived on	this property?	1955		
Have you ever experienced any previous proble	ms with your well?	_NO		
If so, when?				
What was the cause of the previous problem:	Drought	* interesting of \$1.	Pump Failure	
	Plugging		Increased usage	
	Interference	A PARTIE AND A PAR	Contamination	
If the problem was contamination, what water q	uality changes were	apparent? (Note	any differences in tas	te, odour, colour or clarity)
What action was taken to overcome this problem	1?			
What were the effects of this action?				
Did you ever have your well?	deepend, YES		NO 🗹	
	cleaned, YES		NO 🖃	
	or a new well YES		NO 🔄	
If so why?	-			
Outline briefly any previous repairs or changes in	n pumping equipmen	t, and dates	1966/67 Pm	nl S
5. Sample Details				
Date:	Sam	ple Collected?	YES NO	
Sample Name/Number:	Num	ber of Bottles:		
Field Analysis Harnes	s	Iron		Conductivity
р	A	Temperature		Other
6. Contact Details		į.		
Permission for future monitoring?	YES NO	1 - NO	MOTIL A	FTER XMAS
Well Aware Booklet:				
Perferred contact time/method:	call/contact ahead		site visit 🗌	
Contact by:	email phone		perferred contact num	iber:
	time (evening, week	day marning of	e).	

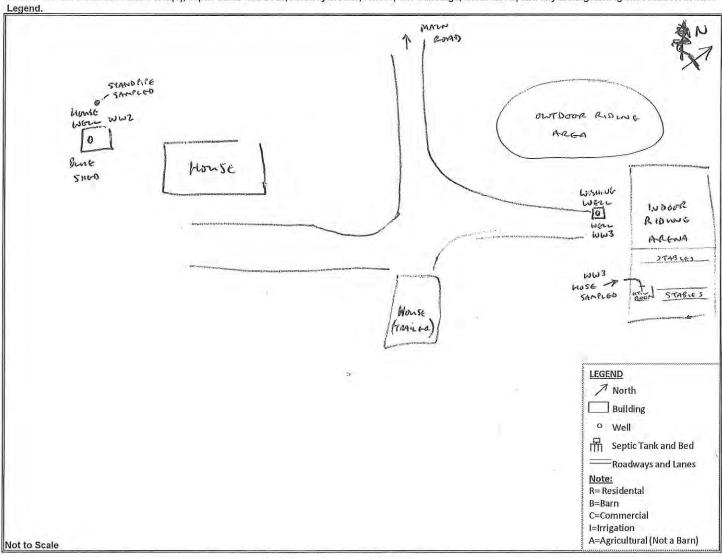
7. Well Location Sketch	
Notes: shown location of water well(s), septic tanks and beds, laneways/roads, fences, site buil Legend.	dings, north arrow, and any distinguishing site features. Includ
	<u>LEGEND</u>
	North □ Building
	o Well
	Septic Tank and Bed
	Roadways and Lanes Note:
	R= Residental B=Barn
	C=Commercial I=Irrigation
Not to Scale	A=Agricultural (Not a Barn)
Well GPS	1
3. Site Photograph Log	
5. Site Photograph Log	
Number of Photos Taken:	
Photograph Number/Name Description	

Page 4 of 4

Water Well Reconnaissance Survey

	SITE RECOIN	NAISSANCE CHECKI	.151		
Project Name:	WATGEMAN &	AGGLEGATE	resonace		
Project Number:	203.50065-00001	_ SLR Staff:	R. Tice		
Street Address:	NE 31 - 26-3 . W)5M			-
Property Type:	Private Residence	Commerical/Industrial	Other		
Person/Resident Interviewed:	CANUN &	RAWN.			
Date of Visit:	29 OCT 2014	Time:	12:00		
1. Well Owner Information	1				
Name:	CALVIN RAWN				
Street Address:	As above				
Contact Number:	Home:	Business:	Cell: /		
Email Address:					
2. Well User/Occupant of	the Residence Using the Well	l III			
	Same as Well Owner				
lf different from well owner pl	ease fill out details below:				
Name:	V				
Street Address:					
Contact Number:	Home:	Business:	Cell:		
Email Address:					
3. Well Details					
Well Location	Lot: NE 31-26-3 WSM	Concession:	Township:		
3A. Well Use - 2	wens				
Water Use:	Domestic:	No. of people using wa	ater from the well:	* 5	(ww 2
	Livestock:	No. of livestock using	water from the well:	40 HURSES	(ww3
	Lawn Watering:	Acres/area covered: _	Approxima	ite Amount:	
	Irrigation:	Acres/area covered:	Approxima	to Amount	

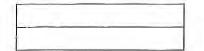
3A. Well Use Continued	ĺ.							
Additional Equipment:	Pool: Other:	Jacuzzi/H	lot Tub:		Landscape	water fe	ature/fountain:	
Private waste and water di	sposal:	Type (ex.	Spectic tan	k): Se	PTIC TA	NK		
System description:	-	_						
Distance to Well	2-300 ft		Direction	from well	(N, S, E, or W	E	458	
Well is	Uphill		Downhil	ı□	Same Grad	ie 🗸	as the waste	water system
3B. Well Construction D	Details							
Construction/Installation Da	ate:			Contracto	or:			
Type of Installation:	Drilled 📝	Dug 🗌		Othe				
Diameter:	6 wen		We	ell Depth (n	1): 177 +	135	A	
Screen?	YES	№ □				MOE Re	cord Number:	1
	Screen length (n	n)						
	Depth to top of	screen (m)						
Is the well accesible for sar			(ww2)	NO V (w	1w3)	Confirme	ed Infe	erred
If no provide details:	ww3 BL				_			
Location of measurement (A STATE OF THE							
SLR staff member collectin								
Date of <u>original</u> measureme					er level denth	(m) 7 °	1.65 m 6 Top	(wwz)
Subsequent water level me					or to ver doptin	()		
	Da							
	Depth (r	n)						
	Sta	ıff .	1					
3C. Pumping Equipmen	t							
Pump Type:	Suction-lift	SUBI	MERSIBI	LE	Pumping C	apacity	and a	
	Positive-submer	gence			Age		to yes +	5425
How is the pump lubricated	1?						Y	
Depth of intake setting:	Original (m)	2	Pre	sent (m)	160ft + 1256		Rate (L/s)	
Storage Tank:	Type:	C1576			Capacity:	WW		WW3 PSO GAL
Additional Features:	Chlorinate		Water so	ftener V	Water filter		2000 July 2000	MARTICULATE
A STATE OF THE STA	4.000 4.000 50.00			nse	house		Sec. 12. 24.47.51	



4. Well History	
How long have you owned, operated or lived or Have you ever experienced any <u>previous</u> proble If so, when?	
What was the cause of the previous problem:	Drought Pump Failure Plugging Increased usage Interference Contamination
If the problem was contamination, what water q 이 / A	quality changes were apparent? (Note any differences in taste, odour, colour or clarity)
What action was taken to overcome this problem	n?_ N/A
What were the effects of this action?	N/A
Did you ever have your well?	deepend, YES NO Cleaned, YES NO NO VIOLENTE NO VIOLENT
If so why? Outline briefly any previous repairs or changes i	in pumping equipment, and dates REPLACED House Pump
	BACK OF PUMP HOUSE, WW3 - HOSE IN STABLES (NO TREATMENT)
Date: 29 oct 2514 Sample Name/Number: WW2 + WW3 Field Analysis Harnes	Sample Collected? YES NO Number of Bottles: 2 EACH
6. Contact Details	
Permission for future monitoring? Well Aware Booklet:	YES NO
Perferred contact time/method:	call/contact ahead site visit perferred contact number:
preferred contac	t time (evening, weekday, morning, etc.): During 544 - Any Reason Ad Non R

7. Well Location Sketch

Notes: shown location of water well(s), septic tanks and beds, laneways/roads, fences, site buildings, north arrow, and any distinguishing site features. Include



8. Site Photograph Log

Number of Photos Taken:

Well GPS WW2 - 0680992 m, 5682772 m WW3 - 0681169 m

Number	of Photos Taken:		
Photograph Number/Name	<u>Description</u>		
	*		
		**	

Water Well Reconnaissance Survey

	SHE RECO	NNAISSANGE CHECKLIST	
Project Name:	WATERMAN AGE	REGATE RESOURCE	
Project Number:	203.50065.000	OI SLR Staff: R.TILE	
Street Address:	SW 31-26-03	SWSM	_
Property Type:	Private Residence	Commerical/Industrial Other_	
Person/Resident Interviewed;	JOHN NUIGTE	R	
Date of Visit:	30 OCTOBER 2016	E Time: 11: 20	
1. Well Owner Information	h l		
Name:	JOHN NUCTER	8	
Street Address:	AS Above		X
Contact Number:	Home:	Business: C	rell:
Email Address:			
2. Well User/Occupant of t	he Residence Using the We	ell .	
	Same as Well Owner		
If different from well owner pla	ease fill out details below:		
Name:			
Street Address:			
Contact Number:	Home:	Business: C	ell:
Email Address:			
3. Well Details			
Well Location	Lot: SW-31-26-03 W51	Concession: To	ownship:
3A. Well Use			-
Water Use:	Domestic:	No. of people using water from the	well: 3
	Livestock:	No. of livestock using water from th	ne well: 25 CATTLE, 5 HOUSES
	Lawn Watering:	Acres/area covered:A	pproximate Amount:
	Irrigation:	Acres/area covered:A	pproximate Amount:

3A. Well Use Continued								
Additional Equipment:	Pool: Other:	Jacuzzi/Hot	Tub:		Landscap	e water fea	ture/fountain:	
Private waste and water dispo	osal:	Type (ex. S	pectic tank):	Ser-	TIC TAN	IKS (2	TANKS)	
System description:	1 TANK	GOR HE	onse +	16	THE REN	ter	house	
Distance to Well			Direction from	m well (N, S, E, or W	n)		
Well is	Uphill		Downhill [Same Gra	de 🗌	as the waste	water system
3B. Well Construction Det	ails							
Construction/Installation Date	1990		Co	ntracto	r: Lou's	WATER	- was DR	iliun G
Type of Installation:	Drilled 🕡	Dug 🗌		Othe	r:			
Diameter:		_	Well D	epth 何	115 At	_		
Screen?	YES 🗸	№ □				MOE Rec	ord Number:	
	Screen length (m)		_		- 13	356	194	
	Depth to top of so	creen (m)			_			
Is the well accesible for sampl	ing?	YES 🗹	NO			Confirme	d Infe	erred
If no provide details:								
Location of measurement (top	of pipe (TOP), grou	ınd surface):	多可	5P				
SLR staff member collecting to	he measurement:	RIBGET	The					
Date of <u>original</u> measurement:	30 OCTOBER	2014	Original/ini	tial wate	er level depti	h (m) /\-~	734 mb Toc	
Subsequent water level measu								
	Date							
	Depth (m)							4
	Staff							
3C. Pumping Equipment								
Pump Type:	Suction-lift Positive-submerge	ence	Subrigisi	BLE	Pumping C	Capacity	30 GAZ/A	in
How is the pump lubricated?								
Depth of intake setting:	Original (m)		Present	(m)	100A ?	Pumping	Rate (L/s)	
Storage Tank:	Type:	N/A	- 1,12,277		Capacity:			
Additional Features:	Chlorinator		Water softer	ner 🗌	Water filte		Filter type:	

ious problems with your well?
Plugging Increased usage Interference Contamination
hat water quality changes were apparent? (Note any differences in taste, odour, colour or clarity)
deepend, YES NO Cleaned, YES NO NO Or a new well YES NO Why?
r changes in pumping equipment, and dates
Sample Collected? YES NO NO Number of Bottles: 2 Harness Iron Conductivity 606 µS/cs pH 5.44? Temperature 5.1°C Other

YES NO Call/contact ahead site visit call/contact ahead perferred contact number:
will will will will will will will will

Notes: shown location of water well(s), septic tanks and beds, laneways/roads, fences, site buildings, north egend. **Row Highway 567 **SURMIT A G-GREGATE 5 **SITE**	arrow, and any distinguishing site features. Include
W 567 SWAMIT AGGREGATE 5	↑ N
WOODEN CATGORY WOODEN CATGORY PAINT INDICE WWA WWA	LEGEND North Building Well Septic Tank and Bed
lot to Scale	Roadways and Lanes Note: R= Residental B=Barn C=Commercial I=Irrigation A=Agricultural (Not a Barn)
Well GPS 0680258 . 5682090 .	
. Site Photograph Log	
Number of Photos Taken:	
Photograph Number/Name Description	

.

global **environmental** and **advisory** solutions **www.slrconsulting.com**

Appendix I

Hydrogeological Assessment Report

Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership

SLR Project No: 212.06650.00007/8

global environmental solutions

Mountain Ash Limited Partnership Aggregate Operation NW and SW 31-26-03 W5M, Rocky View County, Alberta

Hydrogeological Assessment Report

January 2020

SLR Project No.: 212.06650.00003

HYDROGEOLOGICAL ASSESSMENT REPORT

MOUNTAIN ASH LIMITED PARTNERSHIP AGGREGATE OPERATION NW AND SW 31-26-03 W5M ROCKY VIEW COUNTY, ALBERTA

SLR Project No.: 212.06650.00003

Prepared by SLR Consulting (Canada) Ltd. 6940 Roper Road Edmonton, AB T6B 3H9

for

MOUNTAIN ASH LIMITED PARTNERSHIP 1945 BRIAR CRESCENT NW CALGARY, ALBERTA T2N 3V6

14 January 2020

Association of Professional Engineers and Geoscientists of Alberta Permit to Practice P05449

Prepared by:

ROBERT TILL
14 January 2020

Robert Till, M.Sc., P.Geo. Senior Hydrogeologist Reviewed by:

Steve Usher, M.Sc.,

Senior Hydrogeologist

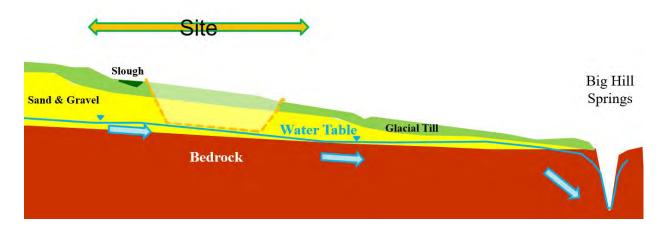
CONFIDENTIAL

Distribution: 1 copy - Mountain Ash Limited Partnership

1 copy - SLR Consulting (Canada) Ltd.

EXECUTIVE SUMMARY

SLR Project No.:212.06650.00003


January 2020

Mountain Ash Limited Partnership (MALP) is proposing to develop an aggregate resource at Section 31, Township 26, Range 3, west of the 5th Meridian in Rocky View County. SLR Consulting (Canada) Ltd. (SLR) was retained to conduct a hydrogeological investigation of this potential aggregate resource development. The objective is to provide a description of baseline hydrogeological conditions in the vicinity of the proposed MALP aggregate resource. We review the potential impacts of the development on groundwater quality and quantity. Based on this we provide mitigation measures to support the development and operation of the aggregate resource being conducted with minimal impact to existing local water users. This includes neighbouring domestic wells, nearby natural heritage features like Big Hill Creek, and the Big Hill Springs Provincial Park. As the ensuing report will identify, it is anticipated that this can be successfully achieved.

The proposed development is an aggregate resource to be worked in six counter-clockwise phases starting in the southeast corner. The sand and gravel will be extracted under dry conditions. No dewatering of the underlying aquifer is planned. In this manner groundwater resources will be protected.

This report creates a picture of the regional setting of the area based on published sources of information such as published geological maps and water well records. Field investigation was undertaken to find local wells, and to drill and install monitoring wells on the site. The soils were scientifically logged for the geologic profile and it was found that the site fit in well with the regional setting. From this, an examination of potential impacts was undertaken and appropriate mitigation was identified. As will be seen in the report, no adverse net impact of the operations on the hydrologic / hydrogeologic setting is predicted.

The two large sloughs in the northwest corner of the site are to be retained on the landscape. A wetland assessment has been undertaken and is covered elsewhere. No streams are located on, or flow from the site, and thus hydrologic impacts are not possible. The following schematic illustrates the hydrogeologic profile found at the site. Given the distances involved, it has been vertically stretched to better show the individual layers and thus is not to scale.

The sloughs are surface water fed and perched on the 4 to 6-metre-thick blanket of dense glacial till which limits the leakage of water into the ground. Beneath the till lies the target sand and gravel deposit which is 11 to 20 metres thick, and generally dry. The water table is close to the bottom

SLR i CONFIDENTIAL

that in Big Hill Springs.

of this deposit and sometimes in the underlying bedrock. This bedrock is the Paskapoo Formation bedrock composed of sandstone, siltstone, mudstone and shale. Although not a very good aquifer, it is permeable enough to provide local water supply and is tapped by the few wells in the area. Groundwater flows to the southeast and eventually discharges in Big Hill Springs at the Provincial Park. The report identifies that this function will not be altered; there may be a slight increase in discharge when the pit is operating, due to the capture of rainfall directly into the sand.

It was found that groundwater quality in the sand and gravel and the bedrock is very similar to

SLR Project No.:212.06650.00003

January 2020

We have considered the possibility of impacts from manmade sources such as fuels and solvents during the operational phase of the pit. We have also considered natural sources such as suspended solids from reworking of the material on site. These potential effects will be mitigated by using best handling practices as outlined in the *Code of Practice for Pits* (Alberta, 2004), other codes of best practice and adhering to regulatory approval conditions.

Under the current excavation scheme the overall risk of any significant negative impacts on water resources as a result of the development are negligible. This is based on the fact that the aggregate resource will not be mined into the water table and therefore no anticipated changes are possible to the groundwater flow system.

The following mitigation and design measures are recommended to reduce the chance of water quality pollution:

- Develop the site on a phased basis to minimize the working area and allow for progressive site restoration;
- Minimize the size of each working area to reduce the potential for generation of suspended sediment in storm water: and
- Commission settlement ponds and surface infiltration features early in the scheme development and manage all runoff generated during operations onsite; and
- Implement a groundwater monitoring program to monitor the existing groundwater flow system and give early warning of any unanticipated changes.

The effects of the development of an aggregate resource above the water table at this site will be minimal on the surface and groundwater regimes, particularly if the mitigation and design measures discussed above are implemented. It is predicted that there will be no adverse net impact of development at the site on surface water or groundwater users in the vicinity.

SLR ii CONFIDENTIAL

TABLE OF CONTENTS

EXE	CUTIV	/E SUMMARY	l
1.0	INTR	ODUCTION	
	1.1	Site Description	
	1.2	Physiography, Topography and Geomorphology	1
	1.3	Proposed Development	1
	1.4	Objectives	
2.0	MET	HODOLOGY	
	2.1	Desktop Study	
	2.2	Field Investigation	
		2.2.1 Water Well Field Verified Survey	3
		2.2.2 SLR Drilling Investigation and Monitoring Well Installation	3
		2.2.3 Hydraulic Conductivity Testing	4
		2.2.4 Groundwater and Surface Water Monitoring and Sampling	
3.0	GEO	LOGY	
	3.1	Surficial Topsoil	
	3.2	Surficial Geology	
	3.3	Bedrock Geology	
4.0	HYD	ROGEOLOGY	
	4.1	Field Verified Water Well Survey	7
	4.2	Aquifer Properties	
		4.2.1 Surficial Unconsolidated Deposits	
		4.2.2 Paskapoo Formation Bedrock	
		4.2.3 Summary	
	4.3	Groundwater Levels and Flow	
		4.3.1 Groundwater / Surface Water Interactions	
	4.4	Water Quality Assessment	
		4.4.1 Surficial Deposits	13
		4.4.2 Paskapoo Formation Bedrock	14
	4.5	4.4.3 Big Hill Springs Water Balance	
	4.5	4.5.1 Water Budget	
		4.5.2 Surplus Partitioning	
		4.5.3 Existing Site Water Balance	
	4.6	Conceptual Model Discussion	
5.0	-	ROGEOLOGICAL IMPACT ASSESSMENT	
5. U	61 5.1		
	5.1 5.2	Hydrogeological Impact Assessment Criteria Potential Impacts on Water Quantity	
	5.2 5.3	Potential Impacts on Water Quantity Potential Impacts on Groundwater and Surface Water Quality	∠U 21
	5.3 5.4	Mitigation Measures	∠ I 21
	J. +	5.4.1 Water Quantity	
		5.4.2 Groundwater and Surface Water Quality	
	5.5	Net Effects Assessment	
	0.0	5.5.1 Cumulative Effects of Multiple Operations	23
6.0	CON	CLUSIONS AND RECOMMENDATIONS	
J.U	6.1	Conclusions	
	6.2	Recommendations	
7.0	_	ERENCES	
7.0	KEL	ENEWOED	∠ɒ

8.0 STATEMENT OF LIMITATIONS28						
TABLES						
Table 2 Averaged Table 3 Com	er Wells within 500 Metres					
	APPENDED TABLES					
Table A1	Sand and Gravel Monitoring Well Groundwater Quality Results					
Table A2	Paskapoo Formation Residential Well Groundwater Quality Results					
Table A3	Big Hill Springs Water Quality Results					
	FIGURES					
Figure 1 Pipe	er Plot of Groundwater and Surface Water Quality Collected to Date13					
	DRAWINGS					
Drawing 1	Site Location and Study Area					
Drawing 2	Study Area Topography					
Drawing 3	Borehole, Monitoring Well and Water Well Location Plan					
Drawing 4	Groundwater Elevations (July 3, 2019)					
Drawing 5	Schematic Geological Section A-A'					
Drawing 6	Schematic Geological Section B-B'					
Drawing 7	Schematic Geological Section C-C'					
	APPENDICES					
Appendix A	Site Gravel Investigation Results and Logs					
Appendix B	SLR Consulting Ltd – Monitoring Well Construction Logs					
Appendix C	Alberta Water Well Records					
Appendix D	Residential Well Assessment Questionnaires					
Appendix E	Hydraulic Conductivity Test Analysis					
Appendix F	Groundwater Elevation Data					
Appendix G	Laboratory Analytical Reports					
Appendix H	Baseline Water Resources – Water Well Testing Results Letter Report					

SLR iv CONFIDENTIAL

1.0 INTRODUCTION

SLR Consulting (Canada) Ltd. (SLR) was retained by Mountain Ash Limited Partnership (MALP) to conduct a hydrogeological assessment of a proposed aggregate resource in Rocky View County, Alberta. The assessment and description of baseline hydrogeological conditions within the vicinity of the site is required to ensure the development and operation of the aggregate resource is conducted with minimal impact to existing local water users and the natural environment. This includes neighbouring domestic wells and the Big Hill Springs Provincial Park.

SLR Project No.:212.06650.00003

January 2020

1.1 Site Description

Mountain Ash Limited Partnership (MALP) wishes to develop a site at the western half of Section 31, Township 26, Range 3, west of the 5th Meridian (Sec 31, Twp 26, Rge 3, W5M) for the purposes of aggregate extraction. The site location is shown on Drawing 1.

The northern part of the proposed site (Northwest quarter of Sec 31, Twp 26, Rge 3, W5M), is currently zoned by the Rocky View County as Natural Resource Industrial District and the southern part (Southwest quarter of Sec 31, Twp 26, Rge 3, W5M) is zoned Ranch and Farm District (Rocky View County, 2019). Its current use is ranch farming by a tenant occupier who lives in a dwelling on the site and ranches cattle, horses and sheep, and uses some of the land as hay pasture. There are two large sloughs in the northwest corner considered as Class II gramminoid marsh wetlands and a number of other, smaller wetlands mainly classified as Class I farmed through wetlands. A detailed description of the wetlands on site is provided in SLR (2020a; 2020b).

1.2 Physiography, Topography and Geomorphology

The Project Site is situated in the Southern Alberta Upland physiographic region of the interior plains division (Pettapiece, 1986). The geomorphological characteristics of this physiographic region are provided by the proximity of bedrock to the surface which causes a varied topography with elevations up to 1,650 metres (m) above sea level (asl) to the west. The site is located at an average elevation of approximately 1,280 masl. The site slopes to the southeast from the topographic high to the north and hosts a low-relief valley feature running northwest to southeast across NW Sec 31, Twp 26, Rge 3, W5M. In SW Sec 31, Twp 26, Rge 3, W5M, the topography slopes steeply southwesterly into the valley running west-northwest to east-southeast which leads to Big Hill Springs Creek. The site is in the Bighill Creek watershed and the study area topography based on LiDAR data is presented on Drawing 2.

The physiographic region coincides with the Foothills natural region which comprises dissected plateaus and rolling uplands with surficial geology comprising glacial till and abundant fluvial deposits. The climate in this natural sub-region is typically characterised by cool summers and cold winters but highly influenced by the periodic warm Chinook winds (Downing and Pettapiece, 2006). Compared to the rest of the country, Alberta has relatively low precipitation in the lee of the mountains and total average annual rainfall in the area is 450 to 500 millimetres (mm) per year (Alberta Agriculture, Food and Rural Development, 2000).

1.3 Proposed Development

The western half of Section 31 covers a total area of approximately 130 hectares (320 acres). The ultimate extraction footprint will be 83.4 ha (206 acres). The property will be operated and

SLR 1 CONFIDENTIAL

permitted in six phases of uneven size, depending upon setbacks, with operations and permitting commencing initially for the southeast parcel. This is called Phase 1 and comprises about 14.4 ha (35.5 acres) and is expected to take 5 years to extract. It should be noted that the two sloughs in the northwest corner will be retained and Phase 4 will be developed on the lands south and east of them. Each of the subsequent phases is anticipated to take approximately 5 years to extract.

SLR Project No.:212.06650.00003

January 2020

Based on drilling investigations at the site, there is 4 m to 6 m of glacial till overburden overlying approximately 20 m of sand and gravel. The till soils will be stripped and stockpiled for future use in the post-development restoration. The sand and gravel is the target deposit for extraction and lies immediately above the underlying bedrock. Groundwater in assessment boreholes was noted at between 20 m and 24 m below ground surface (m bgs) and above the bedrock. It is anticipated that the site will be worked to 1.0 m above the maximum recorded groundwater level within the gravel deposit and will therefore be worked dry, with no requirement for operational or permanent dewatering. Actual depths will be determined with progressive investigation of water levels as the aggregate resource is developed.

1.4 Objectives

The objectives of this hydrogeological assessment are to provide detailed baseline data which would fulfil the information requirements within the Alberta Code of Practice for Pits (Alberta Government, 2004) and inform the development of the aggregate resource. The report is intended to provide the following:

- A general description of the geological features of the proposed aggregate resource site including the surficial geology and bedrock geology;
- A description of the hydrogeology at the site in context with the local and regional study areas:
- Hydrogeological impact assessment of the quarry development on the surrounding groundwater aquifers (e.g. groundwater draw-down) and provide detail on how the impacts will be avoided or mitigated, to establish net impact; and
- A description of any monitoring programs which will be designed to provide information on effects on groundwater quality and quantity.

In order to achieve these objectives, the results section of this report is split into two main parts, the first of which relates to the geological environment and the second of which relates to the hydrogeology.

2.0 METHODOLOGY

The hydrogeological investigation was divided into two main parts, the first comprising a desktop study and review of available data, with the second comprising a water well field verified survey, several drilling investigations, hydraulic conductivity testing and groundwater monitoring and sampling.

2.1 Desktop Study

A desktop study of existing records was undertaken to obtain regional and local information about the site conditions and site setting. These included:

- Alberta Environment and Parks (AEP) records;
- Historic water well drilling reports;

- Regional and local mapping resources;
- Aerial photographs; and
- Any available operational/environmental documents relating to the site.

This desktop study also included review of existing information that MALP (Formerly Summit Aggregates) collected previously and included aggregate quality analyses (Appendix A) which helped interpret the geologic conditions for the property prior to the SLR and subsequent site investigations. The preliminary desktop review was used to determine:

SLR Project No.:212.06650.00003

January 2020

- the geology and hydrogeology beneath the site;
- locations of surface water bodies in the area;
- the local topography and drainage; and
- the locations of potential sensitive receptors (wells, wetlands and springs).

A initial site reconnaissance was conducted on September 18, 2014 to provide ground-truth for observations made in the initial review and to establish some general characteristics concerning the hydrology of the area. The site visit also included an examination of the creek flowing from Big Hill Springs to the highest upstream point accessible within the Provincial Park. Many other site visits (13) have been made by SLR staff since that time for monitoring and assessment purposes.

2.2 Field Investigation

Following the initial desktop study, field assessments were carried out in accordance with SLR's standard field investigation procedures. This included the following items:

- Water well field verified survey;
- Drilling investigations and monitoring well installation;
- Hydraulic conductivity testing; and
- Groundwater monitoring and sampling.

The methodology behind these aspects of the field investigation is outlined in the following sections.

2.2.1 Water Well Field Verified Survey

After the review of historical water well records, a field verified door to door survey to confirm the location of water wells within 500 m of the property boundaries was undertaken. This field verified survey involved filling out a questionnaire with the well owners on well locations, depths, use, history and any other water related information such as drainage or septic disposal practices at available households. Further details are provided in Section 4.1 below.

2.2.2 SLR Drilling Investigation and Monitoring Well Installation

The first round of monitoring well installation was conducted by SLR from September 30 to October 2, 2014, utilizing a truck mounted drill rig equipped with 150 mm diameter Becker Hammer supplied and operated by Great West Drilling of Calgary, Alberta. Three boreholes (MW14-101, MW14-102 and MW14-103) were drilled to depths between 16.5 m bgs and 27.7 m bgs around the perimeter of the NW quarter section, where they were drilled until refusal was achieved in the upper bedrock. Soil samples were collected from the air flush centrifuge at ground surface where the cuttings were logged by a qualified geologist.

SLR 3 CONFIDENTIAL

undertaken by MALP as part of further

SLR Project No.:212.06650.00003

January 2020

A second round of monitoring well installation was undertaken by MALP as part of further aggregate assessment in June 2018 across the NW quarter section, the borehole logs from which are presented in Appendix A. Four monitoring wells were completed as MW18-104, MW18-105, MW18-106 and MW18-107, please reference Drawing 3 for locations.

A third round of monitoring well installation was undertaken by SLR Consulting from June 3 to June 5, 2019 utilizing a track-mounted drill rig equipped with 150 mm diameter ODEX supplied and operated by Ernco Drilling of Red Deer, Alberta. Three boreholes (MW19-108, MW19-109 and MW19-110) were drilled to depths between 15.8 m bgs and 36.6 m bgs in the SW quarter section, where they were drilled down to bedrock or until groundwater was encountered. Soil samples were collected from the air flush at ground surface where the cuttings were logged.

Monitoring wells were installed in ten of the boreholes as indicated above. The monitoring wells were screened either at the base of the sand and gravel unit or across the upper bedrock / sand and gravel interface to ensure the water table could be measured. The wells were installed to characterize groundwater quality and depth to the water table within the sand and gravel and upper bedrock. The wells were constructed of 50 mm diameter schedule 40 polyvinyl chloride (PVC) pipe with threaded joints. The screened portion of the well was comprised of 0.25 mm horizontal slots (10 Slot) and the annulus was backfilled with silica sand from the bottom of the screen to approximately 0.3 m above the top of the screen. A hydrated bentonite chip seal was placed around the annulus of the solid section of stand pipe above the screened section to within approximately 0.5 m of ground surface. A 50 mm diameter slip cap was placed on the bottom of the well and a 50 mm diameter j-plug was placed on the top of the monitoring well. An above ground steel protective cover with a lockable lid was concreted in place above the top of the wells. Borehole geological information and well construction details are provided in the SLR well logs in Appendix B and those by others are provided in Appendix A.

2.2.3 Hydraulic Conductivity Testing

Hydraulic conductivity tests were conducted on MW14-101 and MW14-103 and comprised a series of rising head slug tests on both wells and a short pumping and recovery test on MW14-101. Yield tests on two private wells were undertaken utilizing the existing water distribution systems at both WW2 and WW4; however, the test in WW4 was not usable for analysis due to interference from the domestic water system. To obtain hydraulic conductivity values, the slug tests were analysed using the Bouwer-Rice method and the recovery tests were analysed using the Theis recovery method, both hosted in the AquiferTest (v3.5) software. A copy of the analysis undertaken is presented in Appendix E. Hydraulic conductivity results from the tests are reported in Section 4.2 below.

2.2.4 Groundwater and Surface Water Monitoring and Sampling

Groundwater monitoring events were carried out on 12 occasions in monitoring wells MW14-101, MW14-102 and MW14-103, on eight occasions in two residential wells (WW2 and WW4), three occasions in MW18-104, MW18-105 and MW18-106, and two occasions in MW18-107, MW19-108, MW19-109 and MW19-110. Depth to groundwater was measured using a Solinst water level meter.

Groundwater samples have been collected from the accessible residential wells in the Paskapoo Formation bedrock and the sand and gravel monitoring wells. The furthest publically accessible upstream point of the stream flowing from Big Hill Springs was sampled within the Big Hill Springs Provincial Park. Residential well samples were collected from a point within the household system

SLR 4 CONFIDENTIAL

before any water quality treatment and after a purge of 15 minutes or until field parameters were deemed to have stabilized. The monitoring wells in the sand and gravel were purged using a submersible pump or bailers until groundwater chemistry parameters including pH, electrical conductivity (EC), dissolved oxygen and temperature were considered to have stabilized. Water samples were placed in appropriate sample containers provided by the laboratory and preservative supplied by the laboratory was added to the samples where required. The samples were submitted to KaizenLAB or Bureau Veritas Laboratories of Calgary for testing, both of which are Canadian Association for Laboratory Accreditation (CALA) accredited laboratories.

SLR Project No.:212.06650.00003

January 2020

The water quality samples from both residential wells and site monitoring wells were analysed for general chemistry and total metals for comparison purposes. Results of the water quality sampling are provided in Tables A1 to A3 (appended) and the laboratory analytical certificates provided in Appendix G. Historical water quality analysis for residential well 360164 was provided by the householder and the report is provided as Appendix H (Baseline Water Resource Inc., June 2013).

3.0 GEOLOGY

Drawing 3 shows the lines of three vertical cross-sections (Drawings 5, 6 and 7) that run northwest to southeast along the direction of groundwater flow to the springs (A-A'), southwest to northeast across the upper valley (B-B') onsite, and southwest to northeast through the site (C-C') further down valley. They have been prepared to illustrate the relationship between the various geological units in the study area and are referred to in the following subsections.

3.1 Surficial Topsoil

Topsoil in the M.D. of Rocky View County has developed on materials of glacial origin and are therefore heavily influenced by the nature of the parent geologic material. The topsoil lying at surface in the vicinity of the project site is comprised of the Dunvargan Series which are formed from moderately fine textured till with less than 20% coarse material. The Dunvargan Series soils are moderately well drained soils with a typical profile being a thick black soil of greater than 15 centimetre (cm) topsoil; however, in the Rocky View County they are associated with less well developed variants with less than 15 cm topsoil thickness (Turchenek and Fawcett, 1994). Based on the onsite drilling, the surficial soils range in thickness from 30 cm to 60 cm.

In summary, the topsoil is relatively thin, fine grained, with significant organic content and tends to temporarily retain water. It is this layer that supports vegetative growth and land use such as range land or cropping, as well as natural ecosystems.

3.2 Surficial Geology

Surficial geology in the vicinity of the Project site has been determined from the published geology maps (Shetsen, 1987). Two primary layers are found. The upper strata are predominantly comprised of Pleistocene-age moraine draped over the underlying sand and gravel. This moraine consists of an unsorted mixture of clay, silt, sand and gravel with local water-sorted material and is called a glacial till. The till in the vicinity of the site is of a relatively consistent thickness with a flat to undulating topography which reflects the topography of underlying deposits which in turn reflect the shape of the bedrock surface below. Underlying the draped moraine at the site is sand and gravel of glaciofluvial origin, which formed on the slopes and base of meltwater channels draining melting ice sheets (Shetsen, 1981).

SLR 5 CONFIDENTIAL

SLR Project No.:212.06650.00003 January 2020

Borehole logs from aggregate assessment at the site (Almor Testing Services Ltd, 2014; 2017a; 2017b and 2018) and hydrogeological investigations as part of this assessment are included as Appendix A and Appendix B, respectively. The borehole logs indicate that surficial deposits over the majority of the site include approximately 3 m to 6 m of silty, sandy or gravelly clay till and topsoil (this overburden will have to be moved to extract the underlying aggregate deposits). Beneath the clay till is the sand and gravel deposit of interest, which is generally a well graded mixture of sand and gravel containing occasional beds of pure sand or pure gravel up to 2 m thick. Some layers were difficult to drill and are interpreted to be hard, and are potentially calcified bands. Based on the drilling results, the sand and gravel generally vary in thickness between 10 m and 27 m, with an average thickness of approximately 18 m in those areas investigated.

3.3 Bedrock Geology

Consolidated bedrock underlies the unconsolidated soils at a depth of 15 to 28 m, and represents the basement to site operations where not saturated. Structurally, the site is located several kilometres east of the furthest extent of the main Cordilleran Deformation, and as such is relatively flat-lying bedrock with little folding or faulting compared to older bedrock further west in the Disturbed Belt. The bedrock beneath the sand and gravel at the site consists of Tertiary, Palaeocene age (55 to 65 million years old) sedimentary rocks of the Upper Paskapoo Formation. The Paskapoo formation comprises grey to greenish grey, thickly bedded, calcareous sandstone interbedded with siltstone or mudstone and minor conglomerate or thin limestone beds (Alberta Geological Survey, 1999). The test drilling at this site found grey sandstones and siltstones. The bedrock was derived from sediments eroded from the Rocky Mountains during a period of uplift and erosion and carried east by river systems which drained the mountains. The sandstones within the Paskapoo are a complex series of stacked river channel deposits separated by floodplain siltstone and mudstone deposits (Hamblin, 2004).

Outcrops of the Paskapoo Formation sandstone can be seen in the steep slopes of the Big Hill Springs Provincial Park southeast of the site. A number of domestic well records from the immediate vicinity identify sandstone and shale¹ beneath and surrounding the site.

4.0 HYDROGEOLOGY

The hydrogeological regime at the application site and the surrounding area is described in the following sub sections:

- Field verified survey to establish groundwater wells and use;
- Aguifer properties;
- Groundwater levels and flow; and
- Water quality assessment.

The hydrogeological data has been used to develop a conceptual site model that has in turn been used to assess potential impacts associated with the proposed development. The conceptual site model has also been used to determine appropriate mitigation measures.

SLR 6 CONFIDENTIAL

¹ It is common for drillers to use the term "shale" to describe mudstones and siltstones, as the differences are subtle and they all share a common fine grained appearance to the untrained eye.

4.1 Field Verified Water Well Survey

The objectives of the field verified water well survey were to establish residential well use, baseline water quality conditions and to provide an assessment of the hydraulic parameters within the aquifers utilised by local residences adjacent to the site. Initially, a water well record search was undertaken by obtaining records from the Alberta Water Wells database which are presented in Appendix C (updated in 2019). This was followed by a door-to-door survey (October to December 2014) of residences within a 500 m radius of the site with visits on a number of occasions to those houses where no resident was at home. Where possible the formal well records were correlated with the actual wells in the field. It is considered that the 1,600 m radius required for a Water Act application is not appropriate for this project as no water body is to be disturbed by the development which will be worked dry and much of that greater area is not in the same groundwater flow field. A number of properties were surveyed and sampled and/or yield tested in order to further assess the relevant aquifer units. At each residential well, a questionnaire was completed to determine the type of well, well completion details, water levels and whether the well user has any issues with water quality or quantity. The questionnaires completed at the residential wells are provided in Appendix D.

SLR Project No.:212.06650.00003

January 2020

The majority of local wells (for which there are records) are utilized for domestic or commercial purposes. The Alberta records indicated a total of 17 wells within 500 m of the Project site with two of those decommissioned (391599 and 391600) and one with very little available detail (395793). Drawing 3 presents the locations of the wells identified from the records search and the door-to-door survey for which Table 1 summarizes the information collected. The majority of drilled wells are drilled to between 30 m and 75 m bgs and are screened within the Paskapoo Formation.

Two drilled wells (WW1 and WW4) are on the site at the residences of the current tenants; however, all of the other drilled wells recorded are greater than 100 m from the site boundary. With respect to the WW1 property, there is a well listed in the records for this property (494800); however, the geology recorded in this record is completely different than the rest of the area. It had been concluded that it is an improperly recorded location in the digital records kept by AEP and has not been used in the analysis.

Dug wells identified at location WW5 (four wells in total) are between 6.1 m and 7.6 m deep according to details provided by the householder. This location is in the bottom of the valley at the southeast end of Section 31. No lithological logs are available for the dug wells; however, based on their estimated depth and the lithological details provided in nearby drilled wells to the east, it is inferred that they are completed in the sand and gravel deposits. The well owners reported that the static water level is 3 m bgs. Although this was unconfirmed by direct measurement, it is a reasonable estimate, given the shallow nature of the wells.

SLR 7 CONFIDENTIAL

Table 1
Water Wells within 500 Metres

Well Interview Number	Alberta Water Well Record Number	No. of Wells	Well Owner	Easting (UTM)	Northing (UTM)	Well Depth (m)	Drilled / Dug	Distance (m) and Direction from Site
WW1	Unknown	1	Waterman	680559 ¹	5682875	Unknown	Drilled	On site
WW2	1475699	1	Rawn	680988 ¹	5682770	50.9	Drilled	200m E
WW3	1475698	1	Rawn	681173 ¹	5682907	36.0	Drilled	400m E
WW4	350194	1	Nugter	680257 ¹	5682091	35.1	Drilled	160m S
WW5	N/A	4	Parker	681547 ¹	5681568	6.1 – 7.6	Dug	
N/A	391000	1		679932 ²	5683339	39.6	Drilled	
N/A	360164	1	Carroll	680744 ¹	5683480	67.1	Drilled	350m N
N/A	1022436	1	Lafarge Canada Inc.	679682²	5682526	30.5	Drilled	
N/A	387449	1	Lafarge Canada Inc.	See Note ³	NE Quarter, S36-T26-R4	33.8	Drilled	
N/A	494773	1	Lafarge Canada Inc.	See Note ³	NE Quarter, S36-T26-R4	30.5	Drilled	
N/A	2095665	1	Unknown	See Note ³	SW Quarter, S6-T27-R3	25.6	Drilled	
N/A	390998	1	Unknown	See Note ³	SE Quarter, S6-T27-R3	65.5	Drilled	
N/A	390999	1	Unknown	See Note ³	SE Quarter, S6-T27-R3	73.2	Drilled	
N/A	391598	1	Unknown	See Note ³	NW Quarter, S3-T26-R3	39.6	Drilled	On site
N/A	395786	1	Unknown	See Note ³	NE Quarter, S31-T26-R3	62.5	Drilled	

Notes:

- 1. Location based on GPS measurement in the field.
- 2. Location based on Abacus Datagraphics database.
- 3. Wells plotted at quarter-section centroid in Abacus Datagraphics database. Not likely actual location.

4.2 Aguifer Properties

A number of different geological units with different hydraulic properties are present in the study area. The distinct units are discussed here in order with depth from surface (and increasing geological age). The testing of two monitoring wells and two residential wells was undertaken and details of the work are provided below.

SLR Project No.:212.06650.00003

January 2020

4.2.1 Surficial Unconsolidated Deposits

Surficial deposits of unconsolidated soils consist of till overlying sand and gravel deposits as described in Section 3.2 above. Groundwater flows in the intergranular pores in these soils, and the rate of flow is proportional to the hydraulic conductivity of the soil. For example, the hydraulic conductivity is low where clay rich material infills these pores, but is significantly higher where clean sand and gravel is present.

Since the upper glacial till that caps the site is not saturated, no groundwater monitors were installed and therefore no field testing for hydraulic conductivity was undertaken. These soils are not typically aquifers, as their hydraulic conductivity is in the range of 10⁻⁸ to 10⁻⁷ m/s (Freeze and Cherry, 1979), but they do act as a protective layer for underlying deposits.

As described in Section 2.2.3, a number of slug and pumping and recovery tests were undertaken on monitoring wells MW14-101 and MW14-103 which are screened in the sand and gravel. The slug tests were conducted using bailers with instantaneous head changes in the wells and the pumping and recovery test (MW14-101) was undertaken by pumping for approximately 20 minutes until water levels stabilised. The slug tests determined hydraulic conductivities of approximately 2×10^{-4} m/s to 3×10^{-4} m/s. The pumping and recovery test indicated hydraulic conductivities of 1×10^{-4} m/s. It is considered that the longer pumping and recovery test gives a better idea of the bulk sand and gravel properties due to its larger radius of influence around the wells. These values nonetheless fall in a narrow range and are typical of sand and gravel aquifers.

4.2.2 Paskapoo Formation Bedrock

The Paskapoo Formation is the most significant aquifer formation in western Alberta and potentially the Prairie region, and although of regional importance as a whole, the isolated nature of the main sandstone units can provide variable success for residential wells. Only the sandstone facies of the Paskapoo Formation demonstrate any significant intergranular porosity; however, the pore spaces may be filled with calcareous cement in some areas. Bedding planes, joints and structural fractures contribute to a secondary permeability of the bedrock as well. Based on water well records in the area and the drilling at this site, much of the formation in this area is primarily comprised of fine-grained bedrock such as siltstone, mudstone and shale which demonstrate low intergranular porosity. Secondary fracture porosity is likely to be responsible for the yields obtained from residential wells in the vicinity of the site and generally provides lower yields within wells completed within mudstone and siltstone than sandstone (Geological Survey of Canada, 2007; Ozaray and Barnes, 1977). The majority of residential wells in the area are drilled into the Paskapoo Formation indicating that the aquifer is locally important for groundwater supplies.

An in-situ variable head permeability test has been undertaken in residential well WW2 by undertaking a short term pumping and recovery test. One other residential well (WW4) was tested; however, due to interference by the particular characteristics of the method of operation of the existing water distribution system, very little analysis could be undertaken on the test results. No

SLR 9 CONFIDENTIAL

other residential wells were available for yield testing. Test results were analysed using the Cooper-Jacob Time Drawdown method as hosted by AquiferTest (v3.5) software to obtain hydraulic conductivity values. A copy of the analysis undertaken is presented in Appendix E. The test results show that the Paskapoo Formation penetrated by WW2 has an approximate hydraulic conductivity of 2 x 10^{-7} m/s with a transmissivity of 5 x 10^{-6} m²/s. The well record corresponding to WW2 is 1475699 (Appendix C), which shows the water bearing layers to be mostly sandstone and shale at a depth of 45 m. The hydraulic conductivity value obtained reflects this fractured bedrock.

SLR Project No.:212.06650.00003

January 2020

Water levels in WW2 and WW4 were measured over a 1-month period at five-minute intervals by a water level transducer and data logger to assess the responses of the wells to their normal use. The first month of data collected is provided in graphical form in Appendix F. Water levels in WW2 respond significantly to normal domestic use with drawdown up to 8 m seen during normal household use. This contrasts with the response of WW4 to normal use as the well shows a maximum drawdown of approximately 0.11 m. The slow aquifer response in WW2 and fast aquifer response in WW4 also were seen during the yield tests where WW2 had drawdown of >7 m at a flow rate of approximately 12 Litres per minute (L/min) and WW4 had drawdown of just 0.09 m at a flow rate of approximately 39 L/min. The contrast between the performances of the two wells demonstrates the variability of the hydraulic properties of the bedrock in the Paskapoo Formation.

4.2.3 Summary

In summary, the hydraulic conductivity values for the various aguifer units may be compared:

- The glacial sand and gravel deposits had an approximate hydraulic conductivity of 1×10^{-4} m/s to 3×10^{-4} m/s; and
- The Paskapoo Formation hydraulic conductivity was 2 x 10⁻⁷ m/s, but can vary.

While it is recognized that these measurements do not establish the full range for each unit, they do provide insight into the aquifer characteristics. It is commonly held (Freeze and Cherry, 1979; Fetter 2001) that useable aquifers have a hydraulic conductivity of greater than 10^{-6} m/s. Only low yield wells (such as some residential wells which only periodically draw water at relatively low rates) are possible below that value. The Paskapoo Formation has a value lower than this, which indicates a low yield aquifer in parts; however, the performance of WW4 indicates that higher yield wells can also be achieved. The Specific Capacity of WW2 is 1.85 L/min/m, and that of WW4 is 433 L/min/m. This is a 234 times difference, and assuming the same saturated thickness (and similar length of pumping time) it can be estimated that the conductivity of the Paskapoo Formation at WW4 is potentially two orders of magnitude higher than at WW2.

4.3 Groundwater Levels and Flow

Initially, a total of three groundwater monitoring wells were installed in the sand and gravel at the site in September / October 2014. These monitoring wells were drilled to prove bedrock and then backfilled with bentonite to the base of the sand and gravel. The wells are screened from the base of the sand and gravel to the top of the saturated zone (MW14-101 and MW14-103); however, MW14-102 has remained dry for the period of monitoring included in this report, indicating that the water table is at least seasonally in the bedrock in some areas of the site. Further monitoring wells were installed at the site in 2018 and 2019 as part of site investigations and were screened either at the base of the sand and gravel or across the sand and gravel / bedrock interface to ensure the water table was intersected.

SLR 10 CONFIDENTIAL

The locations of these monitoring wells and their groundwater elevations (on July 3, 2019) are presented on Drawing 4. The information from these wells has been supplemented with groundwater level information from residential wells WW2 and WW4 also presented in Drawing 4.

SLR Project No.:212.06650.00003

January 2020

The groundwater monitoring points completed at the site have been subject to periodic groundwater elevation monitoring between October 2014 and September 2019. Sand and gravel wells MW14-101 and MW14-103 and residential wells WW2 and WW4 have been recording continuous groundwater levels using data loggers from 29 October 2014. Groundwater hydrographs of monitoring data to date are presented in Appendix F, a review of which shows:

- The highest manual groundwater elevations are recorded in the sand and gravel at MW14-101 (1,274.87 masl) on 20 November 2014;
- The lowest groundwater elevations are recorded in the sand and gravel in the valley at MW19-109 (1,259.46 masl) on 3 July 2019;
- A downward vertical gradient between the sand and gravel deposits and the underlying Paskapoo Formation is likely. Based on the potentiometric surface in the sand and gravel on Drawing 4, the water level is likely about 1,271 masl at WW2, and the approximate static water level in the bedrock at WW2 is around 1,263 masl (the measured level on Drawing 4 is affected by pumping at the well). The higher total head in the overburden than the bedrock dictates a component of downward vertical groundwater flow from the sand and gravel to the bedrock. The amount of downward groundwater flow is probably limited due to the relatively lower hydraulic conductivity of the underlying bedrock, inhibiting drainage to depth;
- Minimal fluctuation in the groundwater levels within the sand and gravel indicates very little or no influence from pumping within residential wells in the area. Groundwater levels within the sand and gravel have been gradually falling over the initial four or five years of monitoring, with a drop of approximately 0.9 to 1.3 m in the period. Levels have rebounded somewhat (0.1 m) in the months between July and September 2019 due to the higher than average rainfall totals in the area in spring and summer 2019; and
- As discussed in Section 4.2.2 above, variable response to the pumping from normal use in residential wells WW2 and WW4 is seen in the hydrographs with large fluctuations in WW2 as compared with WW4. This is indicative of the differing performance of the wells due to variability of the hydraulic conductivity within the Paskapoo Formation.

Using site groundwater observation data, Drawing 4 shows the inferred potentiometric groundwater surface (drawn in blue) in the sand and gravel at site as recorded on 3 July 2019. Drawing 4 shows that the horizontal flow direction in the sand and gravel is towards the south-southeast and the Big Hill Springs valley.

The potentiometric surface within the Paskapoo Formation cannot be drawn based on just two far apart data points (WW2 and WW4). Examination of historical water levels at other wells based on the water well records show that the elevation of the potentiometric surface is between about 1,266 and 1,268 masl in the area of the site, which is near the bedrock surface. If one assumes the bedrock potentiometric surface is near ground level at the Big Hill Springs, which is about 1,240 masl, then there is strong lateral gradient southeast towards the springs at which point groundwater is observed discharging to the surface.

4.3.1 Groundwater / Surface Water Interactions

Two large sloughs located in the northwestern corner of the site have a surface elevation of approximately 1,290 masl and are perched on the 6 m of low permeability fine grained till. The

SLR 11 CONFIDENTIAL

SLR Project No.:212.06650.00003 January 2020

presence of freestanding water is seasonal based on observations made at the site, with water levels generally decreasing through summer and autumn. Monitoring well MW14-101 located close to one of the sloughs has a groundwater elevation in the sand and gravel of approximately 1,274 masl, which is well below the base of the till (at about 1,284 masl). This demonstrates that the sloughs are not fed by groundwater from the sand and gravel. Thus, it is inferred that the sloughs are fed by rainfall and snowmelt from the local catchment and from the catchment across Highway 567 transported by the culvert located beneath the highway. These sloughs will be retained on the landscape and this small area will not be developed for aggregate extraction.

Since groundwater from beneath this site flows southeasterly towards the Big Hill Springs, and this is a significant feature in the natural heritage of the County, it represents an offsite interaction of groundwater with surface water. Section 5 of this report discusses potential impacts to this feature. For the purpose of this report; no specific investigation of the springs has been undertaken, other than a site visit to identify general features and the sampling of water quality. Bedrock outcrops can be seen on the valley walls surrounding the stream and springs and thus it is inferred that the host valley is incised into the bedrock. Ozaray & and Barnes, 1977, reports that spring flow is in the order of 40 L/s and water temperature is typically less than 5°C.

4.4 Water Quality Assessment

Groundwater samples have been collected from the accessible residential wells in the Paskapoo Formation bedrock, the sand and gravel monitoring wells and the furthest publically accessible upstream discharge point at Big Hill Springs. Sampling methodologies are described in Section 2.2.4, above and Laboratory analysis certificates are provided in Appendix G.

In order to compare groundwater and surface water quality at this site, a Piper plot showing the relationship between the relative abundance of the major cations and anions in the sampled water has been prepared (Figure 1). These plots include all groundwater and chemistry results from all groundwater monitoring wells on site and are typically helpful in understanding any differences between water types.

On all three plots the sand and gravel aquifer, bedrock aquifer and Big Hill Springs water occupies a very small area exhibiting a calcium and magnesium-rich water with little chloride or sulphate and with high alkalinity (expressed as HCO_3+CO_3). This is typical of clean meteoric water and indicates that water in both the aquifers and the springs is heavily influenced by recharge from rainfall. Often on these diagrams there can be a wider spread in the water "fingerprint"; however, the tight grouping here indicates very similar water between the three sources. In addition, the total dissolved solids in these three water sources generally lie in a fairly narrow range of 210 to 360 mg/L (Tables A1, A2 and A3, appended). On this basis, it is concluded that this is the same water type for the sand and gravel, the Paskapoo bedrock, and the discharge from Big Hill Springs. The updated groundwater and spring water chemistry supports the conclusion that the groundwater within the saturated sand and gravel recharges the Paskapoo Formation bedrock and also provides baseflow to the Big Hill Springs.

SLR 12 CONFIDENTIAL

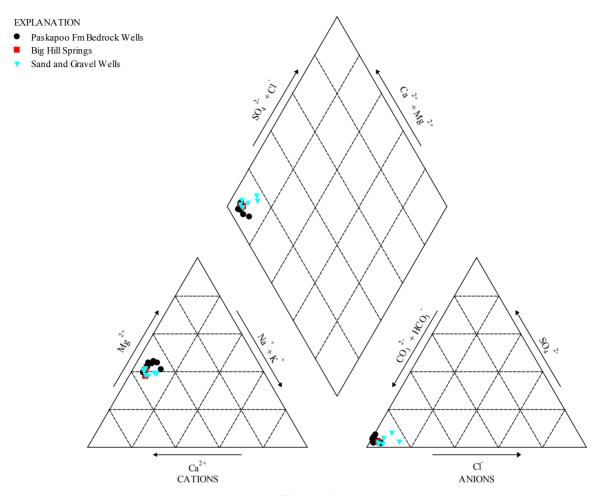


Figure 1
Piper Plot of Groundwater and Surface Water Quality Collected to Date

4.4.1 Surficial Deposits

Table A1 (appended) indicates that groundwater in the sand and gravel deposit is of poor quality for drinking. The Canadian Drinking Water Quality (CDWQ) standards set maximum allowable concentrations (MAC) for 16 parameters for drinking water purposes. A number of these were exceeded in several monitoring wells, including trace metals arsenic, barium, cadmium, chromium, lead, manganese and mercury, and microbiological parameters total coliforms and E. Coli. Other CDWQ guidelines that were exceeded were the aesthetic objective parameters aluminium and iron. Groundwater from a number of the monitoring wells exceeded guidelines for turbidity, which is a parameter that is included because it shows when water is not clear, may contain sediment, and can also mask bacteria counts. The Piper plot in Figure 1 (above) indicates that the sand and gravel samples lie in a zone of Ca-Mg-HCO₃ waters, which indicates an influence from meteoric waters and recharge from rainfall, coupled with the influence of the host soils/bedrock. Of note, the pH was moderately alkaline at 7.8 to 8.2, which is typical of groundwater in these sediments.

The low concentrations of dissolved parameters in the surficial deposits is indicative of recharge from rainfall having a short residence time in the subsurface, where fewer elements have time to

dissolve in the groundwater. Not much of the trace metals are dissolved into the water, but the guidelines are so low that they can be exceeded without contributing significantly to the dissolved load. The high turbidity and total metals in a number of the monitoring wells is potentially artificial and not indicative of the actual water quality. This may have been caused by insufficient development of the monitoring wells before sampling due to the breakdown of the purge pump in both 2014 and 2019, and an undue influence of suspended sediment. The August 2015 sampling in MW14-103 did not experience this problem and sufficient purging and development occurred before the sample was collected on this occasion. The turbidity and concentrations of aluminium, iron and manganese, plus a number of other metals showed a significant reduction from those in November 2014 in the August 2015 sampling.

4.4.2 Paskapoo Formation Bedrock

Table A2 (appended) indicates that groundwater in the Paskapoo Formation is of relatively good quality for drinking, with all parameters meeting the Canadian Drinking Water Quality (CDWQ) guidelines except a single exceedance of total coliforms in WW4. E.Coli was not detected in WW4 which indicates that the coliforms were not related to fecal contamination, however they do indicate that the well could be vulnerable to bacterial contamination, especially with no treatment at that property². pH values were moderately high (7.9 to 8.1) in all samples, indicating slightly more alkaline conditions within the bedrock as compared to the sand and gravel. The Piper plot in Figure 1 indicates that the majority of bedrock samples lie in a zone of Ca-Mg-HCO₃ waters, which again indicates an influence from meteoric waters and recharge from rainfall.

4.4.3 Big Hill Springs

Table A3 (appended) summarizes the water quality results of the water samples taken from the creek downstream from the springs at Big Hill Springs Provincial Park on October 30, 2014, August 4, 2015 and July 10, 2019. Since this groundwater discharge is the source for a surface water stream, and at the point of sampling is within that stream, it is compared to the CWQG Protection for Aquatic Life (PAL) guideline. The PAL has guidelines for 20 parameters of the sampling suite. The sample met 17 of the guidelines for these parameters indicating that water discharging from the spring is generally of good quality. It is noted that total coliforms and E.Coli concentrations exceed the CDWQ drinking water guidelines; however there is no CWQG bacteria guideline for the protection of aquatic life. The high concentrations are consistent with the presence of livestock in the stream catchment and of which evidence was abundant adjacent to the property line at the sampling location. Only aluminium and selenium exceeded the PAL guideline in these natural waters. Of minor note, the laboratory detection limit for mercury (0.001 mg/L) in 2014 and 2015 exceeded the guideline (0.000026 mg/L) and thus the "non-detect" reported in Table A3 may or may not meet the lower guideline. Mercury sources in this geologic setting are not common, nor will the proposed aggregate operation be a source of mercury. Mercury concentrations measured in 2019 fell below the guideline. Since this water is the source for the stream, the downstream biota will be acclimatized to this form of the natural water quality.

The Piper plot in Figure 1 indicates that the Big Hill Spring sample also lies in a zone of Ca-Mg-HCO₃ water, which again indicates an influence from meteoric waters and recharge from rainfall. Due to the similarity between concentrations within the sand and gravel aquifer, bedrock

SLR 14 CONFIDENTIAL

² This well is ultimately scheduled for removal once the aggregate extraction is operational, but is expected to be used in the interim.

aquifer and the spring water, it is clear that the spring water is the same, regardless of which pathway it travelled.

4.5 Water Balance

It is often useful to prepare a water balance for a site in order to understand its hydrogeologic function and against which potential impacts can be compared. This section identifies the basic water balance for the site, where "water in" must equal "water out" within the constraints of the measurements. To do this for this site, we first examine the "water in" which is the precipitation available for groundwater recharge or runoff. This is then calibrated against simple groundwater flow calculations to demonstrate the water balance.

4.5.1 Water Budget

The meteorological station No. 3031093 at the Calgary International Airport has been used to quantify average annual precipitation amounts. This station was selected for its length of record and similarity of terrain. The period of 1981 to 2012 has been used to calculate long term averages which are used in this analysis. Table 2 summarizes the results.

Table 2
Average Annual Water Budget (Calgary YYC)

Month	Ave. Monthly Temperature °C	Precipitation (Snow + Rain) mm	Actual Evapotranspiration mm	Surplus mm	Deficit mm
January	-7.1	9.6	6.5	3.1	
February	-5.5	9.8	8.7	1.1	
March	-1.6	17.9	16.3	1.6	
April	4.5	27.2	35.3		-8.1
May	9.7	58.1	63.8		-5.7
June	13.7	95.2	89.0	6.2	
July	16.6	66.0	101.1		-35.1
August	15.8	57.8	72.2		-14.4
September	11.1	44.0	42.7	1.3	
October	5.2	15.2	18.6		-3.4
November	-2.4	13.0	4.8	8.2	
December	-6.7	10.3	2.9	7.4	
Annual Totals		424.1	461.9	28.9	-66.7
Annual Average	4.5			Net Defic	it = -37.8

Notes:

Weather Station: Elevation: 1,084 masl; Latitude 51°06'50" N; Longitude 114°01'13" W; WMO #71877 Based on a soil moisture storage of 150 mm

At this station, which will have similar results to the Cochrane area, an average annual precipitation of about 424 mm per year occurs. This is typical of the region in the lee of the Rocky Mountains. Examination of this period of record shows that the two wettest years were 1998 and 2005, where upwards of 537 mm fell. The two driest years were 1983 (295 mm) and 2001 (319 mm). Based on Table 5, the wettest months are May to September, with little precipitation over the winter months of December to February (around 10 mm per month on average). The area is known for intensive rainfalls, and the highest month in this period of record was June 2005

SLR 15 CONFIDENTIAL

when 248 mm fell (almost half the year's precipitation). It should be noted that 386 mm of precipitation has fallen from January 1 to August 31, 2019, which is significantly higher than the same period in an average year (342 mm). The highest monthly rainfall for 2019 fell in June with 135 mm being recorded.

The water budget has been calculated by the method of Thornthwaite and Mather (1957), which uses the monthly average temperatures, latitude, and soil moisture storage to calculate the actual evapotranspiration (AET). The AET is that water that is lost back to the atmosphere by evaporation and plant uptake (transpiration). The calculations indicate there is a net annual deficit of about 38 mm each year. To examine the range of results, a water budget was calculated for the driest and wettest years in the period of record, with the results being presented in Table 3 below.

Table 3
Comparison of Water Budgets in Wet and Dry Years

	Precipitation	Actual Evapotranspiration	Surplus/Deficit
Hottest/driest (1983)	295	384	-89
Average Annual	424	462	-38
Coldest/wettest (1998)	538	488	50

It can be seen that when the precipitation rises, the evapotranspirative uptake increases as well in response to the available water. However, in the wetter years there is still a surplus available for infiltration and runoff.

With reference to the average annual condition shown in Table 6, the months vary as well. The deficits typically occur in the hotter months, despite increased rainfall. Surplus occurs in the cooler months when evaporation is low, and when there is no plant uptake. In these months the soil moisture is replenished, and in the months where there is a deficit, that storage is tapped by the plant rooting systems.

4.5.2 Surplus Partitioning

Section 4.5.1 reports an average annual deficit of about 38 mm. In years when there is a surplus, that surplus water may be partitioned between infiltration and runoff. Using the method of MOEE (1993), which calculates partitioning factors based on topography, soil type and ground cover, an estimate of the annual infiltration and runoff can be derived. Table 4 is reproduced from this manual below, from which the infiltration factors are selected.

SLR Project No.:212.06650.00003

January 2020

	Description of Area/Development Site	Value of Infiltration Factor				
ТОРО	GRAPHY					
1. 2. 3.	Flat and average slope not exceeding 0.6 m per km Rolling land, average slope of 2.8 m to 3.8 m per km Hilly land, average slope of 28 m to 47 m per km	0.30 0.20 0.10				
SOIL						
1. 2. 3.	Tight impervious clay Medium combinations of clay and loam Open sandy loam	0.10 0.20 0.40				
COVE	R					
1. 2.	Cultivated lands Woodlands	0.10 0.20				

Reproduced from MOEE (1995), Technical Guidelines for the Preparation of Hydrogeological Studies for Land Development Applications.

In this case the fine-grained soils are assigned a factor of 0.2 and the open pasture land cover is given the factor 0.1. The topographic factor is slightly more complex, as there are flat areas sloped down valley, and valley sidewalls with steeper slopes that favor runoff over infiltration. The flat areas have slopes that range from 0.9% to 2%, and are assigned a factor of 0.14. Therefore for the flatter slopes the infiltration factor is 0.2 + 0.1 + 0.14 = 0.44. The steeper slopes range from 2.7% to 23%, and are assigned a factor of 0.1, according to the MOEE (1993) methodology. Therefore, for the steeper slopes the infiltration factor is 0.2 + 0.1 + 0.1 = 0.4. These infiltration factors are multiplied by the surplus in any given year to estimate the rate of groundwater recharge, the remainder being lost to runoff.

4.5.3 Existing Site Water Balance

The final step in the water balance is to judge the contribution of the site to the ground water system. Since the full site is not to be developed, we do not assess those lands that will not change. MALP plan to develop 74 acres (29.83 ha) in the first two phases over ten years. The area of future aggregate extraction is another 132 acres (53.57 ha). To determine volumes available for recharge the maximum surplus (50 mm = 0.05 m) determined above is multiplied by the area. For the full development area (206 acres, or 83.4 hectares) the maximum annual surplus volume of water in a wet year would be 83.4 ha X 10,000 m²/ha X 0.05 m/yr. = 41,700 m³/yr.

The flatter areas comprise approximately 55.5 ha and the steeper slopes comprise approximately 27.9 ha, having infiltration factors of 0.44 and 0.40, respectively. The flatter area is 66.5% of the development area, and thus the infiltration in that portion can be calculated by multiplying that volume by the infiltration factor:

 $41,700 \text{ m}^3/\text{yr.} \times 0.665 \times 0.44 = 12,201 \text{ m}^3/\text{yr.}$

The steeper area is 33.5% of the development area, and thus the infiltration in that portion can be calculated by multiplying that volume by the steep area infiltration factor:

$$41,700 \text{ m}^3/\text{yr.} \times 0.335 \times 0.40 = 5,587.8 \text{ m}^3/\text{yr.}$$

SLR Project No.:212.06650.00003

January 2020

Therefore, the total infiltration under existing conditions for the development area (in wet year) is the ensuing sum of 17,789 m³/yr. The difference between this and the total surplus of 41,700 m³/yr.; therefore, is lost to run off, that is 23,911 m³/yr.

It is always wise to independently cross-check this kind of calculation, which is based on meteorological data and estimates of soil, vegetative cover and topography. This can be done by examining the groundwater conditions that receive the water. In this case the Darcy Principle for groundwater flow is used, based on the site geometry and measured range of hydraulic conductivity, and lateral hydraulic gradients. Darcy found that groundwater flow can be quantified in the following manner:

$$Q = K \times dh/dL \times A$$

Where Q is the volumetric flux, K is the horizontal hydraulic conductivity, dh/dL is the horizontal gradient and A is the vertical area (height X breadth) of the sand and gravel available for groundwater flow. In this case the measured range of K for the sand and gravel is 1×10^{-4} to 3×10^{-4} m/s, as reported in Section 4.2.1. The lateral hydraulic gradient (dh/dL) is a minimum of 0.0095 m/m, measured from Drawing 4 where the 2 m (dh) contours are about 210 m (dL) apart. The vertical area, A is not actually known, however it is estimated to be 800 m wide, and the above equation can be used to determine its height. Finally, Q is known because it is necessary to see if the 17,789 m³/yr can pass through this soil. The flow of 17,789 m³/yr can be converted to consistent units with the above and is equal to 5.6 x 10^{-4} m³/s. Rearranging Darcy's equation:

Q = K x dh/dL x A
Q = K x dh/dL x (h x b), or
K x dh/dL x (h x b) = Q, and rearranging,
h = Q / (K x dh/dL x b)
=
$$5.6 \times 10^{-4} \text{ m}^3/\text{s}$$
 / (1 x 10^{-4} m/s x $0.0095 \times 800 \text{ m}$)
= 0.74 m

Since the aquifer is many times thicker than this, it is concluded it can easily convey the recharge water generated by this site in a wet year. The reader should be aware that there is groundwater moving onsite from the northwest as well, and this calculation is intended to see if the site water can move in addition to that. Of some interest, the 17,789 m³/yr. is equivalent to about 0.56 L/s, which is therefore the site's contribution (in a wet year) to the 40 L/s reported coming from the Big Hill Springs, which has a much wider groundwater catchment.

4.6 Conceptual Model Discussion

Using the above findings, a conceptual model has been constructed to aid the reader in understanding the site setting. This conceptual model is further used in Section 5 to conduct an

SLR 18 CONFIDENTIAL

impact analysis of the proposed aggregate extraction operation. Underlying the site is the Paskapoo Formation bedrock, composed of sandstone, siltstone, mudstone and shale, which serves as the aquifer for most local wells. During deglaciation, this area became a drainage pathway and there is a blanket of outwash sand and gravels lying directly on the bedrock. This deposit has been excavated elsewhere for aggregate, and is the target deposit for MALP's proposed operations. The sand and gravel is 10 to 27 m thick and hosts the water table at depth, but is not a consistent aquifer which has potentially poor water quality, and is only used for domestic purposes in isolated locations (e.g. WW5). Finally, the whole site is blanketed by up to 6 m of fine grained glacial till soils, left when the ice melted. This low permeability blanket restricts the infiltration of precipitation. The site slopes to the southeast from the topographic high to the north and hosts a low-relief valley feature running northwest to southeast across NW Sec 31, Twp 26, Rge 3, W5M. In SW Sec 31, Twp 26, Rge 3, W5M the topography slopes steeply southwesterly into the valley running west-northwest to east-southeast which leads to Big Hill Springs Creek.

The site lies in an area in the lee of the Rocky Mountains and as such is relatively dry. Evapotranspiration on average exceeds precipitation and there is an average annual deficit in the water balance. On the other hand, there is soil moisture storage in the fine-grained soils at surface, so some water is captured in the wet months and helps sustain plants in the drier months. There is a surplus in wetter years. For these reasons the sand and gravel is largely unsaturated and carries groundwater flow along its base above the bedrock. There is also a recharge of the bedrock aquifer from the sand and gravel, so much so that the sand and gravel at test well MW14-102 is dry. Drainage is not complete however, as further downgradient towards the Big Hill Springs Provincial Park some shallow private wells (WW5) in the sand and gravel have enough water in them.

Few residential wells are completed in the sand and gravel deposits due to their limited saturated area, with most residential wells being completed in the bedrock. Water quality in the two aquifers (surficial deposits and bedrock) are very similar to that in Big Hill Springs and are typical of clean meteoric water which indicates that water in both the aquifers and the spring is heavily influenced by recharge from rainfall. It is considered likely, based on the water quality data and the inferred groundwater flow direction in the sand and gravel that a significant contribution to the spring water at Big Hill Springs is provided by groundwater in both aquifers.

The cross-sections run northwest to southeast along the direction of groundwater flow to the springs (A-A'), southwest to northeast across the upper valley (B-B') onsite, and southwest to northeast through the site (C-C') further down valley. They have been prepared to illustrate the relationship between the various geological units in the study area. The likely groundwater flow path shown on Drawing 5 demonstrates the relationship between recharge and discharge areas. The relatively low permeability of the bedrock (even when fractured) is responsible for the perched water table within the sand and gravel. Groundwater recharge occurs in higher areas where overburden is thin or absent and in areas where there are standing water bodies and sloughs perched on top of the low permeability glacial till. Lateral discharge from the aquifers occurs at Big Hill Springs.

5.0 HYDROGEOLOGICAL IMPACT ASSESSMENT

The above sections describe the existing setting where the proposed aggregate resource extraction will be developed. The purpose of impact assessment is to examine how the proposed facility will operate in that setting, and to determine if any adverse effects could be anticipated. The next step is to consider mitigation strategies to ensure the adverse effects are avoided or

SLR 19 CONFIDENTIAL

corrected. In the ideal case the net effects (the effects of the facility after mitigation) are determined and judged for acceptability within existing practice and regulation.

5.1 Hydrogeological Impact Assessment Criteria

The criteria used here to assess impacts can be expressed simply as "water quantity" and "water quality". Water quantity refers to potential effects on water levels in wells and wetlands, groundwater flow volumes, and spring discharge volumes. Water quality refers to the potential changes in groundwater quality and/or surface water quality as might be caused by the facility.

5.2 Potential Impacts on Water Quantity

With respect to surface water, there are no streams on or emanating from this site. The presence of the sloughs in the northwest corner is the only surface water feature, and they are seasonal. Examination of the aggregate resource development plan (reproduced on Drawing 3) shows that these lands will be retained in their natural state. Topographically, their catchment area is uphill to the north and west, and thus the development of the aggregate resource downhill to the south will not affect normal overland flow to the sloughs. It can be concluded that there will be no impact to these features.

With respect to groundwater, potential effects include changes to the groundwater levels and/or groundwater flow volumes or directions. It is proposed that the sand and gravel would be worked dry; with the base of the excavation lying 1.0 m above the maximum recorded groundwater level within the deposits, therefore no dewatering is proposed. Based on this, groundwater flow directions will remain the same and there should not be a reduction in groundwater flow volumes, a positive feature as this means no reduction in flow at the Big Hill Springs.

In fact, due to the removal of the lower permeability overburden exposing the more permeable sand and gravel below, recharge to the aquifer is expected to increase. Examination of Table 7 shows that the soil factor increases from 0.2 (for the glacial till) to 0.4 for the sand and gravel. This increases the overall infiltration factor from 0.44 to 0.64 for the flatter areas. The steeper areas will be levelled and will increase from 0.4 to 0.64 as well. Therefore, the calculation for existing conditions shown in Section 4.5.3 can be conducted again with these higher factors. Without listing the details here, the contribution to groundwater (in a wet year) increases from 17,789 m³/yr to 26,688 m³/yr due to infiltration. Further to this, there will be no runoff leaving the site due to the management of precipitation falling on the site by infiltration. It is expected that this will be an additional 15,012 m³/yr, and thus a total of 41,700 m³/yr of groundwater recharge will occur in a wet year and with the full excavation developed and open. This is conservative, as the site will be progressively restored, returning infiltration conditions to close to their natural state as each phase progresses. With respect to the springs, this amount of water is about 1.3 L/s (an increase of 0.76 L/s) in comparison to the reported Big Hill Springs flow of 40 L/s. It can be concluded that this is a positive impact, but a very minor one. In a drier year there will be no change, other than the momentary capture of any higher intensity storms.

The fine-grained overburden soils removed for sand and gravel extraction would be used to restore the site to an agricultural use. It is anticipated that the final site grade would provide a similar overall average slope to the site as the pre-development state and therefore would have infiltration rates of a similar magnitude. In a dry year or an average year, where there is no surplus, groundwater conditions would remain similar to existing conditions.

SLR 20 CONFIDENTIAL

5.3 Potential Impacts on Groundwater and Surface Water Quality

During the operational phase of working, the main potential source of water pollution is from manmade sources such as fuels and solvents and natural sources such as suspended solids from reworking of the material on site. These of course are mitigated by best handling practices under the Code of Practice for Pits (Alberta, 2004). The first step in impact assessment is to describe the potential problems to be addressed.

SLR Project No.:212.06650.00003

January 2020

During the aggregate extraction and associated processing (crushing, screening, conveying), there is potential for onsite runoff water to become affected by suspended solids due to surface runoff from working areas, stockpiles and haul roads. In addition, wash water from the crushing plant can convey a heavy suspended sediment load. Without appropriate mitigation measures employed, it is considered that the likelihood of occurrence of this water containing suspended solids loading is high, although with the base of the excavation below ground there is no surface discharge from the site. Thus, the magnitude of impact would be low from a surface water perspective. From a groundwater perspective, the infiltration of these waters into the porous sand and gravel however would mean the capture of the fine sediment in the underlying soils, which may potentially lead to eventual blinding of the near surface. Mitigation measures are proposed as discussed in Section 5.4 below.

During the aggregate extraction and associated works, the use of diesel powered equipment has the potential to cause local impacts should there be any accidental spillage of fuels or lubricants. The specific unmitigated impact of any accidental spillage of raw materials, fuels and lubricants would be on the water quality of the sand and gravel aquifer, since there is no surface water discharge. The implications for unmitigated releases to groundwater are for the down-gradient receptors including the Big Hill Springs approximately 800 m downgradient and nearby groundwater users. It is considered that in the short to medium term the likelihood for contamination of groundwater associated with accidental spillage is low but nevertheless appropriate mitigation measures should be employed. The magnitude of an impact under these conditions could be locally severe, due to the removal of the low permeability glacial till and a significant thickness of unsaturated sand and gravel. It is unlikely that the Environmental Protection and Enhancement Act would be breached offsite unless the spill were directly adjacent to the property boundary. For this reason, the potential overall impact is therefore considered to be of significance to water quality. Therefore, mitigation measures are proposed as discussed in Section 5.4 below.

5.4 Mitigation Measures

Sections 5.2 and 5.3 above identify the potential impacts of the proposed development at the site, and also identify where mitigation measures are required to reduce these potential impacts to acceptable levels. Proposed mitigation measures, over and above those already identified and included in the scheme design, are identified below and for ease of reference are detailed in terms of water quantity and water quality (subdivided further by surface or groundwater). The mitigation measures either reduce the likelihood of an event occurring or reduce the magnitude of the consequences if the event does occur.

It should be noted that several of the mitigation measures proposed below would have a positive effect on more than one potential impact.

The development and restoration of the site would be undertaken using technical guidance including the Code of Practice for Pits (Albert Government, 2004), relevant EPEA rules and other

SLR 21 CONFIDENTIAL

codes of best practice in order to limit the potential for contamination of both ground and surface waters.

SLR Project No.:212.06650.00003

January 2020

5.4.1 Water Quantity

It is concluded that under the current excavation scheme the overall risk of any significant negative impacts are negligible. This is based on no anticipated changes to the groundwater flow system. However, as an additional safeguard the current groundwater monitoring programmes should continue to be undertaken in order to give an early warning of any potential impacts (either short or long term) on the groundwater resources within the vicinity of the site.

The environmental monitoring programme should include the following:

- Water levels within the perimeter monitoring boreholes and the nearby residential water users at WW2 and WW4 should be monitored regularly by manual measurements and continuously by pressure transducers equipped with data loggers. This will protect both the surrounding water users and the proponent (from frivolous claims);
- Routine inspections to confirm that there are no signs of groundwater entering the
 excavation and which would indicate that the base of the excavation was below the
 maximum groundwater level. These should be documented in writing and with photographic
 confirmation of conditions so found;
- As the base of the excavation is lowered to near the anticipated depth (1.0 m above maximum recorded water level) shallow confirmatory monitoring wells should be installed (on a temporary basis) to refine the actual position of the water table. This information should be surveyed for elevation and location to the site datum to permit revision of any necessary pit design; and
- All monitoring data should be subject to routine review and interpretation to ensure no unanticipated problems exist or go unaddressed.

5.4.2 Groundwater and Surface Water Quality

In order to further reduce the potential risk of impacts to water quality pollution a number of mitigation measures are proposed, and these would be incorporated into the scheme development. The proposed measures include the following:

- The Application site is developed on a phased basis in order to minimise the working area and allow progressive restoration:
- The size of the working areas are minimised in order to reduce the potential for generation of suspended sediment in storm water;
- Settlement ponds and surface infiltration features are commissioned early in the scheme development and all runoff generated at site (including runoff from overburden storage areas and areas of stockpiling) is actively controlled and routed to these ponds as necessary; and
- In addition to the formal settlement ponds and infiltration features, temporary catch basins and sumps are used to collect, gather and manage surface water runoff generated at site within the working areas.

To prevent the discharge of suspended solids from the access road and Plant Site these areas should be developed with appropriate cross-falls to allow immediate drainage to ditches. All drainage would be routed to lined site settlement ponds to ensure no blinding of aquifer soils by sediment occurs.

SLR 22 CONFIDENTIAL

Given these proposed mitigation measures the risk of unacceptable impacts is low. Nonetheless it is recommended that the following monitoring is undertaken:

SLR Project No.:212.06650.00003

January 2020

- Frequent inspection of the water treatment ponds for erosion or other problems should be undertaken and documented by site operatives to ensure their efficacy; and
- Discharge from the water treatment ponds should only be made in accordance with approval from AEP, i.e. in accordance with the site's EPEA approval.

The threat of accidental spillage of fuels and oils or a vehicular accident occurring on site poses a risk to the groundwater. Standard mitigation measures for training, spill prevention, traffic and handling as per best practices are considered appropriate, along with an effective Emergency Response Plan. Bulk fuel storage would be undertaken in accordance with the *Guide to the Code of Practice for Pits (2004)* and be located in areas where thick clay overburden is still present. Storage would also be in accordance with the *Guidelines for Secondary Containment for Above Ground Storage Tanks (2015)*.

The above measures would significantly reduce the likelihood of suspended solids or other pollutants being discharged from the Application site, such that the overall risk is reduced to near zero.

5.5 Net Effects Assessment

After consideration of the mitigation measures detailed in Section 5.4 it may be concluded that the proposed development can be implemented with no adverse net impact to the groundwater or surface water environment. This is based on the fact that the excavation will be operated above the water table, and there is no direct offsite discharge of surface water. No impact is expected on downgradient wells or the Big Hill Spring. A slight benefit will be felt from the additional infiltration of precipitation surplus in that spring flow should increase during wet years.

5.5.1 Cumulative Effects of Multiple Operations

It is noted that several sand and gravel operations are proposed for the immediate surrounding area in addition to the MALP proposal and the currently operating Hillstone Aggregates pit. All are below ground facilities with no surface water discharge.

The same stringent operating procedures will need to be adopted by the other proposed operations to prevent contamination of the underlying aquifers and surface water by fuels, lubricants and sediments. This will include the same high level of preventative mitigation measures and Emergency Response preparations. Based on these factors, the likelihood of a pollution incident is low and therefore the cumulative risk to water quality is negligible from multiple operations in the area.

The water balance indicates that recharge to the underlying aquifers increases when an operation removes the low hydraulic conductivity till material and exposes the sand and gravel to precipitation. As a much larger area will be open at any one time with multiple pits operating together, this will proportionally increase the recharge to the aquifer and therefore the discharge from Big Hill Springs. To illustrate the potential change to groundwater recharge (and discharge at Big Hill Springs) due to multiple pits operating in the same area we have made some simplistic and conservative assumptions below. This is because we do not have details of the proposed phasing and working at the other sites. Assuming conservatively that four additional pits (including the MALP operation) are opened and each has the same total area as used in the

SLR 23 CONFIDENTIAL

calculations in Section 4.5.3 (83.4 Ha) the total operating recharge in a wet year would be $41,700 \, \text{m}^3/\text{yr} \times 4 = 166,800 \, \text{m}^3/\text{yr}$. This compares to the current, undeveloped recharge of $17,789 \, \text{m}^3/\text{yr} \times 4 = 71,156 \, \text{m}^3/\text{yr}$, as an increase in recharge to the underlying sand and gravel of $95,644 \, \text{m}^3/\text{yr}$. This would equate to an increase in flow at Big Hill Springs of approximately 3.0 L/s, which is less than a 10% increase from the $40 \, \text{L/s}$ quoted in the literature (Ozaray & and Barnes, 1977). This small increase in flow at the Big Hill Springs is overly conservative, as it is known that progressive restoration is planned for the MALP site and is likely to be proposed at the other sites. The real increase will be significantly lower, based on progressive restoration, and therefore the development of multiple sites is likely to provide a small beneficial impact to flow at Big Hill Springs and recharge to the underlying aquifers.

6.0 CONCLUSIONS AND RECOMMENDATIONS

Based on the above physical setting, study results and analyses the following conclusions are offered.

6.1 Conclusions

The site lies in an area of substantive sand and gravel, overlain by a blanket of fine grained soils. In an average meteorological year there is a slight moisture deficit and therefore no groundwater recharge. The water table lies in the bottom of the sand and gravel, moving laterally along the top of and recharging the Paskapoo Formation bedrock. In wetter years a small surplus contributes to the water table at this site, which appears to be maintained by groundwater flow from the northwest. Most local residential wells draw water from the bedrock formation with the exception of some shallow dug wells at location WW5, 1 km southeast of the site. No drawdown of these wells is expected as there will be no dewatering required for extraction of the aggregate. Groundwater from under this site eventually discharges at the Big Hill Springs.

There are no surface water streams or springs on this site, and two sloughs in the northwest corner (fed by storm runoff and perched on the glacial till overburden) will be retained as the site develops. During site development and after site closure, there will be no surface water discharge from the site. When storm water is abundant enough to move on the ground surface it will collect in the lower parts of the site (below existing grade) and ultimately infiltrate into the sand and gravel aquifer. There will be no dewatering of the aquifer because the site sits above the water table, and in fact in wetter years there will be slight augmentation of the groundwater from site infiltration. This will mean a slight increase in spring flow at Big Hill Springs, but probably not at a perceptible level.

Effects of the operation of an aggregate resource development above the water table at this site will be minimal on the ground and surface water, particularly if the mitigation measures discussed in Section 5 of this report are implemented. It is predicted that there will be no adverse net impact of the site.

SLR 24 CONFIDENTIAL

6.2 Recommendations

Based on the above discussion and conclusions, the following recommendations are provided.

1) The mitigation measures discussed above are implemented as part of the final design;

SLR Project No.:212.06650.00003

January 2020

- 2) Determination of ultimate excavation depths are based on future monitoring of water table levels beneath the extraction area, through periodic use of temporary shallow groundwater monitoring wells. Monitoring of those wells should include determining their position by survey to the site datum, and documentation of seasonal results to support any re-design thus instigated. The excavation floor should be at least 1.0 m above the maximum recorded water table level;
- 3) The storm runoff water is directed to sedimentation ponds, designed to ensure clear water discharges. The discharge should be to an unlined infiltration pond for return to the aquifer;
- 4) Best handling and storage practices for fuels and lubricants are implemented as per the Guide to the Code of Practice for Pits (2004) and the Guidelines for Secondary Containment for Above Ground Storage Tanks (2015) to minimize the risk of accidental spillage of contaminants at this site; and
- 5) A monitoring program as described above is implemented to document the lack of effect of the site, and to allow the operators to respond to any unanticipated problems that may occur.

SLR 25 CONFIDENTIAL

7.0 REFERENCES

Alberta Agriculture, Food and Rural Development, 2000. *Annual Total Precipitation*, 1971 to 2000.

SLR Project No.:212.06650.00003

January 2020

- Alberta Geological Survey, 1999. Geological Map of Alberta, 1:1,000,000 scale.
- Alberta Government, 2004. Code of Practice for Pits.
- Baseline Water Resources Inc, 7 June 2013. Letter report: Water Well Testing Results: SE 06-027-03 W5M.
- Downing, D.J. and Pettapiece, W.W., 2006. *Natural Regions and Subregions of Alberta*. Natural Regions Committee.
- Fetter, C.W., 2001. Applied Hydrogeology
- Freeze, R.A. and Cherry, J.A., 1979. Groundwater
- Geological Survey of Canada, 2007. Paskapoo groundwater study. Part I: Hydrogeological properties of the Paskapoo Formation determined from six continuous cores. Open File 5392.
- Hamblin, A.P., 2004. Paskapoo-Porcupine Hills formations in western Alberta: synthesis of regional geology and resource potential. Geological Survey of Canada, Open File 4679.
- Ministry of Environment and Energy, 1995. MOEE Hydrogeological Technical Information Requirements for Land Development Applications.
- Ozaray, G.F. and Barnes, R., 1977. Hydrogeology of the Calgary-Golden Area.
- Pettapiece, W.W. 1986. *Physiographic Subdivisions of Alberta*, 1:1,500,000 Map. Land Resource Research Centre, Agriculture Canada.
- Rocky View County, 2019. Rocky View County; Land Use Map No. 67, dated March 20, 2019.
- SLR, 2020a. Mountain Ash Limited Partnership Aggregate Operation Biophysical Assessment Report
- SLR, 2020b. Mountain Ash Limited Partnership Aggregate Operation Wetland Assessment and Impact Report
- Shetsen, I., 1981. Sand and gravel resources of the Calgary area, Alberta. Alberta Research Council, OFR 1981-08, 96 p.
- Shetsen, I. 1987. *Quaternary Geology, Southern Alberta*. 1:500,000 scale map. Alberta Research Council.
- Thornthwaite, C.W. and J.R. Mather, 1957. *Instructions and Tables for Computing Potential Evapotranspiration and the Water Balance*. Drexel Institute of Technology. Laboratory of Climatology. Vol. 10, No. 3, P. 181-289.

SLR 26 CONFIDENTIAL

Turchenek, L.W., and Fawcett, M.D., 1994. *Soil Survey of the Municipal District of Rocky View No. 44, Alberta*. Alberta Soil Survey Report No. 53, Alberta Research Council.

8.0 STATEMENT OF LIMITATIONS

This report has been prepared and the work referred to in this report has been undertaken by SLR Consulting (Canada) Ltd. (SLR) for Mountain Ash Limited Partnership, hereafter referred to as the "Client". The report has been prepared in accordance with the Scope of Work and agreement between SLR and the Client. It is intended for the sole and exclusive use of Mountain Ash Limited Partnership. Other than by the Client and as set out herein, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of SLR.

SLR Project No.:212.06650.00003

January 2020

This report has been prepared for specific application to this site and site conditions existing at the time work for the report was completed. Any conclusions or recommendations made in this report reflect SLR's professional opinion.

Information contained within this report may have been provided to SLR from third party sources. This information may not have been verified by a third party and/or updated since the date of issuance of the external report and cannot be warranted by SLR. SLR is entitled to rely on the accuracy and completeness of the information provided from third party sources and no obligation to update such information.

Nothing in this report is intended to constitute or provide a legal opinion. SLR makes no representation as to the requirements of compliance with environmental laws, rules, regulations or policies established by federal, provincial or local government bodies. Revisions to the regulatory standards referred to in this report may be expected over time. As a result, modifications to the findings, conclusions and recommendations in this report may be necessary.

The Client may submit this report to Albert Environment and Parks and/or related Alberta environmental regulatory authorities or persons for review and comment purposes.

TABLES

Hydrogeological Assessment Report
Mountain Ash Limited Partnership Aggregate Operation
NW and SW Section 31, Twp 26, Rge 3 W5M
Rocky View County, Alberta
SLR Project No. 212.06650.00003

Table A1
Sand and Gravel Monitoring Well Groundwater Quality Results

	Guideline		MW14-101		4-103	MW18-104	MW18-105	MW18-106	MW18-107	MW19-108	MW19-109	MW19-110
Parameter	(CDWQ)	Units	20-Nov-14	20-Nov-14	4-Aug-15	4-Jul-19	4-Jul-19	4-Jul-19	4-Jul-19	4-Jul-19	5-Jul-19	10-Jul-19
Total	0.1 (OG)	mg/L	0.164	5.57	0.109	3.7	5.4	13	7	15	95	10
Aluminum ¹	, ,								0.00070			
Total Antimony	0.006 (MAC)	mg/L	<0.00050	<0.00050	<0.00050	0.0049	0.006	0.0048	0.00079	0.0022	0.0034	<0.00060
Total Arsenic	0.01 (MAC)	mg/L	0.00035	0.007858	0.000336	0.0044	0.0056	0.017	0.0076	0.0086	0.071	0.0084
Total Barium	1 (MAC)	mg/L	0.424	0.7	0.332	0.61	2.8	1.1	0.79	1.1	7.2	2.2
Bicarbonate (as HCO3)	NV	mg/L	382	380	375	310	320	360	370	390	350	330
Total Boron	5 (MAC)	mg/L	<0.020	<0.020	<0.020	0.025	0.021	<0.020	<0.020	0.029	0.087	<0.020
Total Cadmium	0.005 (MAC)	mg/L	0.000016	0.00029	<0.000005	0.00036	0.0055	0.00095	0.00033	0.00095	0.01	0.0042
Dissolved Calcium	NV	mg/L	76	75	73	63	69	73	71	74	77	62
Chloride	<250 (AO)	mg/L	10.5	7.8	8.8	29.0	13.0	9.3	10.0	14.0	18	8.4
Total Chromium	0.05 (MAC)	mg/L	<0.0010	0.0076	0.0016	0.018	0.0046	0.081	0.025	0.038	0.19	0.019
Total Copper	2 (MAC) / 1 (AO)	mg/L	<0.0010	0.0093	0.0013	0.064	0.11	0.11	0.018	0.038	0.29	0.032
Total Iron	<0.3 (AO)	mg/L	0.28	12	0.22	7.6	49	37	17	29	190	10
Total Lead	0.005 (MAC)	mg/L	0.00031	0.00464	<0.00030	0.0049	0.025	0.019	0.0075	0.024	0.15	0.019
Total Mercury	0.001 (MAC)	mg/L	<0.00010	<0.00010	<0.00020	0.00003	0.0013	0.00032	0.000048	0.000067	0.00208	0.000002
Dissolved Magnesium	NV	mg/L	33.7	33.4	32.6	30	32	31	32	32	37	30
Total Manganese	0.12 (MAC) / 0.02 (AO)	mg/L	0.02	0.93	0.01	0.62	2.90	1.90	0.60	0.74	8.9	7.3
Total Molybdenum	NV	mg/L	0.0008	0.00184	0.00086	0.015	0.0014	0.005	0.0021	0.0065	0.023	0.0015
Total Nickel	NV	mg/L	<0.00050	0.01196	0.00051	0.02	0.015	0.036	0.014	0.047	0.41	0.065
Nitrate-N	10 (MAC)	mg/L	1.19	5.22	1.801	0.97	2.6	2.3	2	2.4	1.7	1.9
Nitrite-N	1 (MAC)	mg/L	<0.05	<0.05	<0.005	0.098	<0.010	<0.010	0.034	0.048	0.065	<0.010
Dissolved Potassium	NV	mg/L	4.8	4.3	3.9	4.1	2.9	3.3	3	3.4	6.3	2.7
pH ²	7.0 -10.5		7.9	7.8	8	7.91	8.05	7.87	7.8	7.91	8.19	7.82
Total Selenium	0.05 (MAC)	mg/L	<0.00060	0.00112	0.00087	0.00049	0.00093	0.0011	0.00094	0.0013	0.00059	0.00096
Total Silver	NV	mg/L	<0.000070	<0.000070	<0.000070	0.00044	<0.00010	0.0017	0.0001	0.0003	0.0025	<0.00010
Dissolved Sodium	<200 (AO)	mg/L	6	8.8	7.9	13	5.7	9	6.6	12	18	6
Sulphate	<500 (AO)	mg/L	8.88	11.9	10.56	9.2	5.8	7.6	6.6	17	26	8.1
Total Thallium	NV	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	0.00023	0.0002	<0.00020	0.00028	0.0026	0.00024
Total Dissolved Solids	<500 (AO)	mg/L	337	354	333	310	300	320	320	350	360	290
(calculated) ³												
Turbidity	1 (OG)	NTU	9.6	680	8	130	>4000	3100	53	670	>4000	<0.10
Total Uranium	0.02 (MAC)	mg/L	0.001697	0.002014	0.001563	0.0019	0.012	0.003	0.0027	0.0047	0.016	0.006
Total Zinc	<5 (AO)	mg/L	<0.020	0.033	<0.020	0.072	0.19	0.13	0.037	0.15	1.2	0.14
Total Coliforms	<1 (MAC)	MPN/100 mL	-	-	<1	>24000	<100	1100	>2400	<10	120000	180
E.Coli	<1 (MAC)	MPN/100 mL	-	-	<1	10	<100	<10	<1.0	<10	100	63

Notes:

NV = no value

OG = Operational Guidance

AO = Aesthetic Objective

MAC = Maximum Allowable Concentration

Canadian Drinking Water Quality CDWQ Guidelines: September 2019

1. Aluminum Aesthetic Objective (CDWQ - AO): Conventional Treatment Plants <0.1 mg/L (100 ug/L), Other Treatment Systems <0.2 mg/L (200 ug/L)

2. pH Objective (CDWQ): 7.0 - 10.5

3. Calculated result only includes measured parameters. Actual TDS may be higher.

BOLD RED – Exceeds guideline

Table A2
Paskapoo Formation Residential Well Groundwater Quality Results

Guideline WW1 WW2 WW3											WW4	
Parameter	(CDWQ)	Units	29-Oct-14	4-Aug-15	29-Oct-14	4-Aug-15	10-Jul-19	29-Oct-14	4-Aug-15	30-Oct-14	4-Aug-15	5-Jul-19
Total Aluminum ¹	0.1 (OG)	mg/L	0.0068	0.011	<0.0050	<0.0050	0.006	0.0061	<0.0050	<0.0050	<0.0050	0.0041
Total Antimony	0.006 (MAC)	mg/L	0.00088	<0.00050	0.00059	<0.00050	<0.00060	<0.00050	<0.00050	<0.00050	<0.00050	<0.00060
Total Arsenic	0.01 (MAC)	mg/L	0.000126	0.000132	0.000165	0.000205	<0.00020	0.000143	0.000121	0.000192	0.000194	0.00032
Total Barium	1 (MAC)	mg/L	0.282	0.284	0.128	0.142	0.11	0.221	0.225	0.385	0.391	0.36
Bicarbonate (as HCO3)	NV	mg/L	366.6	359.6	380.6	375.1	350	391.6	377.7	371.8	365.2	340
Total Boron	5 (MAC)	mg/L	0.022	<0.020	0.032	<0.020	0.023	<0.020	<0.020	<0.020	<0.020	<0.020
Total Cadmium	0.005 (MAC)	mg/L	0.000013	<0.00005	0.000016	0.000024	0.000029	0.00004	0.000024	0.000008	<0.000005	<0.000020
Dissolved Calcium	NV	mg/L	70.3	68.2	63.6	63.4	55	73.2	69.7	75.3	72	80
Chloride	<250 (AO)	mg/L	4.29	4.49	1.38	1.93	2	10.31	5.88	10.86	10.95	12
Total Chromium	0.05 (MAC)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	0.0012
Total Copper	2 (MAC) / 1 (AO)	mg/L	0.0317	0.013	0.0022	0.0016	0.0045	0.125	0.0057	0.0017	0.0018	0.034
Total Iron	<0.3 (AO)	mg/L	0.015	0.014	0.018	0.04	<0.060	<0.010	<0.010	0.017	0.044	0.3
Total Lead	0.005 (MAC)	mg/L	0.00127	0.00048	<0.00030	<0.00030	0.00054	0.00302	<0.00030	<0.00030	<0.00030	0.011
Total Mercury	0.001 (MAC)	mg/L	<0.00010	<0.00020	<0.00010	<0.00020	<0.0000020	<0.00010	<0.00020	<0.00010	<0.00020	<0.0000020
Dissolved Magnesium	NV	mg/L	35.1	31.8	37.3	35	30	39.9	35.5	35.2	31.5	35
Total Manganese	0.12 (MAC) / 0.02 (AO)	mg/L	<0.0010	<0.0010	0.004	0.0042	0.012	0.0014	<0.0010	<0.0010	<0.0010	<0.0040
Total Molybdenum	NV	mg/L	0.00148	0.00147	0.00222	0.00193	0.0014	0.00113	0.00104	0.00076	0.00066	0.00065
Total Nickel	NV	mg/L	<0.00050	<0.00050	<0.00050	<0.00050	0.0006	0.00174	<0.00050	<0.00050	<0.00050	<0.00050
Nitrate-N	10 (MAC)	mg/L	1.67	1.658	0.78	1.054	0.37	1.87	1.889	3.02	3.314	3.2
Nitrite-N	1 (MAC)	mg/L	<0.05	<0.005	<0.05	<0.005	<0.010	<0.05	<0.005	<0.05	<0.005	<0.010
Dissolved Potassium	NV	mg/L	3.3	3.2	2.8	2.6	2	3.1	3	3.1	2.9	3
pH ²	7.0 -10.5		8.1	8	8	8.1	7.95	7.9	8	8	8	8.13
Total Selenium	0.05 (MAC)	mg/L	0.00084	<0.00060	0.00112	0.00105	0.00052	0.0007	0.00085	0.0018	0.00096	0.00093
Total Silver	NV	mg/L	<0.000070	<0.00007	<0.00007	<0.00007	<0.00010	<0.00007	<0.00007	<0.00007	<0.00007	0.00012
Dissolved Sodium	<200 (AO)	mg/L	7.2	7	13.8	9.3	17	7.8	7.6	7.1	6.5	7.7
Sulphate	<500 (AO)	mg/L	6.95	7.51	15.82	12.85	20	10.33	11.09	7.66	6.77	5.9
Total Thallium	NV	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020	<0.00020
Total Dissolved Solids	<500 (AO)	ma/l	318	310	328	317	300	349	330	339	328	330
(calculated) ³	~500 (AO)	mg/L		310		317	300		330	338	328	330
Turbidity	1 (OG)	NTU	0.2	0.31	0.2	1.23	0.31	0.2	0.25	0.6	0.23	0.66
Total Uranium	0.02 (MAC)	mg/L	0.001299	0.001241	0.001023	0.001214	0.00091	0.001744	0.001688	0.001785	0.001672	0.0021
Total Zinc	<5 (AO)	mg/L	<0.020	<0.020	0.024	<0.020	0.046	0.205	<0.020	0.029	0.031	0.99
Total Coliforms	<1 (MAC)	MPN/100 mL	-	<1	-	<1	1	-	<1	-	<1	11
E.Coli	<1 (MAC)	MPN/100 mL	-	<1	-	<1	<1	-	<1	-	<1	<1

Notes:

NV = no value

OG = Operational Guidance

AO = Aesthetic Objective

MAC = Maximum Allowable Concentration

Canadian Drinking Water Quality CDWQ Guidelines: September 2019

- 1. Aluminum Aesthetic Objective (CDWQ AO): Conventional Treatment Plants <0.1 mg/L (100 ug/L), Other Treatment Systems <0.2 mg/L (200 ug/L)
- 2. pH Objective (CDWQ): 7.0 10.5
- 3. Calculated result only includes measured parameters. Actual TDS may be higher.

BOLD RED - Exceeds guideline

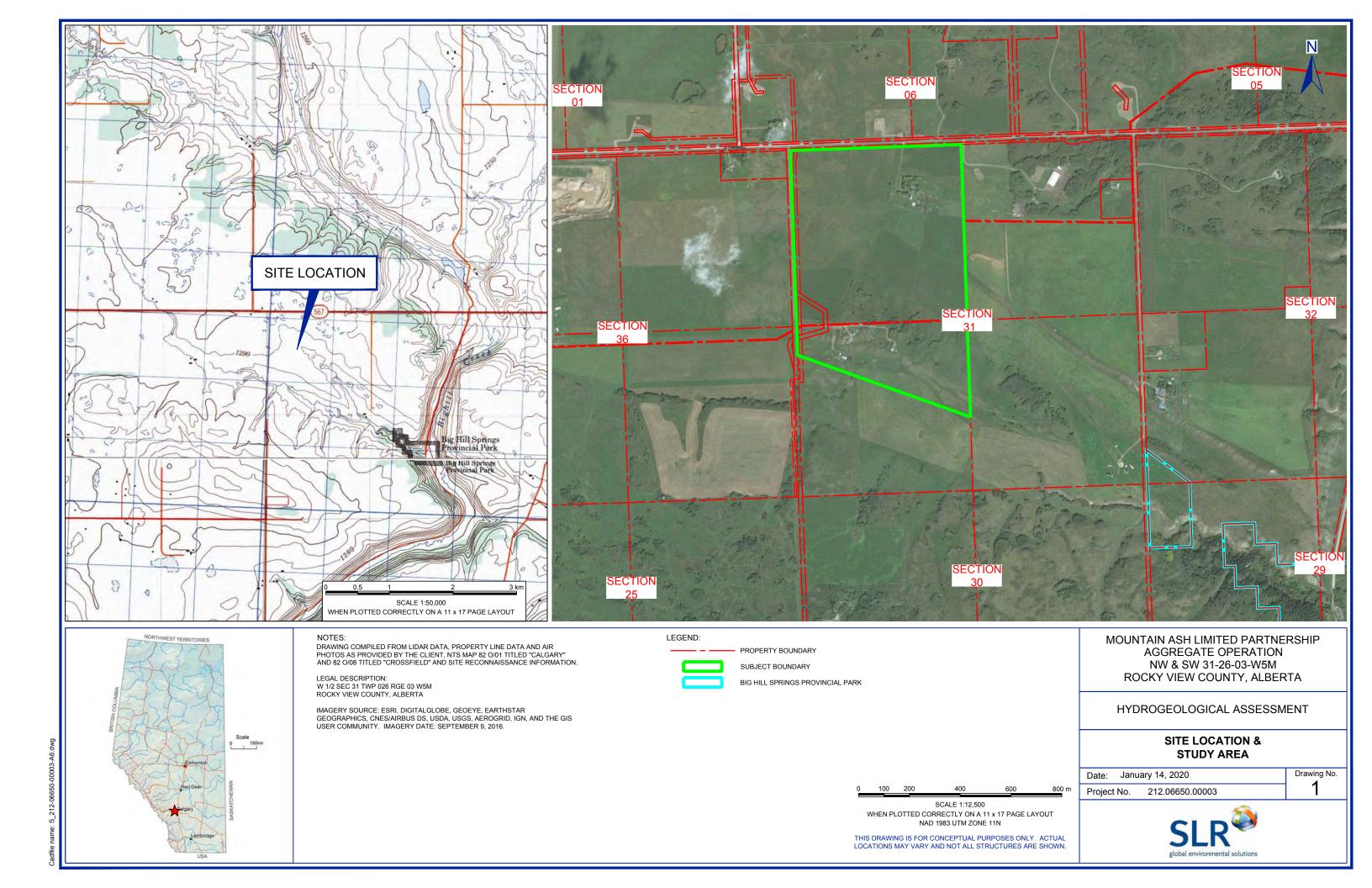
Table A3
Big Hill Springs Water Quality Results

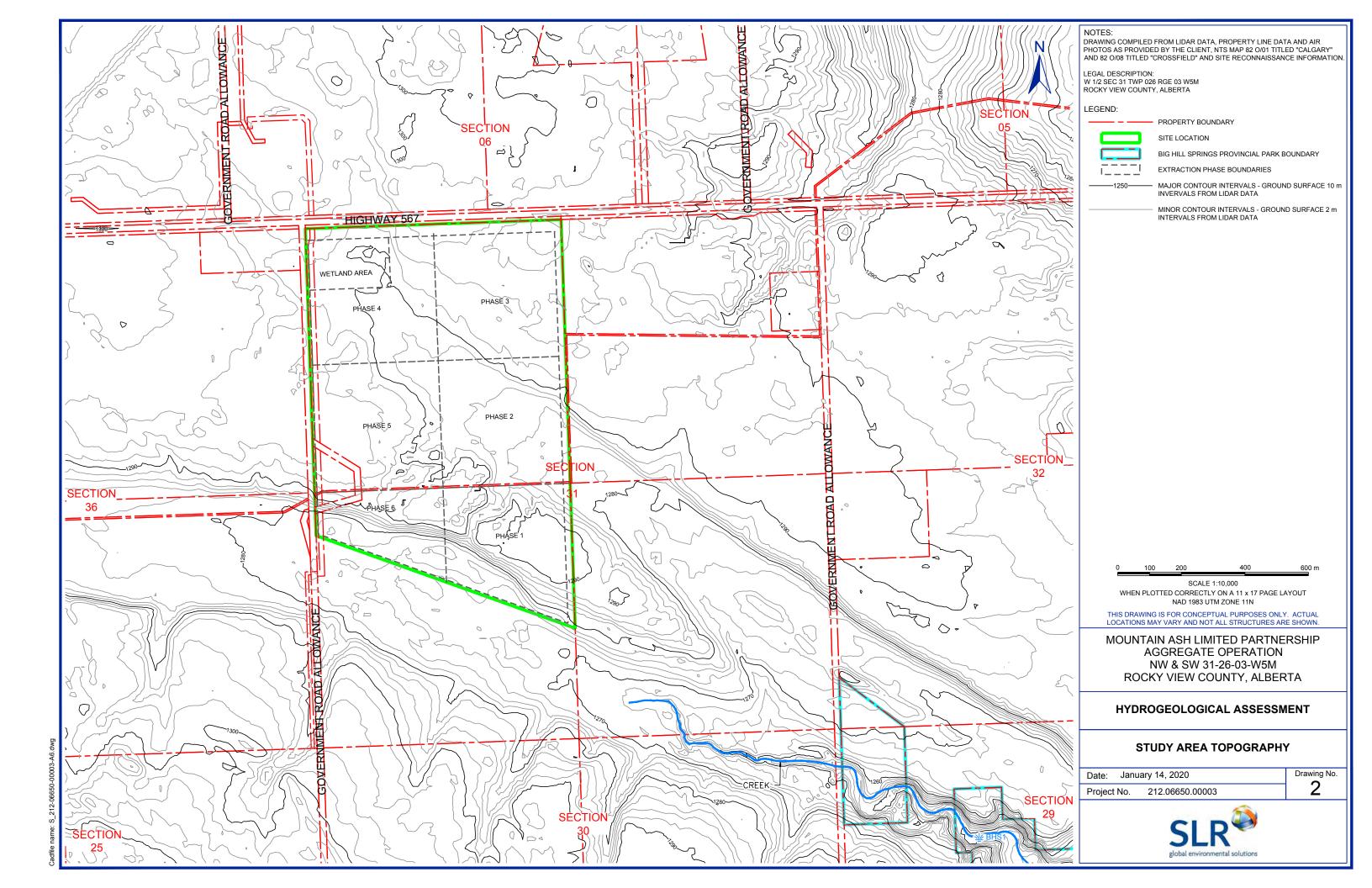
_ ,	Guideline (CWQG		er Quality Result	BHS1						
Parameter	PAL Freshwater)	Units	30-Oct-14	4-Aug-15	10-Jul-19					
Hardness (as CaCO3)	NV	mg/L	336	317	200					
Total Aluminum ¹	0.1	mg/L	0.0182	0.0144	0.3					
Total Antimony	NV	mg/L	<0.00050	<0.00050	<0.00060					
Total Arsenic	0.005	mg/L	0.000153	0.000146	0.00061					
Total Barium	NV	mg/L	0.304	0.313	0.21					
Bicarbonate (as HCO3)	NV	mg/L	376.1	371	240					
Total Boron ²	1.5	mg/L	0.024	<0.020	<0.020					
Total Cadmium ³	0.00009	mg/L	0.000032	0.000008	0.000034					
Dissolved Calcium	NV	mg/L	74.1	72	48					
Chloride ⁴	120	mg/L	9.6	10.12	8.2					
Total Chromium ⁵	0.001	mg/L	<0.0010	<0.0010	0.001					
Total Copper ⁶	0.004	mg/L	<0.0010	0.001	0.0013					
Total Iron	0.3	mg/L	0.027	0.019	0.25					
Total Lead ⁷	0.007	mg/L	<0.00030	<0.00030	<0.00020					
Total Mercury	0.000026	mg/L	<0.00010	<0.00020	0.0000025					
Dissolved Magnesium	NV	mg/L	36.7	33.3	20					
Total Manganese	NV	mg/L	0.0019	0.0012	<0.0040					
Total Molybdenum	0.073	mg/L	0.00141	0.00089	0.00038					
Total Nickel ⁸	0.15	mg/L	<0.00050	<0.00050	0.00088					
Nitrate-N ⁹	2.9	mg/L	2.83	3.037	1.4					
Nitrite-N	0.06	mg/L	<0.05	<0.005	<0.010					
Dissolved Potassium	NV	mg/L	3.4	3.3	4.8					
рН	6.5-9		8.2	8.2	8.07					
Total Selenium	0.001	mg/L	0.00218	0.0013	0.00068					
Total Silver	0.00025	mg/L	<0.000070	<0.000070	<0.00010					
Dissolved Sodium	NV	mg/L	7.8	7.5	5					
Sulphate	NV	mg/L	9.36	8.36	4.7					
Total Thallium	0.0008	mg/L	<0.00020	<0.00020	<0.00020					
Total Dissolved Solids (calculated) ¹⁰	NV	mg/L	342	334	210					
Turbidity	NV	NTU	0.8	1.07	5.1					
Total Uranium ¹¹	0.015	mg/L	0.001953	0.001875	0.0013					
Total Zinc	0.007	mg/L	<0.020	<0.020	<0.0030					
Total Coliforms	NV	MPN	-	2420	>2400					
E.Coli	NV	MPN	-	1733	1600					

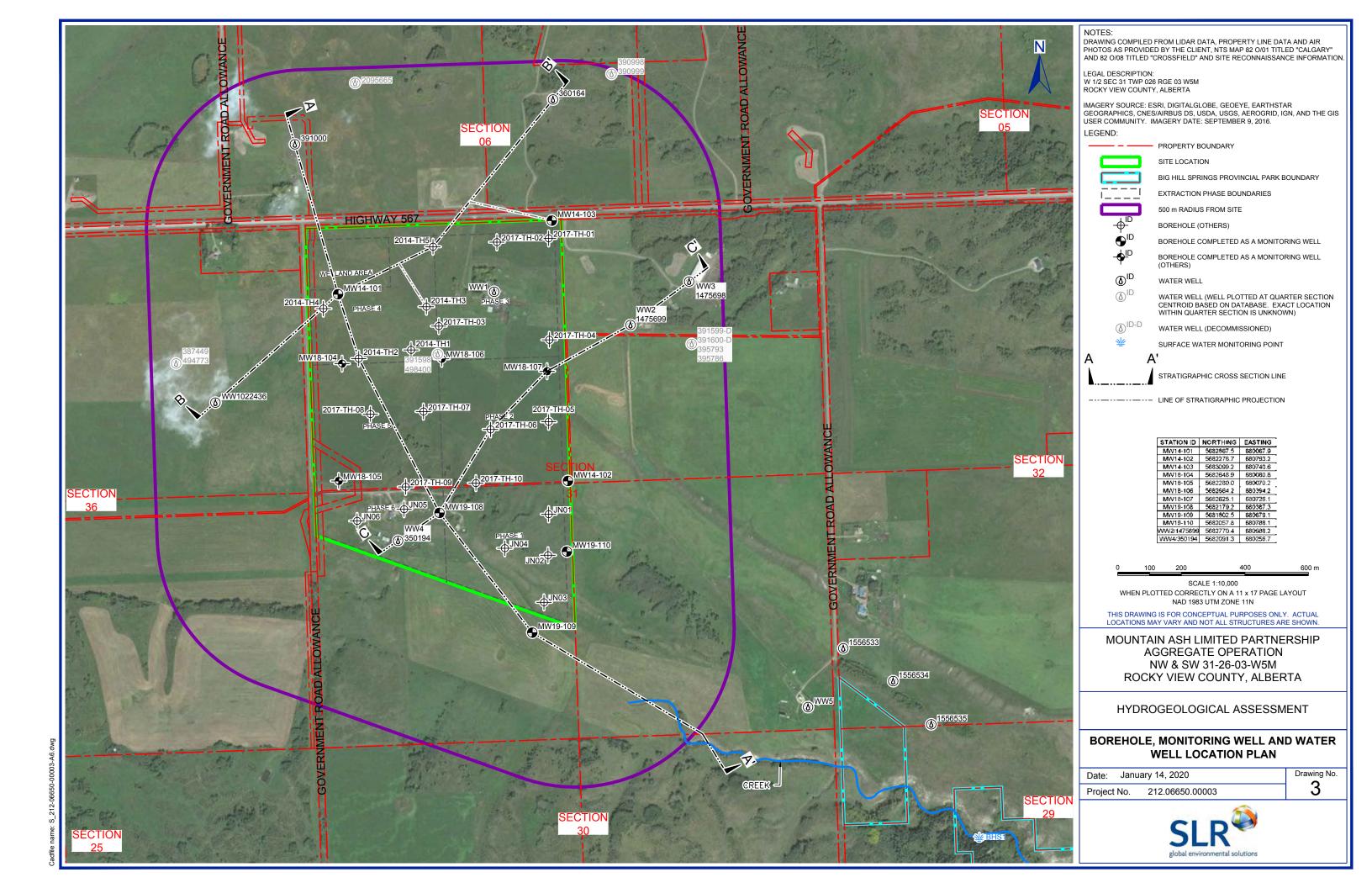
Notes:

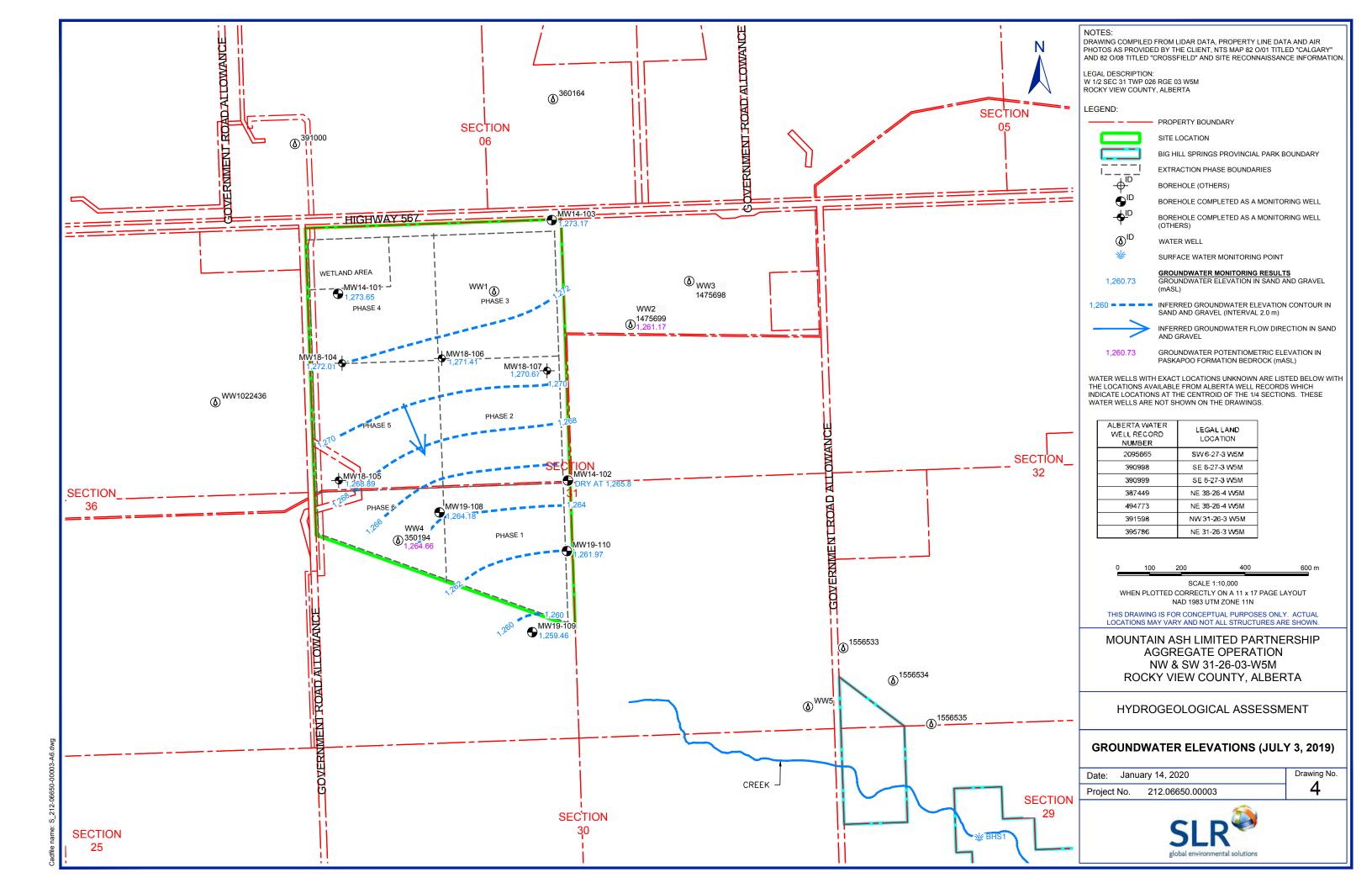
NV = no value

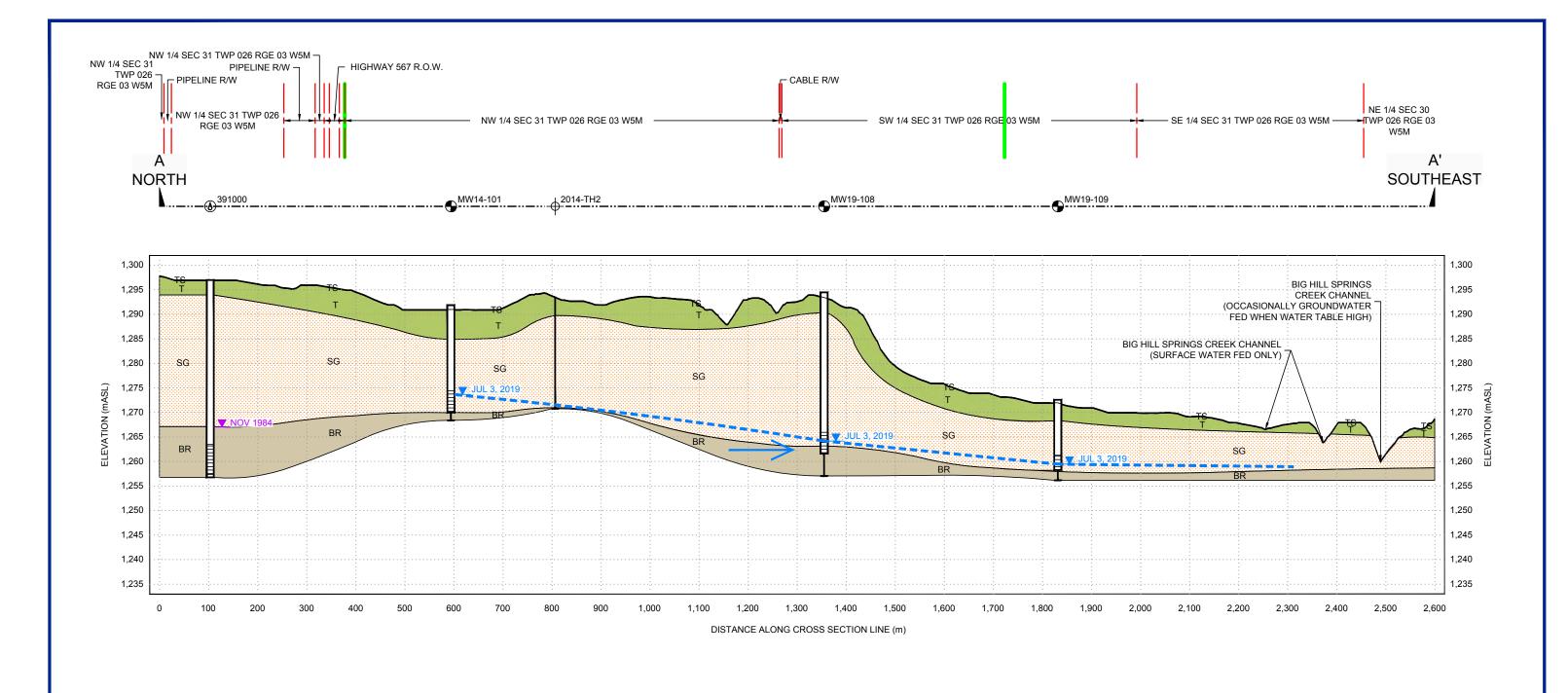
Canadian Water Quality Guidelines (CWQG) Protection for Aquatic Life (PAL) Freshwater Guidelines Updated to September 2019


- 1. Aluminum Guideline (CWQG Aquatic Life Freshwater): if pH < 6.5 then 0.005 mg/L (5 ug/L), else if pH >= 6.5 then 0.1 mg/L (100 ug/L)
- 2. Boron Guideline value is for long term exposure. Short term exposure value is 29 mg/L
- 3. Cadmium Guideline value is for long term exposure. Short term exposure value is 0.001 mg/L $\,$
- ${\it 4. \ Chloride \ Guideline \ value \ is \ for \ long \ term \ exposure. \ Short \ term \ exposure \ value \ is \ 640 \ mg/L}}$
- 5. Chromium Guideline value is for hexavalent chromium as conservative value. Trivalent chromium guideline is 0.0089 mg/L.
- 6. Copper Guideline (CWQG Aquatic Life Freshwater): if hardness (as $CaCO_{3}$ < 82 mg/L then 0.002 mg/L (2 ug/L), if CaCO3 = 83-180 mg/L then is calculated using an equation, if CaCO3 >180 mg/L then 0.004 mg/L (4 ug/L),
- 7. Lead Guideline (CWQG Aquatic Life Freshwater): if hardness (as CaCO3) < 60 mg/L then 0.001 mg/L), if CaCO3 = 60-180 mg/L then is calculated using an equation, if CaCO3 = >180 mg/L then 0.007 mg/L (7 ug/L)
- 8. Nickel Guideline (CWQG Aquatic Life Freshwater): if hardness (as CaCO3) < 60 mg/L then 0.025 mg/L (25 ug/L), if CaCO3 = 60-180 mg/L then is calculated using an equation, if CaCO3 > 180 mg/L then 0.150 mg/L (150 ug/L),
- 9. Nitrate Canadian Water Quality Guidelines (CWQG) for Aquatic Life represents lower value for "Long Term Exposure". Short Term exposure value is 124 for Freshwater
- 10. Calculated result only includes measured parameters. Actual TDS may be higher.
- 11. Uranium Guideline value is for long term exposure. Short term exposure value is $0.033 \ mg/L$

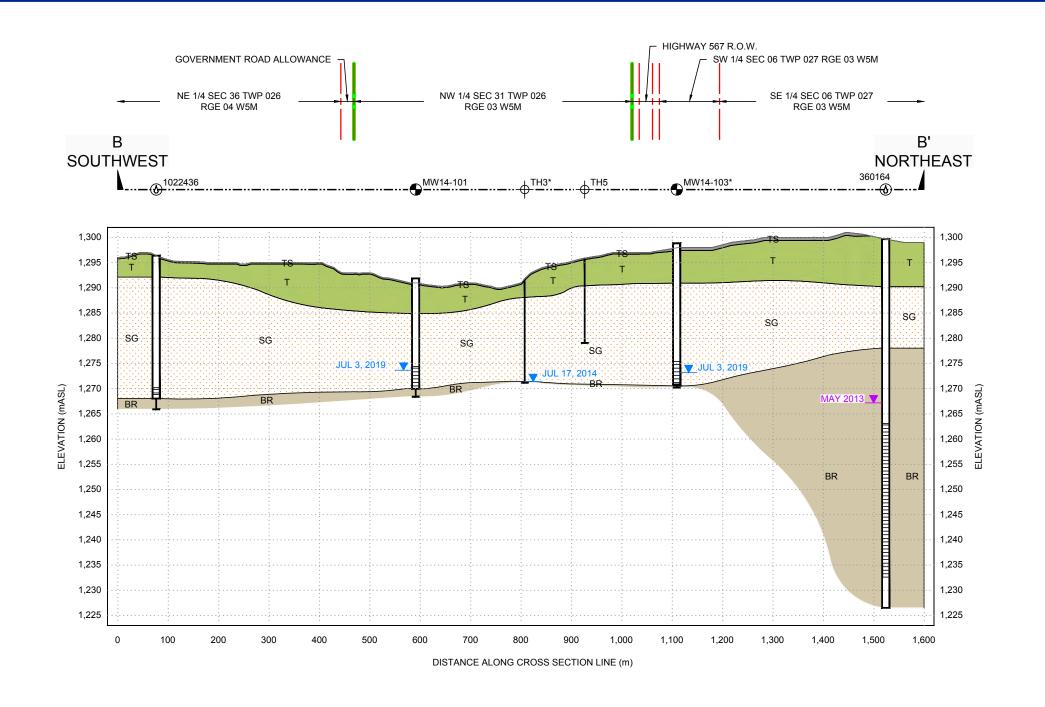

BOLD RED – Indicates Exceeds guideline

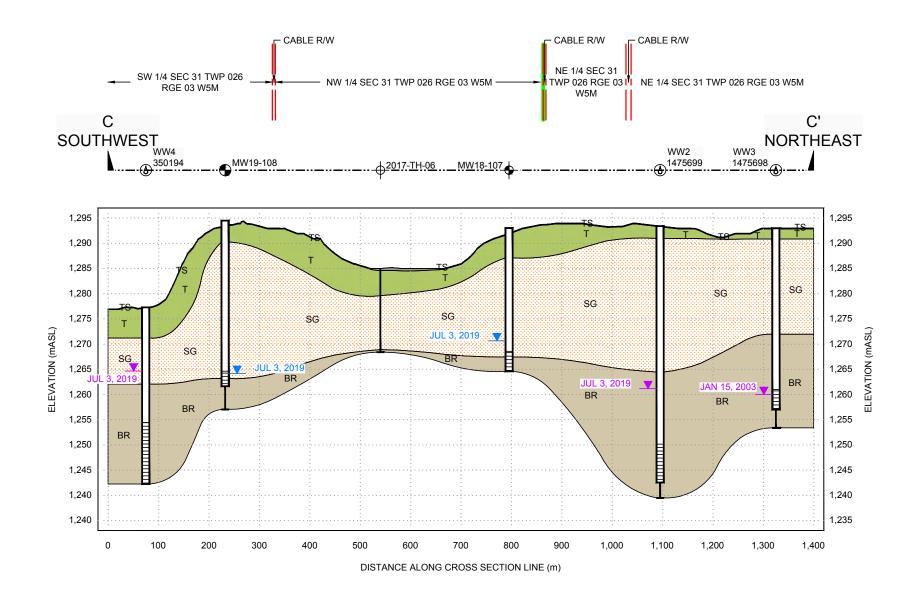

SLR 1 of 1 CONFIDENTIAL


DRAWINGS


Hydrogeological Assessment Report
Mountain Ash Limited Partnership Aggregate Operation
NW and SW Section 31, Twp 26, Rge 3 W5M
Rocky View County, Alberta
SLR Project No. 212.06650.00003







APPENDIX A Site Gravel Investigation Results and Logs

Hydrogeological Assessment Report
Mountain Ash Limited Partnership Aggregate Operation
NW and SW Section 31, Twp 26, Rge 3 W5M
Rocky View County, Alberta
SLR Project No. 212.06650.00003

ALMOR TESTING SERVICES LTD.

7505 - 40 STREET S.E., CALGARY, AB T2C 2H5 PHONE (403) 236-8880 • FAX (403) 236-1707

2014 08 27 099-89-14

Summit Aggregates 10919 - 84 Street SE Calgary, Alberta T2C 5A6

Attention: Mr. Tige Brady, C.E.T.

Re: Waterman Pit Gravel Investigation

Highway 567, RR 40

We were retained to observe the advancement of test holes, within the proposed Waterman gravel borrow pit, located south of Highway 567 and east of Range Road 40, on July 18 and 19, 2014.

At that time, five (5) test holes, designated as TH1 to TH5, were advanced at the approximate locations shown on the attached Site Plan. The test holes were advanced using a diesel hammer rig operated by Great West Drilling, of Calgary, Alberta. The total depth of the test holes ranged from 16.8m to 22.8m, below existing ground surface. Gravel samples were obtained at regular intervals and returned to our laboratory for further classification and analysis. Groundwater was observed in four (4) test holes (TH1 to TH4) at completion of drilling, perched on top of the bedrock.

Enclosed are five (5) Test Hole Logs, recorded during drilling and four (4) Aggregate Gradation Analyses conducted on representative samples from TH1, TH2, TH3 and TH5. Also enclosed are the results of LA Abrasion testing conducted on representative samples from TH1, TH3, TH4 and TH5, by Curtis Engineering Ltd.

We trust this meets with your present requirements.

Respectfully submitted,

ALMOR TESTING SERVICES LTD.

Abdul Alemi, E.I.T. AA:ms:A04665

Attachments

PROJECT: WATERMAN GRAVEL PIT ASSESSMENT SH 567 & RR40						PF NO	ROJECT).		HOLE NO.	TH1
CLI	ENT:	SUMMIT AGGREGATES				DF TY	RILL BECKER HA	AMMER		
GEO ELE\	DETIC VATION (n	n)	DATUM		гүрЕ	ED S	WATER (%) ● CONTENT	COMPRES STRENGT	SSIVE H	
DEPTH (m)		SOIL DESCRIP	ΓΙΟΝ	DEPTH (ft)	SAMPLE TYPE	MOD UNIFIED SOIL CLASS	PLASTIC LIQUID LIMIT LIMIT LIMIT 20 40 60	Unconfined Pocket Pe TSF 2 3 KPa 200 300	n △ 4 5	OTHER TESTS
	N 1/2	TOPSOIL/ORGANICS		Ŧ,						
- 1 - 2		Silty CLAY (TILL) brown, tr gravel, stiff, moist	ace sand, trace to some	-2 -4 -6 -8						
- 3 - 4 - 5				-10 -12 -14 -16						
- 6 - 7		Sandy GRAVEL brown, silt coarse grained, poorly gra		-18 -20 -22 -22 -24 -26						
- 8 - 9		- compact to dense below 8	.5m	-28 -30	B					
— 10 — 11		- sand layer approx. 0.6m th	iick	-32 -34 -36	В		•			
11 12 13				-36 -38 - -40 -42						
– 14		- sand layer approx. 0.6m th	ick	44 46	В		•			
		- sand layer approx. 0.6m th	iick	48 50 52						
— 17				_54 _56 _58	В					Gravel 65.1 % Sand 31.8 % Silt and Clay 3.1 % At completion
— 18 — 19	° O			60 62 64						- Accomposed.
- 20		CLAYSHALE (BEDROCK)		66						
21 22		END OF TEST HOLE AT 20 - groundwater level 17.4m a - test hole backfilled with so	t completion	_68 _70 _72						
23 24				-74 -76 -78 -80						
A	MO	R ALMOR TESTING	SERVICES LTD.			KN _{/r}	100 120 140	20 40 PENETRAT RESISTAN		GROUNDWATER v Date
TEST HOLE LOG						WE	T UNIT WEIGHT (☐ SPT ☐ Cone ■		- Measured
CO	MPLETI PTH	ION 20.4 m	DATE DRILLED July 18, 2014			LC BY	GGED Abdul A		PLATE NO.	1

CLIENT: SUMMIT AGOREGATES DATUM SOLL DESCRIPTION SOLL DESCRIPTION SOLL DESCRIPTION DESCRIPTION SIMP CLAY (TILL) brown, brace and, trace gravel, and an analysis and layer approx. 0 fm thick	PR	PROJECT: WATERMAN GRAVEL PIT ASSESSMENT SH 567 & RR40					PF NO	ROJECT).			HOLE NO.	TH2
SOIL DESCRIPTION Soll DESCRIPTION TESTS TOPSOIL/ORGANICS SING CATALOGUE A CONTENT TESTS TOPSOIL/ORGANICS TESTS TOPSOIL/ORGANICS TESTS TOPSOIL/ORGANICS TESTS TOPSOIL/ORGANICS TESTS TOPSOIL/ORGANICS TESTS TOPSOIL/ORGANICS TOP	CLI	ENT:	SUMMIT AGGREGATES						CKER H	AMMER		
SOLD Second Principle Sold So	GEC ELE	DETIC VATION (m	n)	DATUM		rype	ED S	WATER CONTEN	IT ^(%) ●			
TOPSOILORANICS	DEPTH (m)				DEPTH (ft)	SAMPLE	MOD UNIFII SOIL CLAS	PLASTIC LIMIT 	LIQUID LIMIT	Pocket Pe	n △ 4 5	
Sandy GRAVEL brown, silly, compact, tine to case grained, poorly graded, damp 10		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	TOPSOIL/ORGANICS									
Sandy GRAVEL brown, silty, compact, fine to 12 coarse grained, poorty graded, damp 14 coarse grained, poorty graded, damp 15 coarse grained, poorty graded, damp 16 coarse grained, poorty graded, damp 16 coarse grained, poorty graded, damp 17 coarse grained, poorty graded, damp 18 coarse grained, poorty graded, damp 18 coarse grained, poorty graded, damp 18 coarse grained, poorty graded, damp 18 coarse grained, poorty graded, damp 18 coarse grained, poorty graded, damp 18 coarse grained, poorty graded, damp 18 coarse grained, poorty graded, damp 18 coarse grained, poorty graded, damp 18 coarse grained, poorty graded, damp 18 coarse grained, poorty graded, damp 18 coarse grained, poorty graded, damp 18 coarse grained, poorty graded, damp 18 coarse grained, poorty graded, damp 18 coarse grained, poorty graded, damp 18 coarse grained, poorty graded, damp 18 coarse	- 1			race sand, trace gravel,	- 4							
Sandy GRAVEL brown, silty, compact, fine to conserve grained, poorly graded, damp - 5 - 0 - 0 - occasional cobbile below 5.2m - 18 - 20 - 24 - 28 - 28 - 29 - 24 - 28 - 28 - 29 - 30 - 30 - 30 - 30 - 30 - 30 - 30 - 30					\vdash							
Coarse grained, poorty graded, damp					<u></u>							
- cocasional cobble below 5.2m - cocasional cobble below 10.1m - cocasional cobble below 10.1m - cocasional cocasi	- 4	[O]			-14							
- occasional cobble below 5.2m - occasional cobble below 5.2m - occasional cobble below 5.2m - occasional cobble below 5.2m - occasional cobble below 5.2m - occasional cobble below 5.2m - occasional cobble below 5.2m - occasional cobble below 5.2m - occasional cobble below 10.1m - occasi	- 5	1~~1	codice grained, poorly gra	aca, aamp	- 16							
22		الم ٢	- occasional cobble below 5	.2m	- 18							
- 70	- 6	6			20	R		•	1 1 1			
- 8	_				-22							
- 8	- 7	1 1			<u>-</u> 24							
- 9	– 8	ا م ا			<u>-</u> 26							
- some cobble below 10.1m		20			-28							
- some cobble below 10.1m - sand layer approx. 0.6m thick - 12	- 9	00			-30							
- some cobole below 11.9m - sand layer approx. 0.6m thick - 12	10				-32							
- sand layer approx. 0.6m thick	— 10	ا ک ا			-34							
- highly oxidized below 11.9m - highly oxidized below 11.9m - highly oxidized below 11.9m - highly oxidized below 11.9m - highly oxidized below 11.9m - highly oxidized below 11.9m - highly oxidized below 11.9m - highly oxidized below 11.9m - highly oxidized below 11.9m - definition - sand layer approx. 0.6m thick - sa	– 11	ЬЧ	- sand layer approx. 0.6m th	nick	- 36				<u> </u>			
- highly oxidized below 11.9m - highly oxidized below 12.9m - highly oxidized below 11.9m - highly oxidized below 12.9m - highly oxidized below 12.9m - highly oxidized below 12.9m - salt and Clay 11.2 % - Silt and		الم ٢			- 38							
Silt and Clay 11.2 % - 14	- 12	D	- highly oxidized below 11.9	m	40	B		•				Gravel 57.6 % Sand 31.2 %
- sand layer approx. 0.6m thick - 16	– 13	ا ہ ۲			-42							Silt and Clay 11.2 %
- sand layer approx. 0.6m thick - sand layer approx. 0.6m thick					-44							
- sand layer approx. 0.6m thick - sand layer approx. 0.6m thick	- 14				-4 6							
- Sand layer approx. 0.6m thick - Sand layer approx. 0.6m thick	45				-4 8							
- sand layer approx. 0.6m thick - 20	- 15		- sand layer approx. 0.6m th	nick	_50	R						
- 17	- 16	ЬЧ			_52							
- sand layer approx. 0.6m thick - saturated sand layer at 21.0m - 70 - 72 - 74 - 74 - 76 - 78 - groundwater level 21.0m at completion - test hole backfilled with soil cuttings - 80 - SANDSTONE (BEDROCK) END OF TEST HOLE AT 22.8m - groundwater level 21.0m at completion - test hole backfilled with soil cuttings - 80 - SANDSTONE (BEDROCK) END OF TEST HOLE AT 22.8m - groundwater level 21.0m at completion - test hole backfilled with soil cuttings - 80 - SANDSTONE (BEDROCK) END OF TEST HOLE AT 22.8m - groundwater level 21.0m at completion - test hole backfilled with soil cuttings - 80 - SANDSTONE (BEDROCK) END OF TEST HOLE AT 22.8m - 76 - 78 - 78 - 80 - 78 - 78 - 78 - 78 - 78 - 78 - 78 - 7		00			_54	\mathbb{B}		• ! ! ! !				
- sand layer approx. 0.6m thick - 20 - saturated sand layer at 21.0m - saturated sand layer at 21	— 17 	b 4			\vdash							
- sand layer approx. 0.6m thick - sand layer approx. 0.6m thick - saturated sand layer at 21.0m	— 18	60			-							
- sand layer approx. 0.6m thick - 64 - 66 - 68 - 70 - 72 - 72 - 72 - 74 - 74 - 74 - 78 - groundwater level 21.0m at completion - test hole backfilled with soil cuttings ALMOR TESTING SERVICES LTD. TEST HOLE LOG COMPLETION 20.8 m DATE Number 20.44 Logged Date Logged Date Date Measured Date Logged Date Date Date Date Measured Date		20			-							
- saturated sand layer at 21.0m - saturated sand layer at 21.0m	- 19	00	- sand layer approx. 0.6m th	nick	\vdash							
- saturated sand layer at 21.0m - saturated sand layer at 21.0m	– 20				\vdash						: : :	
- saturated sand layer at 21.0m - saturated sand layer at 21.0m - ro		62			\vdash							
SANDSTONE (BEDROCK) END OF TEST HOLE AT 22.8m - groundwater level 21.0m at completion - test hole backfilled with soil cuttings ALMOR TESTING SERVICES LTD. TEST HOLE LOG COMPLETION 23.9 m DATE Why 18.2044 LOGGED Abdul Alarmi PLATE 2.2045 PLATE	- 21	L CI	- saturated sand layer at 21	.0m	\vdash				<u> </u>		: : :	▼ At completion
SANDSTONE (BEDROCK) END OF TEST HOLE AT 22.8m - groundwater level 21.0m at completion - test hole backfilled with soil cuttings ALMOR TESTING SERVICES LTD. TEST HOLE LOG COMPLETION 23.8 m DATE No. 48. 2014 LOGGED Abdul Alami PLATE 2		60			\vdash							
SANDSTONE (BEDROCK) END OF TEST HOLE AT 22.8m - groundwater level 21.0m at completion - test hole backfilled with soil cuttings ALMOR TESTING SERVICES LTD. TEST HOLE LOG COMPLETION 23.9 m DATE Why 18. 2014	- 22	1) : 1			\vdash							
- groundwater level 21.0m at completion - test hole backfilled with soil cuttings ALMOR TESTING SERVICES LTD. TEST HOLE LOG COMPLETION 23.9 m DATE Why 18, 2014	_ 23				╁							
- test hole backfilled with soil cuttings ALMOR TESTING SERVICES LTD. TEST HOLE LOG COMPLETION 23.9 m DATE blv 18, 2014	_				—							
ALMOR TESTING SERVICES LTD. TEST HOLE LOG Completion - 24				\vdash								
ALMOR TESTING SERVICES LTD. TEST HOLE LOG Date WET UNIT WEIGHT COMPLETION 23.9 m. DATE DATE				-			KN	16 10	30 00	20 40	60	
TEST HOLE LOG WET UNIT WEIGHT ○ SPT Case Measured COMPLETION 23.9 m DATE	٨	MI	R ALMOD TEOTING)			``` ' '					GROUNDWATER
TEST HOLE LOG WET UNIT WEIGHT ○ Cone ■ BT Pen COMPLETION 23.8 m DATE Weight 2014 LOGGED Abdul Alomi PLATE 2		/	ALIVIOR TESTING	OEKVICES LID.			PC					<u>▼</u> Date
COMPLETION 22.9 DATE LINE 2 2014 LOGGED Abdul Alom: PLATE 2	TEST HOLE LOG						WE	T UNIT WE	IGHT (ivieasured
DEPTH 22.6 III DRILLED July 16, 2014 BY Abdul Aleitii NO. 2	CO	MPLETI	ON 22.8 m	DATE DRILLED July 18, 2014					Abdul A			E 2

PR	PROJECT: WATERMAN GRAVEL PIT ASSESSMENT SH 567 & RR40					PF N0	ROJECT O.			HOLE NO.	TH3
CLI	ENT:	SUMMIT AGGREGATES					RILL BE	ECKER H	AMMER		
	DETIC VATION (m	n)	DATUM		ΓΥΡΕ	9.6	WATER CONTEN	NT ^(%) ●	COMPRES STRENGT	SSIVE H	
DEPTH (m)		SOIL DESCRIP	TION	DEPTH (ft)	SAMPLE TYPE	MOD UNIFIED SOIL CLASS	PLASTIC LIMIT	LIQUID LIMIT ———————————————————————————————————	Unconfined Pocket Pe TSF 2 3 KPa 200 300	n △ 4 5	OTHER TESTS
	***	TOPSOIL/ORGANICS		<u> </u>							
- 1 - 2		Silty CLAY (TILL) brown, tr gravel, stiff, moist	ace sand, trace to some	-2 -4 -6 -8							
- 3				-10							
- 4 - 5		Sandy GRAVEL brown, tra fine to coarse grained, poo	• •	-12 -14 -16	В		•				
	ê Ö			_18	R						
- 6	00	- highly oxidized below 6.1n	1	-20	B		•				Gravel 60.7 % Sand 28.0 %
- 7	0	- occasional cobble below 6	.7m	-22 - -24							Silt and Clay 11.3 %
– 8	00			-26							
– 9	000	- occasional fine grained sa	nd layer below 8.5m	-28							
9				-30 -32							
- 10	000			-34							
- 11		- sand layer approx. 0.6m th	nick	36	 B						
- 12				-38		-					
40	000			-40 -42							
- 13	P. 7			-44							
- 14	10/1	- some cobble below 13.7m		-46	В		•				Gravel 59.8 % Sand 29.8 %
- 15		- becoming compact to dens	se	-48 - -50							Silt and Clay 10.4 %
— 16				_ _52							
	00	- sand layer approx. 0.6m th	nick	_54 _							
— 17	200			-56 -58	l B						Gravel 62.1 % Sand 29.6 %
— 18	БЧ			60		-					Silt and Clay 8.3 %
- 19				62							
— 20	000	- coarse grained sand layer	approx. 0.6m thick	-64 -66	B						
		SANDSTONE (BEDROCK)		68		1					▼ At completion
- 21		END OF TEST HOLE AT 2 - groundwater level 20.4m a		70							
- 22		- test hole backfilled with so		-72 -74							
– 23				□74 □76							
– 24											
				- 80							
A	MU	R	0.050\4050.155			KN _/	m ³ 16 18	20 22	20 40 PENETRA	60 ΓΙΟΝ ■	GROUNDWATER
H	11.17	_	S SERVICES LTD.			PC	100 12 F ————	20 140	PENETRAT RESISTAN		■ Date Measured
TEST HOLE LOG							ET UNIT WE	EIGHT ()	☐ SPT ☐ Cone ■	BT Pen	
	MPLETI PTH	ON 20.6 m	DATE DRILLED July 17, 2014			B)	OGGED Y	Abdul A	lemi	PLATI NO.	3

PR	PROJECT: WATERMAN GRAVEL PIT ASSESSMENT SH 567 & RR40					PI N	ROJECT O.		HOLE NO.	TH4
CLI	ENT:	SUMMIT AGGREGATES					RILL YPE BECKER I	HAMMER		
GEO ELE\	DETIC VATION (m	n)	DATUM		-YPE	Ω	WATER (%) CONTENT	COMPRE		
DEPTH (m)		SOIL DESCRIP		DEPTH (ft)	SAMPLE TYPE	MOD UNIFIED SOIL CLASS	PLASTIC LIQUID LIMIT LIMIT	Unconfine Pocket Pe	en △ 4 5	OTHER TESTS
	***	TOPSOIL/ORGANICS		+						
- 1 - 2		Silty CLAY (TILL) brown, tr stiff, low to medium plastic		_2 _4 _6						
– 3				-8 -10						
– 4				12						
– 5				-14 -16						
— 6		Sandy GRAVEL brown, tra		18	B		•			
	000	fine to coarse grained, poo	orly graded, damp	-20 -22						
- 7										
- 8	00			-26 -28	<u>B</u>					
- 9	0000	- sand layer approx. 0.6m th	nick	30						
- 10	000	- occasional cobble below 1		-32 -34	B		•			
- 11				36						
- 12	000	- some cobble below 12.2m		_38 _40						
– 13				-42 -44	B					
- 14				46						
— 15		- sand layer approx. 0.6m th	nick	_48 _50						
— 16	k01			52						
— 17	Po 7			_54 _56	В		•			
— 18	60	- coarse grained sand layer	approx. 0.6m thick	58	l B					
— 19		a storeste dibiologia 40 Occ		-60 -62						▼ At completion
– 20	°Ó	- saturated below 18.9m		64						
– 21	000			66 68						
		CANDSTONE (BEDDOCK)	_	70	В					
- 22		SANDSTONE (BEDROCK) END OF TEST HOLE AT 2		-72 -74						
– 23		- groundwater level 18.9m a	at completion							
– 24		- test hole backfilled with so	oaungs	_78 _80						
				F.,		KN	m ³ 16 18 20 22	20 40	60	
A	MD	ALMOR TESTING	S SERVICES LTD.				/m ³ 16 16 20 22 100 120 141 CF	DENETDA		GROUNDWATER ▼ Date
TEST HOLE LOG							ET UNIT WEIGHT (□ SPT □ Cone ■	BT Pen	- Measured
CO	MPLETI PTH	ON 21.9 m	DATE DRILLED July 17, 2014			L(OGGED Abdul	Alemi	PLATE NO.	4

PROJECT: WATERMAN GRAVEL PIT ASSESSMENT SH 567 & RR40						PF NO	ROJECT D.			HOLE NO.	TH5
CLI	ENT:	SUMMIT AGGREGATES					RILL BE 'PE	ECKER H	AMMER		
	DETIC /ATION ((m)	DATUM		TYPE	SED	WATER CONTEN	NT ^(%) ●	COMPRES	ТН	
DEPTH (m)		SOIL DESCRIP ^T	TION	DEPTH (ff)	SAMPLE TYPE	MOD UNIFIED SOIL CLASS	PLASTIC LIMIT 	LIQUID LIMIT	Unconfine Pocket Pe TSF 2 3 KPa 200 30	n △ 4 5	OTHER TESTS
	<u>\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\</u>	TOPSOIL/ORGANICS		\perp							
		Silty CLAY (TILL) brown, tr		_2							
- 1		stiff, low to medium plastic	, moist	- 4							
				<u> </u>							
- 2				-							
				- 8							
- 3				-10						: : :	
				- -12							
- 4				\vdash							
				- 14							
- 5				-16							
				18							
- 6	0	Sandy GRAVEL brown, trac		-							
U	20	fine to coarse grained, poo	ony graded, damp	- 20							
_	60			-22							
- 7				-24	B		• ! ! !				
	00	- occasional cobble below 7	.6m	-		-					
- 8				-26 -							
	, O			-28							
- 9	6	cand layor approx 0.3m th	nick	-30							
		- sand layer approx. 0.3m th	IICK	-							
- 10	00			-32						<u> </u>	
	00			-34							
- 11				- 36	_						Gravel 68.4 %
	2			<u>−</u> –38	B		†				Sand 27.8 % Silt and Clay 3.8 %
- 12	2			-							Silt and Clay 5.0 %
12				-4 0	B						
– 13		- some cobble below 12.8m		-4 2							
- 13	n	- 30ITIC CODDIC DCIOW 12.0ITI		44							
	000			\vdash							
- 14	h H			-4 6							
	°Ó			-4 8							
- 15	6	- becoming compact to dens	se	_ ₅₀							
	00			− −52	B						Gravel 71.2 % Sand 22.8 %
- 16	60			\vdash	\vdash						Silt and Clay 6.0 %
				_54							
– 17		- becoming dense	/ 0	_ ₅₆							
		END OF TEST HOLE AT16test hole dry at completion		⊢ ⊢58							
- 18		- test hole backfilled with so		\vdash							
			÷	60							
- 19				-62							
				-64							
				<u> </u>		L/N1					
۸	МП	ID				KN _{/t}		20 22	20 40 PENETRA	60 TION —	GROUNDWATER
A	TAIL T	ALMOR TESTING	S SERVICES LTD.			PC	100 12 F — — — —	20 140 L	PENETRAT RESISTAN	CE	D-4-
						' ET UNIT WE	FIGHT \bigcirc	□SPT ☑	Case	y Date Measured	
-									■ Cone ■		
COL	MPLET PTH	TION 16.8 m	DATE DRILLED July 18, 2014			LC BY	GGED	Abdul A	lemi	PLATI NO.	E 5

7505 - 40 Street SE Calgary, Alberta T2C 2H5 Telephone: (403) 236-8880

Client **Summit Aggregates**

Attention Tige Brady

Project Gravel Pit Investigation

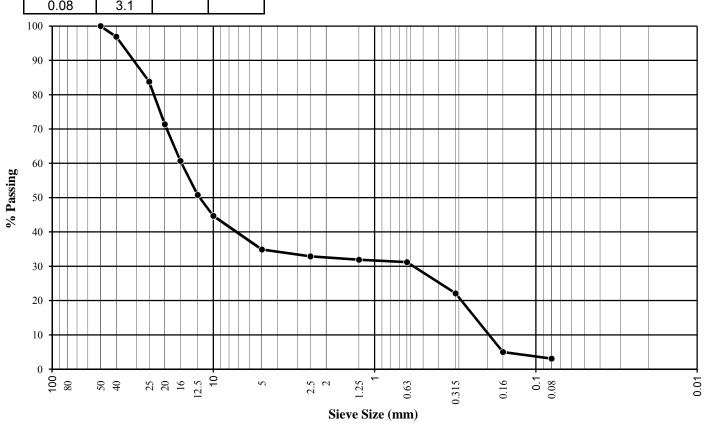
Waterman Pit, Hwy567 & RR40

Sieve Size	Percent	Passing b	y Weight
(mm)		Min.	Max.
200			
150			
100			
80			
50	100.0		
40	96.9		
25	83.8		
20	71.4		
16	60.7		
12.5	50.8		
10	44.7		
5	34.9		
2.5	32.9		
1.25	31.9		
0.63	31.2		
0.315	22.1		
0.16	5.0		
0.08	3.1	·	·

_	_		
- 1	a h	NI	^
J	ao	IN	U.

Date Sampled AA July 18/14 Ву **Date Received** July 18/14 Ву AA**Date Tested** JC,KW July 22/14 Ву

Aggregate Type Aggregate Source Sandy GRAVEL **Existing Material**


Classification GΡ

> $C^{C}=$ 0.1 C_U= 76.8

Specification

Comments

TH # 1 @ 55-57ft. Moisture Content = 7.0%

Aggregate Analysis Report

ASTM C-136

Client Summit Aggregates

Attention Tige Brady

Project Gravel Pit Investigation

Waterman Pit, Hwy567 & RR40

			147
Sieve Size	Percent	Passing b	y Weight
(mm)		Min.	Max.
200			
150			
100			
80			
50	100.0		
40	95.9		
25	84.9		
20	77.5		
16	71.5		
12.5	64.1		
10	57.9		
5	42.4		
2.5	32.1		
1.25	27.0		
0.63	23.5		
0.315	19.6		
0.16	15.5		
0.08	11.2		

Job No.

Date SampledJuly 18/14ByAADate ReceivedJuly 18/14ByAADate TestedJuly 22/14ByJC,KW

Aggregate Type
Aggregate Source

Silty, Sandy GRAVEL Existing Material

Classification GP-GM

 $C_C = 3.3$ $C_U = 135.6$

Specification

Comments

TH # 2 @ 39-40ft. Moisture Content = 4.2%

Attention

7505 - 40 Street SE Calgary, Alberta T2C 2H5 Telephone: (403) 236-8880

Client **Summit Aggregates**

Project Gravel Pit Investigation

Tige Brady

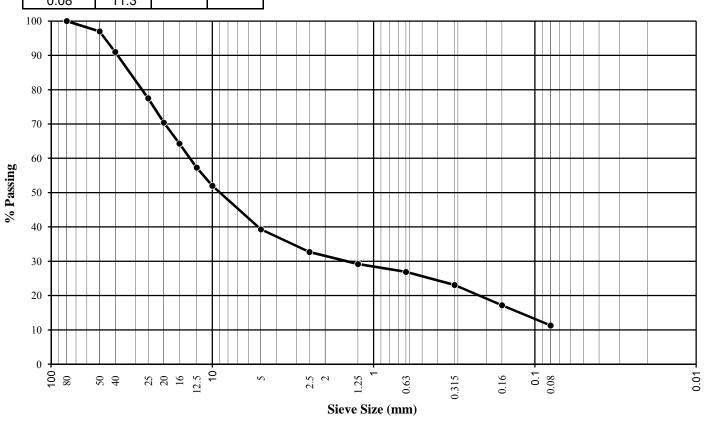
Waterman Pit, Hwy567 & RR40

Sieve Size	Percent	Passing b	y weight
(mm)		Min.	Max.
200			
150			
100			
80	100.0		
50	97.0		
40	91.0		
25	77.5		
20	70.4		
16	64.3		
12.5	57.3		
10	52.0		
5	39.3		
2.5	32.7		
1.25	29.2		
0.63	26.9		
0.315	23.1		
0.16	17.2	·	·
0.08	11.3		

Job No.

Date Sampled AA July 17/14 Ву **Date Received** July 18/14 Ву AA**Date Tested** JC,KW July 22/14 Ву

Aggregate Type Aggregate Source Silty, Sandy GRAVEL **Existing Material**


Classification **GW-GM**

> 1.8 $C_C=$ C_U= 173.0

Specification

Comments

TH # 3 @ 20-25ft. Moisture Content = 2.5%

Client **Summit Aggregates**

Job No.

Date Sampled July 18/14 Ву AA **Date Received** July 18/14 Ву AA **Date Tested** AA,KC July 24/14 Ву

Attention Tige Brady

Project

0.63

0.315

Gravel Pit Investigation

Waterman Pit Hwy567 & RR40

	Waterman Fit, Hwysor & Kix	Aggregate rype
		Aggregate Source
eve Size	Percent Passing by Weight	

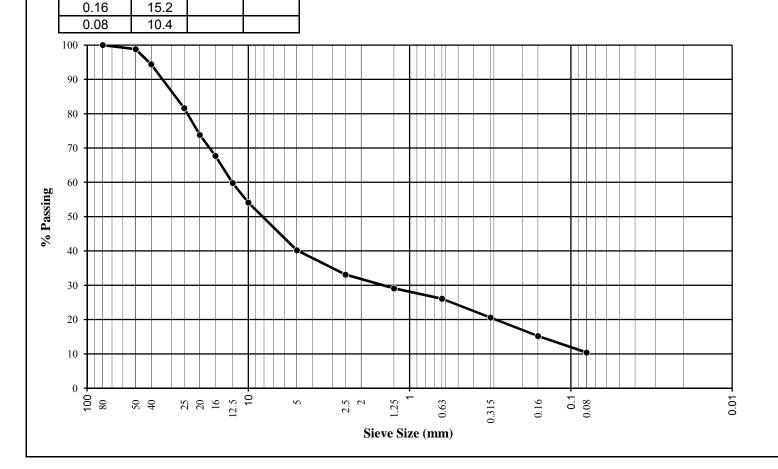
Sieve Size	Percent	Passing b	y Weight
(mm)		Min.	Max.
200			
150			
100			
80	100.0		
50	98.8		
40	94.4		
25	81.6		
20	73.8		
16	67.7		
12.5	59.8		
10	54.1		
5	40.2		
2.5	33.1		
1.25	29.1		

26.1

20.6

Aggregate Tyne ce

Silty, Sandy GRAVEL **Existing Material**


Classification **GW-GM**

2.0 $C_{C}=$ 157.4 C_U=

Specification

Comments

TH # 3 @ 46-49ft. Moisture Content = 2.3% (L A Abrasion Sample # 2)

Attention

7505 - 40 Street SE Calgary, Alberta T2C 2H5 Telephone: (403) 236-8880

Client **Summit Aggregates**

Project Gravel Pit Investigation

Tige Brady

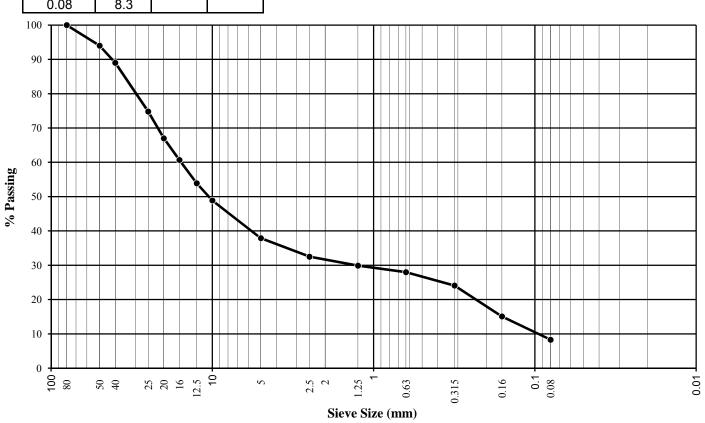
Waterman Pit, Hwy567 & RR40

Ciava Ci-a	Doroont	Dogging b	v Maiabt
Sieve Size	Percent		
(mm)		Min.	Max.
200			
150			
100			
80	100.0		
50	94.0		
40	89.0		
25	74.8		
20	67.0		
16	60.7		
12.5	53.9		
10	48.9		
5	37.9		
2.5	32.5		
1.25	29.9		
0.63	28.0		
0.315	24.1		
0.16	15.1		
0.08	8.3		

Job No.

Date Sampled AA July 17/14 Ву **Date Received** July 18/14 Ву AA**Date Tested** JC,KW July 22/14 Ву

Aggregate Type Aggregate Source Sandy GRAVEL **Existing Material**


Classification **GW-GM**

> 1.1 $C^{C}=$ C_U= 156.1

Specification

Comments

TH # 3 @ 57-59ft. Moisture Content = 0.9%

Client **Summit Aggregates**

Attention Tige Brady

Project Gravel Pit Investigation

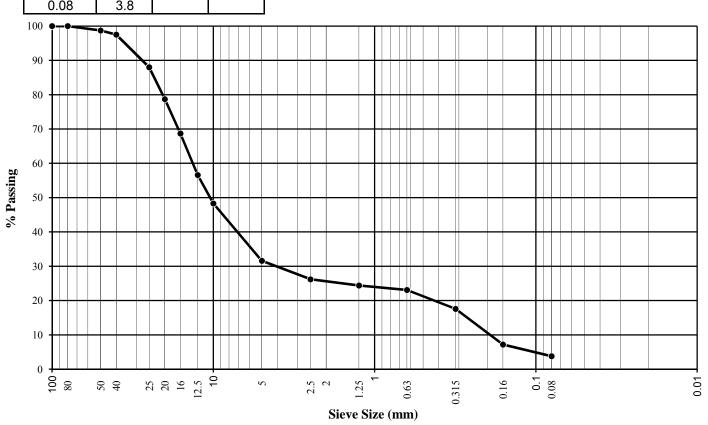
Waterman Pit, Hwy567 & RR40

-			
Sieve Size	Percent	Passing b	y Weight
(mm)		Min.	Max.
200			
150			
100			
80	100.0		
50	98.7		
40	97.5		
25	88.0		
20	78.7		
16	68.7		
12.5	56.6		
10	48.3		
5	31.6		
2.5	26.2		
1.25	24.4		
0.63	23.1		
0.315	17.6		
0.16	7.2		
0.08	3.8		

Job No.

Date Sampled AA July 18/14 Ву **Date Received** July 18/14 Ву AA**Date Tested** JC,KW July 22/14 Ву

Aggregate Type Aggregate Source Sandy GRAVEL **Existing Material**


Classification GP

> $C^{C}=$ 6.3 C_U= 67.0

Specification

Comments

TH # 5 @ 36-38ft. Moisture Content = 3.3%

Client **Summit Aggregates**

Attention Tige Brady

Project Gravel Pit Investigation

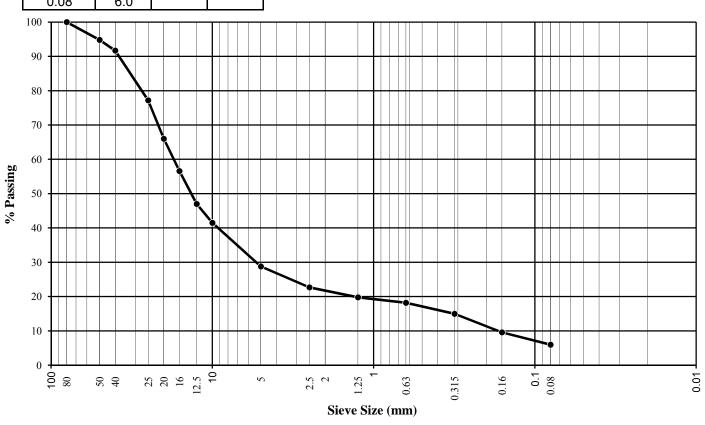
Waterman Pit, Hwy567 & RR40

-			
Sieve Size	Percent	Passing b	y Weight
(mm)		Min.	Max.
200			
150			
100			
80	100.0		
50	94.8		
40	91.7		
25	77.2		
20	66.0		
16	56.6		
12.5	47.0		
10	41.5		
5	28.8		
2.5	22.7		
1.25	19.8		
0.63	18.2		
0.315	15.0		
0.16	9.6		
0.08	6.0		

Job No.

Date Sampled AA July 18/14 Ву **Date Received** July 18/14 Ву AA**Date Tested** JC,KW July 22/14 Ву

Aggregate Type Sandy GRAVEL **Aggregate Source Existing Material**


Classification GP

> $C^{C}=$ 10.0 C_U= 101.2

Specification

Comments

TH # 5 @ 51-53ft. Moisture Content = 2.3%

1A, 820 - 28 Street NE Calgary, Alberta T2A 6K1 Ph: 403-273-5868

Fax: 403-273-5957 geotechnical@curtisengineering.ca

Email: general@almor.com

CALGARY

August 1, 2014 File: 313-Misc.

Almor Testing Service 7505 40 Street SE Calgary, AB T2C 2H5

Attention: Barry Martin

LA Abrasion Testing (ASTM C131, ASTM C-535)

Curtis Engineering Associates Ltd. ran ASTM C-131 Standard Test Method for Resistance to Degradation of Small Size Coarse Aggregate by Abrasion and Impact in the Los Angeles Machine on two (2) samples. Additionally two (2) samples were tested in accordance with ASTM C-535 Standard Test Method for resistance to degradation of large-size coarse aggregate by apbrasion and impact in the Los Angeles machine. The samples delivered to our office washed, split, and dried. The sample was then run through the test process and the results are tabulated below.

Sample ID	Gradin	Mass Prior To Test (g)	Mass After Test (g)	Mass Loss Due to Test (g)	Percent Loss (%)
1	Α	4999.3	3580.9	1418.4	28.4
2	Α	4998.6	3657.6	1341.0	26.8
3	2	10061.5	8033.8	2027.7	20.2
4	2	9975.5	8219.9	1755.6	17.6

We trust that the above is sufficient for your requirements. Should you need further information, please call.

Yours very truly,

Curtis Engineering Associates Ltd.

Michael Staple, B.Sc., P.Eng.

Geotechnical Engineer

MS/rwc

PLAN SHOWING DRILL HOLE LOCATION WATERMAN AGGREGATE RESOURCE

NW ¹/₄ SECTION 31 TWP 26 RGE 3 W5M UTM, NAD83 Z11 MD OF ROCKY VIEW COUNTY

LEGEND

PROPERTY LINE

PROPOSED TESTHOLE LOCATION

1111 Auburn Bay SE Calgary, Alberta T3M

LEGAL LAND DESCRIPTION
NW 1/4 SECTION 31 TWP 26 RGE 3 W5M

36 13 14 15 16 12 13 19 9 5 6 7 8 8 4 3 2 1 1 LEGAL SUBDIVISION - LSD 1/4 MILE SQ. - 40 ACRES

DATE: June 23, 2014	DRAWN BY: T BRADY
SCALE: 5,500	DRAWING: FIGURE 3
DATE REVISED: July 20, 2014	REVISED BY: T BRADY-

FILE: 2014 Waterman Aggregates Resource (COP).dwg

AIR PHOTO TAKEN: JULY 04, 2012

DATE PRINTED: June 23, 2014

ALMOR TESTING SERVICES LTD.

7505 - 40 STREET S.E., CALGARY, AB T2C 2H5 PHONE (403) 236-8880 • FAX (403) 236-1707

2017 11 20 099-86-17

Mountain Ash Limited Partnership

Attention: Mr. Tige Brady, C.E.T.

tige.brady@telus.net

Re: Gravel Pit Investigation

Summit Pit Phase 2

Highway 567 and Range Road 40 Rockyview County, Alberta

Almor Testing Services Ltd. observed and obtained gravel samples, during the advancement of ten (10) test holes, at the subject site from July 31 to August 5, 2017. Test holes designated as TH1 through TH10 were advanced in the triangular area of the northeast to southwest portion of the quarter of Section 31, Township Road 26, Range Road 3, W5M. The test holes were advanced using a Becker Hammer drill rig, operated by Great West Drilling of Calgary, Alberta. Refer to Figure 1 in Appendix 'A' for the approximate test hole locations.

Test hole depths ranged from a minimum of 14.1m (TH5) to a maximum of 27.6m (TH10). The thickness of the granular deposit in the test holes ranged from a minimum 9.3m (TH5) to a maximum 23.0m (TH9). The mean average thickness of the granular deposit encountered is 17.5m and ground water elevation ranged between 13.5m (TH5) to 25.5m (TH8).

Samples were obtained for gradation analysis, representative of the granular deposit encountered below the silty clay overburden. Eighteen (18) Gradation Analyses and one (1) Hydrometer Test were performed on samples from Test Hole No.'s 1 through 10. The Test Hole logs and the results of the Gradation Analyses are attached in Appendix 'B'. The Gradation Analyses of the samples indicated fines contents (material passing the 80 µm sieve size) in the range of 5.9% to 19.5%.

The fines content of the gravel samples obtained using a Becker Hammer drill rig is typically higher due to the crushing or fracture of the rocks during pounding of the hammer casing into gravels by the drill rig. A fines content to a maximum of 10% is generally considered desirable for gravels used for structural purposes (roads construction, foundation base, etc.). Aggregates for use in the manufacture of concrete and asphalt products typically have more stringent fines content requirements. In order to estimate the insitu fine content of gravel at the site, three (3) test pits were advanced in close proximity of Test Hole No.'s 2, 5 and 8 and gravel samples were obtained. The Test Pit logs and the results of the Gradation Analyses of the test pit samples are attached in Appendix 'B'. Table 1 compares the fine content of gravel samples obtained using Becker Hammer drill rig and from the test pits.

TABLE 1
Fine Content Comparison of Gravel Samples
Becker Hammer Drilling vs Test Pits

TP/TH No.	Depth (m)	Fines Content (%)
TP1	5.0 - 6.0	3.1
TH5	5.0 - 6.0	7.8
TP2	5.0 - 6.0	3.1
TH8	5.0 - 6.0	12.1
TP3	5.0 - 6.0	4.0
TH8	5.0 - 6.0	12.1

Table 1 indicates the fines content of the samples obtained using Becker Hammer drill rig is almost 2 to 3 times higher than those obtained from test pits. It is anticipated that the granular material recovered during a commercial mining operation would yield lower fines contents than what is indicated by the samples recovered during this investigation using a hammer rig.

A cursory examination of the coarse aggregate was completed on representative samples and is presented in Table 2. The examination was done by visual means only. This examination is not meant to replace a proper petrographic analysis, which is recommended after crushing operations have commenced.

TABLE 2

Type of Aggregate	Category	Quantity (%)
Quartzite	Good	40.0
Carbonite	Good & Fair	25.0
Sandstone	Good & Fair	30.0
Chert	Fair	4.0
Iron Concretion	Poor & Deleterious	1.0

Los Angeles Abrasion testing of a representative sample was conducted by Curtis Engineering of Calgary, Alberta and is attached in Appendix 'C', with a value of 32.3%. The City of Calgary specification for granular base and granular subbase is an L.A. Abrasion loss of maximum of 45%.

Overall, the aggregates and gradation of the gravels at the test hole locations are suitable for producing aggregates required in the construction industry, with some sorting and blending sand seams.

The volume of the gravel has been estimated based on the limited bore holes advanced and is presented in Appendix 'D'.

The overburden in the subject areas consisted of topsoil/browns overlying silty clay till.

The topsoil/browns were encountered in all test hole locations and ranged from 100 to 300mm in thickness. A Grain Size Distribution test conducted on a topsoil/browns indicated a Gravel content of 0.2%, Sand content of 11.8%, Silt of 67.3%, Clay 20.7% and an Organic Content of 12.6%.

Below topsoil/browns, silty clay till was encountered in all test hole locations. The thickness of silty clay overburden ranged from 4000mm to 9000mm, resulting in an average thickness of 5100mm. The silty clay till overburden had a Moisture Content of approximately 7.7%. An Atterberg Limit test conducted on silty clay till soil indicated a Liquid Limit of 36, a Plastic Limit of 12, resulting in a Plasticity Index of 24. This classifieds the soil as a medium plastic clay (CI).

The attached Appendix 'E' details tests performed on the overburden soils.

The silty clay and topsoil overburden can be utilized for grading during the pit rehabilitation stages of the gravel pit.

We trust this meets with your present requirements.

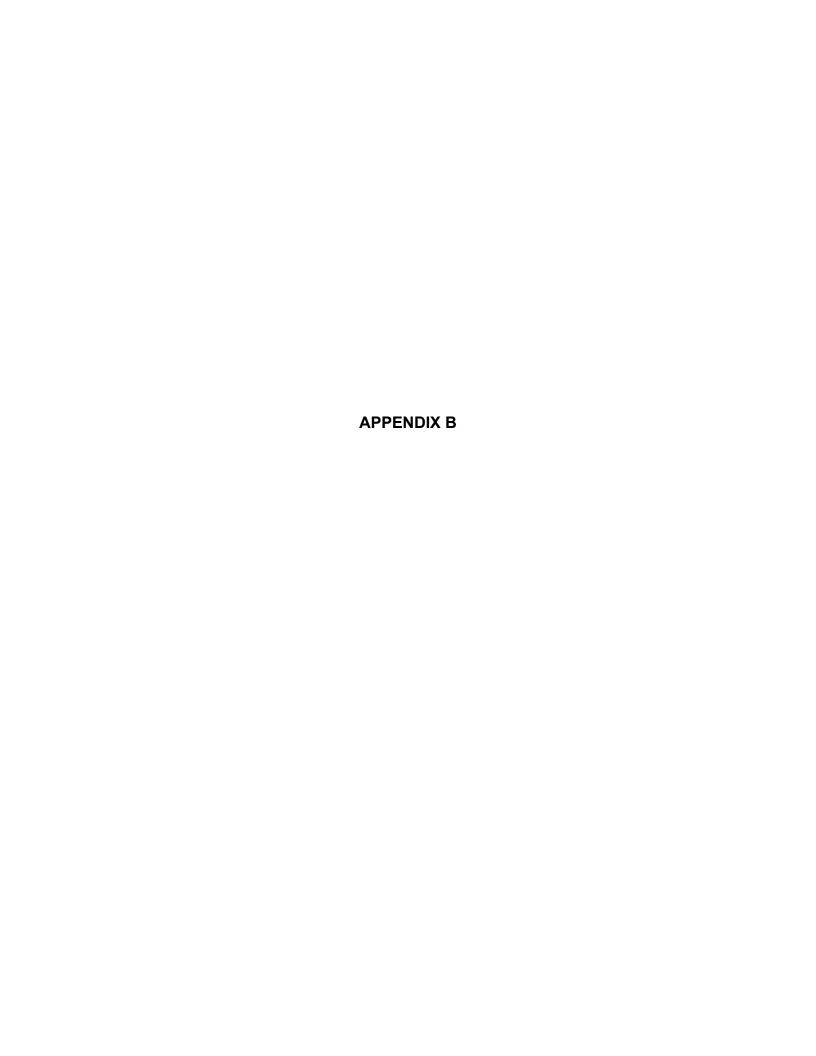
Respectfully submitted, ALMOR TESTING SERVICES LTD.

J.B. Montgomery, P.Eng.

AA: rn:A06227

* APEGA Permit to Practice #P2260

SITE PLAN SHOWING SITE PLAN SHOT TESTHOLE LOCATION SUMMIT PIT NW \$ SECTION 31 TWP 28 RGE 3 W5M ROCKY VIEW COLNTY


TACT GROUP INC

SITE 9 BOX 39 RR 1 COncrane, Alberta T4C 1A1

LEGAL LAND DESCRIPTION
NW 1/4 SECTION 31 TWP 28 RGE 3 WSP LEGAL SUBDIVISION - LBD 14 MILE SQ - 40 AORES

DRAWN BY: 017 T BRADY	DRAWING: 1 OF 1	REVISED BY:
ATE: October 02, 2017	1:4,000	ATE REVISED:

OTO TAKEN JULY 64, 2012

					PF NC	OJECT).	ТН1			
CLI	ENT:	MOUNTAIN ASH LIMITED	PARTNERSHIP				RILL PE DIESEL HA	AMMER RIG		
	DETIC VATION (I	m)	DATUM		ΓΥΡΕ	SED	WATER CONTENT (%) ●	COMPRES		
DEPTH (m)		SOIL DESCRIP		DEPTH (ft)	SAMPLE TYPE	MOD UNIFIED SOIL CLASS	PLASTIC LIQUID LIMIT LIMIT 20 40 60	Unconfine Pocket Pe TSF 2 3 KPa 200 30	n △ 4 5	OTHER TESTS
- 1 - 2 - 3		Silty CLAY stiff to very stiff some sand, mottled olive, Silty CLAY (TILL) stiff to ve plastic, trace to some sand to moist	damp to moist	2 4 6 8 10 12						- Gravel 20.8 % Sand 22.3 %
- 4 - 5 - 6 - 7										Silt 31.2 % Clay 25.7 %
9 10		- becoming sandy, trace col Silty GRAVEL compact to a sand, fine to coarse graine	dense, trace clay, some	30 32						- Gravel 53.1 %
– 11	[8]	damp - cleaner below 11.0 m	su, poorly graded, brown,	_34 _36 _38						Sand 33.9 % Silt 10.5 % Clay 2.5 %
— 12 — 13		- becoming damp to moist		-40 -42 -44						
14 15		- trace to some cobble below	w 14.0 m	_46 _48						
- 15 - 16 - 17 - 18 - 19 - 20		- occasional fine grained sa	nd lens below 18.5 m	_50 _52 _54 _56 _58 _60 _62 _64 _66						Gravel 61.9 % - Sand 29.7 % Silt & Clay 8.4 %
21 22 23				-68 -70 -72 -74 -76 -78		,				Gravel 18.6 % Sand 72.6 % Silt & Clay 8.8 %
24 25 26 27		- becoming wet to saturated	below 25.0 m	80 82 84 86 88						Gravel 65.0 % - Sand 29.1 %
- 28 - 29 - 30		SILTSTONE (BEDROCK) END OF TEST HOLE AT 2 - no standpipe installed - test hole dry at completion - test hole backfilled with so	ı	90 -92 -94 -96 -98						Silt & Clay 5.9 %
A	MD		S SERVICES LTD.			KN _{/r}	100 120 140	PENETRA RESISTAN	ICE _	GROUNDWATER Date Measured
CO	MPLET	TEST HC	DATE				T UNIT WEIGHT	■ Cone ■	Case BT Pen PLAT	F
	MPLE I PTH	28 m	DRILLED July 31, 2017			BY		Alemi	NO.	⁻ 1

PROJECT: GRAVEL PIT ASSESSMENT SUMMIT PIT PHASE TWO			PF N0	ROJECT D.		HOLE NO.	TH2	
CLIENT:	MOUNTAIN ASH LIMITED PARTNERSHIP				RILL DIESEL HA	MMER RIG		
GEODETIC ELEVATION			-YPE	Ω.,	WATER (%) ●	COMPRES STRENGT		
DEPTH (m)	SOIL DESCRIPTION	DEPTH (ft)	SAMPLE TYPE	MOD UNIFIED SOIL CLASS	PLASTIC LIQUID LIMIT LIMIT	Unconfined Pocket Per TSF 2 3 KPa 200 300	n △ 4 5	OTHER TESTS
-1 -2 -3 -4 -5 -6 -7 -6 -7 -10 -11 -12 -13 -14 -15 -16 -17 -18 -19 -20 -21 -21 -22 -23 -24	Silty CLAY (TILL) stiff to very stiff, low to medium plastic, trace to some sand, trace gravel, olive, damp to moist - becoming sandy, low plastic, olive/yellow Sandy SiLT compact to dense, non to low plastic, some gravel to gravelly, brown, damp Silty GRAVEL compact to dense, some sand to sandy, fine to coarse grained, poorly graded, brown, damp - occasional fine grained sand/silt lens below 8.0 m - becoming fine to medium grained - trace cobble below 19.2 m - becoming moist to wet END OF TEST HOLE AT 21.2m (Hammer Refusal) - no standpipe installed - test hole dry at completion - test hole backfilled with soil cuttings	-20 -10 -12 -14 -16 -18 -20 -22 -24 -26 -28 -30 -32 -34 -36 -38 -40 -42 -44 -46 -48 -50 -52 -54 -56 -64 -66 -68 -70 -72 -74 -76 -77 -77 -77 -77	SAI	JOW JOS		TSF 2 3 KPa 200 300		Gravel 58.3 % Sand 31.7 % Silt & Clay 10.0 % Gravel 64.4 % Sand 16.1 % Silt & Clay 19.5 %
An		-80 -		KN _/	m³16 18 20 22	20 40	60	
AM	ALMOR TESTING SERVICES LTD. TEST HOLE LOG			PC	100 120 140	PENETRAT RESISTAN □ SPT □	CE _	GROUNDWATER Property Date Measured
COMPLE	TION 04.0 TO DATE			LC	OGGED Abdul A	■ Cone ■	PLATI	E 2
DEPTH	21.2 m DRILLED July 31, 2017			l B۱	/ Abdul A		NO.	<u> </u>

PROJECT: GRAVEL PIT SUMMIT PIT				PROJECT NO.		HOLE NO.	тнз
CLIENT: MOUNTAIN A	ASH LIMITED PARTNERSHIP			ORILL DIESEL HA	MMER RIG		
GEODETIC ELEVATION (m)	DATUM	, i	L L	WATER (%) ●	COMPRES STRENGT	Ή	
DEРТН (m)	SOIL DESCRIPTION	DEPTH (ft)	MOD UNIFIED	PLASTIC LIQUID LIMIT LIMIT 20 40 60	Unconfined Pocket Per TSF 2 3 KPa 200 300	n △ 4 5	OTHER TESTS
Silty CLAY (T	ILL)	_ _2					Gravel 0.2 % Sand 11.8 %
-1		4 6					Silt 67.3 % Clay 20.7 %
Sandy SILT of gravel to grave	ompact, non to low plastic, some velly, brown, damp	<u>-</u> 8					
3		-10 - -12					Gravel 48.8 %
	compact, some sand to sandy, fine to	-14					Sand 33.6 % Silt & Clay 17.6 %
coarse graine	ed, poorly graded, brown, damp	_ _16					
6 6		-18 -20					
7 0		_24					
- trace cobble	below 8. m	-26 - -28					
9 0		-30					
- 10 Pall		_32					
- trace to some	e cobble below 10.0 m	-34 -36					
- 11 S		_36 _38					
- 12 o		40					
- 13 p		-42					
- 14 g		-44 - -46					
15		48					
grained poor	ompact, some gravel, fine to coarse rly graded, brown, damp	_50 52					Gravel 27.2 % Sand 54.3 %
Coarse graine	compact, some sand to sandy, fine to ed, poorly graded, brown, damp	54					Silt & Clay 18.5 %
- 17 o	ou, poorry gradou, aromi, damp	56					
18 × × SILTSTONE (I	BEDROCK)	-58 -60					
	,	-62					
		64					Gravel 71 % Sand 20.3 %
X X		-66 -68					Silt & Clay 8.7 %
- 21 × × × × × × × × × × × × × × × × × ×							
$-22\begin{vmatrix}\hat{x} & \hat{x} \\ x & \hat{x} \\ x & \hat{x}\end{vmatrix}$							
⊢ 23	T HOLE AT 22.5m nmer Refusal)	-74 - -76					
- no standpipe	installed	_ _78					
- test note dry	at completion kfilled with soil cuttings	- 80					
Almur	2 TEOTINO CED #255 : TS	- '	KN	N _{/m} ·16 18 20 22 100 120 140	20 40 PENETRA	60 ΓΙΟΝ ■	GROUNDWATER
/	R TESTING SERVICES LTD.			PCF L	RESISTAN □ SPT □	CE _	▼ Date Measured
	TEST HOLE LOG			VET UNIT WEIGHT (☐ SPT ☐ Cone ■	BT Pen	
COMPLETION 22.5 m	DATE DRILLED August 1, 2017	,		LOGGED BY Abdul <i>A</i>	Alemi	PLAT NO.	E 3

PROJEC	T: GRAVEL PIT ASSESSMENT SUMMIT PIT PHASE TWO		- 1	PR NC	OJECT).		HOLE NO.	TH4
CLIENT: MOUNTAIN ASH LIMITED PARTNERSHIP				DR TY	ILL DIESEL HA	MMER RIG		
GEODETIC ELEVATION	DATUM	TYPE	: 6	S ED	WATER (%) ● CONTENT	COMPRES STRENGT	H	
DEРТН (m)	SOIL DESCRIPTION	SAMPLE TYPE	MOM	MOD UNIFIED SOIL CLASS	PLASTIC LIQUID LIMIT LIMIT 	Unconfined Pocket Pe TSF 2 3 KPa 200 300	n △ 4 5	OTHER TESTS
-1	TOPSOIL Silty CLAY stiff to very stiff, medium plastic, trace to							
-2	some sand, olive, damp to moist Silty CLAY (TILL) stiff to very stiff, low to medium							
-3	plastic, trace to some sand, trace gravel, olive, damp to moist							
- 4	_12	2						
- 5								
- 6	Silty GRAVEL compact, some sand to sandy, fine to coarse grained, poorly graded, brown, damp							
-7	_22	2						Gravel 52.1 % Sand 32.1 %
-8	-24 -26							Silt & Clay 15.8 %
9 6	=28 =30							Gravel 31.2 % Sand 55.5 %
- 10 °	_32	2						Silt & Clay 13.3 %
- 11	- trace cobble below 10.0 m	- 1						
- 12	=38 =40							
- 13 °	_42	2						
- 14								
- 15 S	- occasional fine grained sand lens below 14.5 m							
- 16 °	_52	2		-				
- 17	_54 _56	- 1						
- 18	—58 —60			-				
- 19 °	_62	2						
- 20				-				Gravel 64.2 %
- 21	CLAY very stiff to hard, high plastic, trace to some silt, trace sand, olive/yellow, moist			-				Sand 28.2 % Silt & Clay 7.6 %
- 22	Silty SAND compact, trace gravel, fine to coarse grained, poorly graded, brown, damp	2		-				
- 23 0	Sandy GRAVEL dense, trace to some silt, fine to coarse grained, poorly graded, brown, damp			-				▼ At completion
- 24	-78 -80			-				
- 25	-82 -82			-				
- 26 o	-84 -86	;		}				
- 27	SILTSTONE (BEDROCK) END OF TEST HOLE AT 26.5m			-				
- 28	- no standpipe installed - groundwater level 23.0m at completion	- 1		}				
- 29	- test hole backfilled with soil cuttings			-				
412.4-	<u> </u>		۲	KN _{/n}		20 40 PENETRA	60 FION —	ODOLINDAM TED
AM	ALMOR TESTING SERVICES LTD.			PCF	100 120 140	RESISTAN	CE _	GROUNDWATER Date Mossured
	TEST HOLE LOG				T UNIT WEIGHT (☐ SPT ☐ Cone ■	BT Pen	- Measured
COMPLE DEPTH	TION 27 m DATE DRILLED August 2, 2017			LO BY	GGED Abdul A	lemi	PLAT NO.	E 4

PROJECT: GRAVEL PIT ASSESSMENT SUMMIT PIT PHASE TWO	PROJECT HOLE TH5 NO.	
CLIENT: MOUNTAIN ASH LIMITED PARTNERSHIP	DRILL DIESEL HAMMER RIG	
GEODETIC ELEVATION (m) DATUM		WATER CONTENT (%) ● COMPRESSIVE STRENGTH
SOIL DESCRIPTION	DEPTH (ft)	CONTENT (**) STRENGTH Unconfined A Pocket Pen \(\triangle \) Test 2 \(\triangle \) Test 3 \(\triangle \) Test 3 \(\triangle \) Test 3 \(\triangle \) Test 3 \(\triangle \) Test 3 \(\triangle \) Test 3 \(\triangle \) Test 3 \(\triangle \) Test 3 \(\triangle \) Test 3 \(\triangle \) Test 3
TOPSOIL Silty CLAY (TILL) stiff to very stiff, low to medium plastic, trace to some sand, trace gravel, olive, damy to moist Silty GRAVEL compact, some sand to sandy, trace cobble, fine to coarse grained, poorly graded, brown damp Silty GRAVEL compact, some sand to sandy, trace cobble, fine to coarse grained, poorly graded, brown damp SANDSTONE (BEDROCK) MUDSTONE (BEDROCK) END OF TEST HOLE AT 15.6m no standpipe installed groundwater level 13.5m at completion test hole backfilled with soil cuttings	-2 p -2 -4 -6 -6 -7 -10 -12 -12 -14 -16	S S S S S S S S S S
– 19	62 64	
	<u> </u>	KN _{/m} ·16 18 20 22 20 40 60
AMUR ALMOR TESTING SERVICES LTD. TEST HOLE LOG		100 120 140 PENETRATION GROUNDWATER RESISTANCE Date Measured Measur
COMPLETION DEPTH 15.6 m DATE DRILLED August 2, 20) 17	■ Cone ■ BT Pen LOGGED Abdul Alemi PLATE NO. 5

PROJECT: GRAVEL PIT ASSESSMENT SUMMIT PIT PHASE TWO				PF NC	OJECT).		HOLE NO.	TH6	
CLIENT: MOUNTAIN ASH LIMITED PARTNERSHIP						RILL DIESEL HAI PE	MMER RIG		
GEO ELE\	DETIC /ATIOI	N (m) DATUM		ΓΥΡΕ	۵.s	WATER (%) ●	COMPRES STRENGT	SSIVE	
DEPTH (m)		SOIL DESCRIPTION	DEPTH (ft)	SAMPLE TYPE	MOD UNIFIED SOIL CLASS	PLASTIC LIQUID LIMIT LIMIT	Unconfined Pocket Per TSF 2 3 KPa 200 300	n △ 4 5	OTHER TESTS
		PREDRILLED	_						
— 1			-2 - 						
			-4 - -6						
- 2			° -8						
– 3			_ 						
			_ _12						
– 4			- -14						
– 5			- -16						
	6 W	Condu CRAVEL compact come silt fine to							
- 6		Sandy GRAVEL compact, some silt, fine to grained, poorly graded, brown, damp	coarse – –20						
– 7			-22						
			<u>–24</u>						
– 8			-26 -						
– 9	0	- trace cobble below 8.5 m	-28 -						
— 9			-30						
— 10			- 32 -						
	0		-34 -						
- 11		Silty SAND compact to dense, trace grave coarse grained, poorly graded, brown, da			•				Gravel 23.3 % Sand 58.7 %
– 12		Sandy GRAVEL compact to dense, some	silt, fine to						Silt & Clay 18.0 %
	Pall	coarse grained, poorly graded, brown, da	mp 10 -42						
- 13		force askills halous 40.4 m	- -44						
– 14	00	- trace cobble below 13.4 m	_ _46						
I			- -48						
— 15			 _50						
– 16	0	becoming wet to saturated	52						▼ At completion
		SANDSTONE (BEDROCK)	_54						
— 17		END OF TEST HOLE AT 16.2m - no standpipe installed	- 56						
– 18		- groundwater level 15.8m at completion	-5 8						
		- test hole backfilled with soil cuttings	-6 0						
- 19			-62 -						
			 64 		L/A1				
Δ	M	IR ALMOR TESTING SERVICES	S LTD.		KN _{/r}	100 120 140	20 40 PENETRAT RESISTAN	60 ΓΙΟΝ ■	GROUNDWATER
					PCI	T UNIT WEIGHT ()		CE Case	■ Date Measured
COI	MPI F	TEST HOLE LOG				CCED	■ Cone ■		<u> </u>
DEF	· С.	16.8 m DRILLED A	ugust 3, 2017		BY		lemi	NO.	- 6

PROJECT: GRAVEL PIT ASSESSMENT SUMMIT PIT PHASE TWO			PF NO	ROJECT).		HOLE NO.	TH7			
CLI	ENT:	MOUNTAIN ASH LIMITED	PARTNERSHIP				RILL PE DIESEL H	IAMMER RIG		
	DETIC /ATION		DATUM		ΓΥΡΕ	G (6	WATER (%) CONTENT	COMPRE STRENG	SSIVE TH	
DEPTH (m)		SOIL DESCRIP	ΓΙΟΝ	DEPTH (ft)	SAMPLE TYPE	MOD UNIFIED SOIL CLASS	PLASTIC LIQUIE LIMIT LIMIT	Uncomme	en △ 4 5	OTHER TESTS
		PREDRILLED		_ _2						
- 1	XXXX			 _4						
- 2		Silty CLAY (TILL) stiff to ver plastic, trace to some sand	ry stiff, low to medium d, trace gravel, olive, damp	<u>-</u> 6						
– 3		to moist Silty GRAVEL compact, tra	ce to some sand, fine to	8 10						
,		coarse grained, poorly gra	ded, olive, damp	-12						
- 4				_14						
– 5		- trace cobble below 5.3 m		-16 - -18						
- 6		- trace couble below 5.5 m		_20						
– 7				_ ₂₂						
– 8	0			-24 - -26						
- 0										
– 9				_30						
- 10				-32 - -34						
– 11				_ _36						
- 12				38						
- 12				40						
— 13	6			-42 - -44						
- 14				_ _46						
— 15				-48						
				-50 - -52						
— 16	9			 _54						
— 17				_56						
– 18				-58 -60						
- 19										
		- becomiing moist to wet		64						▼ At completion
- 20		- saturated below 19.8 m		-66 -68						·
- 21										
– 22		SANDSTONE (BEDROCK) END OF TEST HOLE AT 2								
– 23		- no standpipe installed		-74 -						
		 groundwater level 19.8m a test hole backfilled with so 		-76 - -78						
— 24			-	 80						
	L AF	30		<u> </u>	<u> </u>	KN _{/I}	m ³ 16 18 20 2		60 TION —	CDOUNDMATER
A	M/	ALMOR TESTING	SERVICES LTD.			PC	100 120 14 F	RESISTA		GROUNDWATER v Date
		TEST HC	LE LOG			WE	T UNIT WEIGHT (☐ SPT ☐ Cone ■	Case BT Pen	- Measured
CO	MPLE PTH	ETION 22.1 m	DATE DRILLED August 3, 2017			LC	OGGED Abdu	Alemi	PLATE NO.	7

PROJECT	: GRAVEL PIT ASSESSMENT SUMMIT PIT PHASE TWO			1	PROJ NO.	ECT			HOLE NO.	= тн8
CLIENT:	MOUNTAIN ASH LIMITED PARTNERSHIP				DRILL TYPE		IESEL HA	MMER RI	G	
GEODETIC ELEVATION (m) DATUM		-YPE	n.,	W	ATER ONTE	NT ^(%) ●	COMPE		
DEPTH (m)	SOIL DESCRIPTION	DEPTH (ft)	SAMPLE TYPE	MOD UNIFIED	SOIL CLASS	ASTIC IMIT	LIQUID LIMIT ———————————————————————————————————	Pocket	Pen △ 3 4 5	OTHER TESTS
- 1 - 2 - 3	Silty CLAY (TILL) stiff to very stiff, low to medium plastic, trace to some sand, trace gravel, olive, damp to moist	2 4 6 8 10								
-4 -5 -6 -7	Silty GRAVEL compact, trace to some sand, fine to coarse grained, poorly graded, olive, damp	-12 -14 -16 -18 -20 -22 -24								Gravel 58.5 % - Sand 29.4 % Silt & Clay 12.1 %
- 8 0 0 0 0 0 0 0 0 0	- occasional coarse grained sand lens below 9.0 m	_26 _28 _30 _32 _34 _36 _38								
- 13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Silty SAND compact to dense, trace gravel, fine to coarse grained, poorly graded, brown, damp Sandy GRAVEL compact to dense, some silt, fine to coarse grained, poorly graded, brown, damp	40 42 44 46 48 50 52								
- 17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		_54 _56 _58 _60 _62 _64 _66 _68 _70 _72 _74								
- 23 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	- moist below 23.5 m - becoming wet	76 78 80 82								Gravel 56.2 % Sand 36.9 % Silt & Clay 6.9 %
- 26	- saturated below 25.5 m	 84 86								
- 27 - 28 - 29	SANDSTONE (BEDROCK) END OF TEST HOLE AT 26.6m - no standpipe installed - groundwater level 25.5m at completion - test hole backfilled with soil cuttings									
Almo	ALMOR TESTING SERVICES LTD. TEST HOLE LOG	, '		P(NIT WI	20 22 20 140 L J SEIGHT ()	PENETE RESISTA		▼ Date Measured
COMPLET DEPTH	TION 27.1 m DATE DRILLED August 4, 2017	,	_		LOGO BY	ED	Jeremy	Crawford	PLAT NO.	E 8

PROJECT: GRAVEL PIT AS SUMMIT PIT PH				PROJECT HOLE TH9 NO.					TH9
CLIENT: MOUNTAIN ASH	I LIMITED PARTNERSHIP		D T	ORIL TYPI	L D	IESEL HA	AMMER RIG		
GEODETIC ELEVATION (m)	DATUM			ν C	/ATER	NT ^(%) ●	COMPRES	ГН	
	SOIL DESCRIPTION	DEPTH (ft)	MOD UNIFIED	SOIL CLAS:	LASTIC LIMIT	LIQUID LIMIT ———————————————————————————————————	Unconfine Pocket Pe TSF 2 3 KPa 200 30	n △ 4 5	OTHER TESTS
plastic, trace to to moist) stiff to very stiff, low to medium some sand, trace gravel, olive, damp								
Sandy GRAVEL coarse grained,	compact, some silt to silty, fine to poorly graded, olive, damp								O
- 8 - fine to medium (grained below 8.0 m	_24 _26 _28 _30 _32							Gravel 56.9 % Sand 33.7 % Silt & Clay 9.4 %
- 11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		34 36 38 40 42 44 46 48 50 52							
- some silt below - 17 0 0 - 18 2 0 - 19 0 0 - 20 0 0 - 21 2 0	16.0 m	-54 -56 -58 -60 -62 -64 -66 -68 -70 -72							
- 23	DROCK)	-74 -76 -78 -80 -82 -84 -86 -88							
END OF TEST H - no standpipe ins - test hole dry at 0	stalled	94 96 98							
AMOR ALMORT	ESTING SERVICES LTD. ST HOLE LOG		P	V _{/m} ·1	00 1	20 22 20 140 L L L	RESISTAN □ SPT □	Case	GROUNDWATER Date Measured
COMPLETION 28.3 m	DATE DRILLED August 5, 2017		L		GED	Abdul A	■ Cone ■ Alemi	BT Pen PLATE NO.	9

PROJEC	T: GRAVEL PIT ASSESSMENT SUMMIT PIT PHASE TWO	Г			PROJECT HOLE TH10 NO.					TH10
CLIENT:	MOUNTAIN ASH LIMITED P	ARTNERSHIP		D T	ORI TYP	LL C	DIESEL HA	MMER RIG		
GEODETIC ELEVATION (E) H	SOIL DESCRIPTION	MUTAD (i) DE b41 (ii)	SAMPLE TYPE	MOD UNIFIED	SOIL CLASS	PLASTIC LIMIT	ENT (70)	COMPRE STRENGT Unconfine Pocket Pe TSF 2 3 KPa 200 30	ΓH d Δ en Δ 4 5	OTHER TESTS
-1 -2 -3 -4 -5 0	TOPSOIL Silty CLAY (TILL) stiff to very plastic, trace to some sand, grey, damp to moist Silty GRAVEL compact, som	trace to some gravel,			-			N a 200 30		
-6 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	coarse grained, poorly grade	ed, olive, damp								
- 9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- occasional high plastic clay l - becoming fine grained	-30 -32 -34 -36 -38 -40 -42 -44 -46								Gravel 69.0 % Sand 23.4 % Silt & Clay 7.6 %
- 15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	- occasional fine grained sand MUDSTONE (BEDROCK) END OF TEST HOLE AT 27.4	48								Gravel 12.6 % Sand 66.2 % Silt & Clay 21.2 %
- 29 - 30	no standpipe installed test hole dry at completion test hole backfilled with soil	-94 -96 -98		KN	N/m³	16 18	20 22	20 40	60	
AM	ALMOR TESTING TEST HOL			Р	PCF	100	120 140 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	PENETRA RESISTAN	TION ICE	GROUNDWATER Date Measured
COMPLE DEPTH		DATE DRILLED August 5, 2017			.OC	GED	Abdul A		PLATE NO.	10

EXPLANATION OF SOIL DESCRIPTIONS AND SYMBOLS SHOWN ON TEST HOLE LOGS

The test hole logs summarize the results of field investigations and, if applicable, also laboratory test data. It should be appreciated that conditions established at a test hole location may not be representative of subsurface conditions across the investigated site. Transitions of the soil stratigraphy, either classified or graphically shown, are gradual, rather than the distinct unit boundaries presented.

SOIL DESCRIPTION AND CLASSIFICATION

Soils are described according to their appearance, lithological composition and probable mode of deposition (genetic type). Expected engineering properties and behaviour of the materials are interpreted relative to the soil type and laboratory test results.

I) **DEFINITION OF SOIL TYPES**

<u>Material</u>	Grain Size
Boulders Cobbles	Larger than 300mm 75mm - 300mm
Gravel - Coarse	19mm - 75mm
- Fine	5mm - 19mm
Sand - Coarse	2mm - 5mm
- Medium	425um - 2mm
- Fine	75um - 425um
Silt and Clay	Smaller than 75um

II) **COMPOSITION OF SOIL**

- Principal Component Major soil type representing at least 50% by weight of material. 2.1
- 2.2 Minor Component - Minor soil types identified by the following terms with respect to their percentages by weight of material:

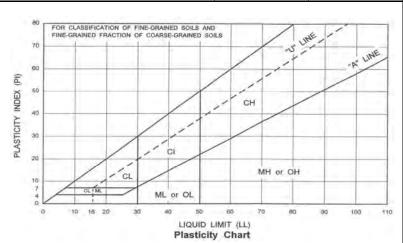
"Trace" : 1% - 10% "Some" : 10% - 20% : 20% - 30% 30% - 50% Modifier "Y" Connector "and"

III) **CONSISTENCY OR STRENGTH OF SOIL**

3.1 Coarse Grained Soils - (Principal Component larger than 75um). The following terms are used relative to the Standard Penetration Test (SPT), ASTM D1586:

<u>Description</u>	No. of Blows per Foot
Very Loose Loose Compact Dense Very Dense	Less than 4 4 - 10 10 - 30 30 - 50 Over 50
,	

3.2 Fine Grained Soils - (Principal Component smaller than 75um). The following terms are used relative to the unconfined strength and Standard Penetration Test (SPT), ASTM D1586:


Unconfined Compressive

<u>Description</u>	Strength kPa (tsf)	No. Blows per Foot
Very Soft	Less than - 24 (0.25)	Less than 2
Soff	24 - 48 (0.25 - 0.5)	2 - 4
Firm	48 - 96 (0.5 - 1.0)	4 - 8
Stiff	96 - 190 (1.0 - 2.0)	8 - 15
Very Stiff	190 - 380 (2.0 - 4.0)	15 - 30
Hard	> 380 (4.0)	Over 30

SOIL CLASSIFICATION SYSTEM (MODIFIED U.S.C.)

MAJOR DIVISION		MA IOR DIVISION TYPICAL DESCRIPTION		LABOR CLASSIFICAT	ATORY ION CRITERIA	
HIGHLY ORGANIC SOILS		PT	PEAT AND OTHER HIGHLY ORGANIC SOILS	STRONG COLOR OFTEN FIBRO	R OR ODOR AND OUS TEXTURE	
	ARSE	CLEAN	GW	WELL-GRADED GRAVELS, GRAVEL-SAND MIXTURES. <5% FINES	$C_u = D_{60} > 4; C_c = D_{10}$	$\frac{(D_{30})^2}{D_{10} \times D_{60}} = 1 \text{ to } 3$
THAN	VELS HALF CC ARGER T SIEVE)	GRAVELS	GP	POORLY-GRADED GRAVELS, GRAVEL-SAND MIXTURES. <5% FINES	NOT MEE ABOVE REQ	-
OILS LARGER E)	GRAVELS (MORE THAN HALF COARSE FRACTION LARGER THAN NO. 4 SIEVE)	DIRTY	GM	SILTY GRAVELS, GRAVEL-SAND-SILT MIXTURES. >12% FINES		IMITS BELOW OR I _p < 4
AINED S WEIGHT IEVE SIZ	(MOR FRA	GRAVELS	GC	CLAYEY GRAVELS, GRAVEL-SAND-CLAY MIXTURES. >12% FINES		LIMITS ABOVE OR I _p > 7
COARSE-GRAINED SOILS AN HALF BY WEIGHT LARC NO. 200 SIEVE SIZE)	ARSE HAN)	CLEAN	sw	WELL-GRADED SANDS, GRAVELLY SANDS. <5% FINES	$C_u = D_{60} > 6$; $C_c = D_{10}$	$\frac{(D_{30})^2}{D_{10} \times D_{60}} = 1 \text{ to } 3$
COARSE-GRAINED SOILS (MORE THAN HALF BY WEIGHT LARGER THAN NO. 200 SIEVE SIZE) SANDS (MORE THAN HALF COARSE	SANDS	SP	POORLY-GRADED SANDS, OR GRAVELLY SANDS. <5% FINES	NOT MEE ABOVE REQ	TING ALL UIREMENTS	
	SAN E THAN I CTION LA	DIRTY ON CT THAN I	SM	SILTY SANDS, SAND-SILT MIXTURES. >12% FINES		LIMITS BELOW OR lp < 4
SANDS		sc	CLAYEY SANDS, SAND-CLAY MIXTURES. >12% FINES		LIMITS ABOVE OR lp > 7	
	SILTS BELOW "A" LINE ON PLASTICITY CHART;		ML	INORGANIC SILTS AND VERY FINE SANDS, ROCK FLOUR, SILTY SANDS OF SLIGHT PLASTICITY	W _L < 50	
ASSES	NEGLIGIE	BLE ORGANIC INTENT	МН	INORGANIC SILTS, MICACEOUS OR DIATO- MACEOUS, FINE SANDY OR SILTY SOILS	W _L > 50	
SOILS VEIGHT F SIZE)	CLAYS ABOVE "A" LINE ON PLASTICITY CHART; NEGLIGIBLE ORGANIC CONTENT		CL	INORGANIC CLAYS OF LOW PLASTICITY, GRAVELLY, SANDY OR SILTY CLAYS, LEAN CLAYS	W _L < 30	
FINE-GRAINED SOILS THAN HALF BY WEIGHT PASSES NO. 200 SIEVE SIZE)			CI	INORGANIC CLAYS OF MEDIUM PLASTICITY, SILTY CLAYS	W _L > 30, < 50	SEE PLASTICITY CHART BELOW
			СН	INORGANIC CLAYS OF HIGH PLASTICITY, FAT CLAYS	W _L > 50	
(MORE		ILTS AND CLAYS	OL	ORGANIC SILTS AND ORGANIC SILTY CLAYS OF LOW PLASTICITY	W _L < 50	
BELOW "A" LINE ON PLASTICITY CHART		ОН	ORGANIC CLAYS OF HIGH PLASTICITY	W _L > 50		

- 1. All sieve sizes mentioned on this chart are U.S. Standard, ASTM E11.
- Boundary classifications possessing characteristics of two groups are given combined group symbols, eg. GW-GC is a well graded gravel sand mixture with clay binder between 5% and 12%.
- Soil fractions and limiting textural boundaries are in accordance with the United Soil Classification System, except that an inorganic clay of medium plasticity (C) is recognized.

ALMOR TESTING SERVICES LTD.

ROCK CLASSIFICATION AND DESCRIPTION

The following factors are usually incorporated in a test hole log for adequate engineering geotechnical description:

Rock Name. Established names for igneous, metamorphic and sedimentary rocks are used. This could include established local names rather than the actual rock name. It is believed that for engineering purposes classification by mechanical properties is more significant than classified by mineralogy and texture.

<u>Alteration and Weathering State</u>. The following grades are used: fresh, slightly weathered, moderately weathered, highly weathered and decomposed. In some cases of decomposed rocks the material may exhibit plasticity and soil mechanics classification could be used.

Structure and Discontinuities. This includes comments on discontinuities (bedding planes or separation along foliation planes and fissures in igneous or sedimentary rocks) and veins in relation to their type, orientation, frequency, infilling and surface structures. RQD percentage of core fractions that are 100mm (4 in.) or greater in length, relative to length of solid core recovered (defined by Deere et al. as the Rock Quality Designation) is indicative of the fractured state.

<u>Assessment of Strength</u>. The field assessment of rock strength can be aided by simple tests such as the use of a hammer or penknife and supplemented by laboratory testing. Any rock with a strength significantly less than 1 MPa (145 psi) could be described with reference to soil mechanics practice.

Ancillary Geological Information. This might include dip, identification of infill, etc.

TEST DATA AND SAMPLE TYPES

Data obtained from laboratory and field testing are shown in appropriate columns on the test hole logs and at the corresponding depth interval. Abbreviations and graphic symbols are as follows:

W	moisture content	рр	pocket penetrometer test
W_P or PL	plastic limit (ASTM D 424)	Y	unit weight of soil or rock
W_L or LL	liquid limit (ASTM D 423)	Yd	dry unit weight
Ip or PI	Plastic index (LL-PL)	$\boldsymbol{q}_{\boldsymbol{u}}$	unconfined compressive strength
	undisturbed shelby tube sample or rock core	RQD	rock quality designation
	disturbed SPT sample		
В	disturbed bag sample		

0.315

7505 - 40 Street SE Calgary, Alberta T2C 2H5 Telephone: (403) 236-8880

Aggregate Analysis Report ASTM C-136

Client	Mountain Ash Limited Partnership	Job No.	099-86-17
--------	----------------------------------	---------	-----------

Date Sampled	July 31/17	Ву	AA
Date Received	July 31/17	Ву	AA
Date Tested	Aug 2/17	Bv	BM

Attention Tige Brady

Summit Pit Ph 2, Gravel **Project**

Investigation

Sieve Size	Percent Passing by Weight		
(mm)		Min.	Max.
200			
150			
100			
80	100.0		
	00.4		

200			
150			
100			
80	100.0		
50	96.4		
40	93.4		
25	82.4		
20	75.8		
16	69.0		
12.5	59.7		
10	53.9		
5	38.1		
2.5	30.0		
1.25	25.7	·	·
0.63	22.9		

19.0

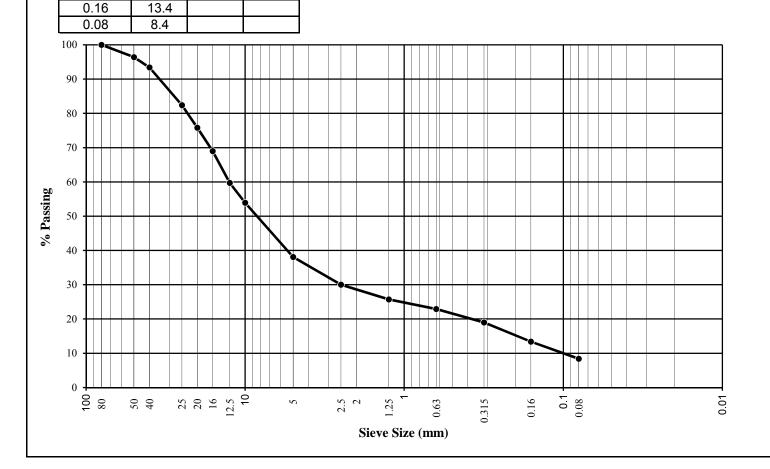
Aggregate Type

Sandy Gravel, trace silt/clay

Aggregate Source

Classification GP-GM

 $C^{c}=$ 3.1 C_U= 119.8


Specification

Comments Gavel 61.9 %

Sand 29.7 % 8.4 % Silt/Clay

TH

16 - 17m Depth

Aggregate Analysis Report ASTM C-136

Client	Mountain Ash Limited Partnership	Job No.	099-86-17
--------	----------------------------------	---------	-----------

Date Sampled AA Aug 1/17 Ву **Date Received** Aug 1/17 Ву AA **Date Tested** Aug 2/17 BMBy

Attention Tige Brady

Project Summit Pit Ph 2, Gravel

Investigation

Percent	Passing b	y Weight
	Min.	Max.
100.0		
93.4		
90.8		
87.3		
85.1		
83.6		
81.4		
80.7		
80.2		
79.0	·	·
36.9		
15.4		
	100.0 93.4 90.8 87.3 85.1 83.6 81.4 80.7 80.2 79.0 36.9	100.0 93.4 90.8 87.3 85.1 83.6 81.4 80.7 80.2 79.0 36.9

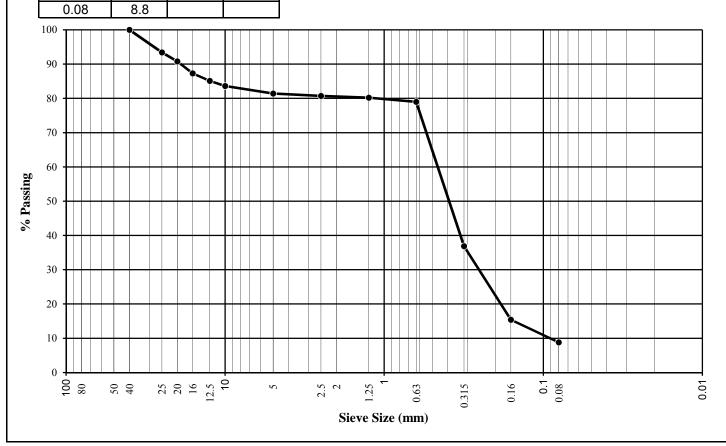
Aggregate Type

Sand, some gravel, trace silt/clay

Aggregate Source

Classification SP-SM

 $C^{c}=$ 1.5 C_U= 5.1


Specification

Comments Gavel 18.6 %

72.6 % Sand Silt/Clay 8.8 %

TH

22.2 - 22.6m Depth

Project

7505 - 40 Street SE Calgary, Alberta T2C 2H5 Telephone: (403) 236-8880

Aggregate Analysis Report ASTM C-136

Client Mountain Ash Limited Partnership Job No. 099-86-17

Date SampledAug 1/17ByAADate ReceivedAug 1/17ByAADate TestedAug 5/17ByDK

Attention Tige Brady

Summit Pit Ph 2, Gravel

Investigation

Aggregate	Type
Aggregate	Source

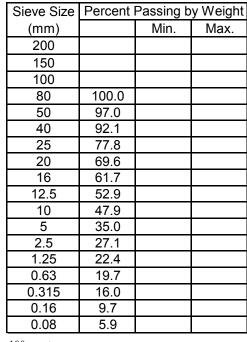
Sandy Gravel, trace silt/clay

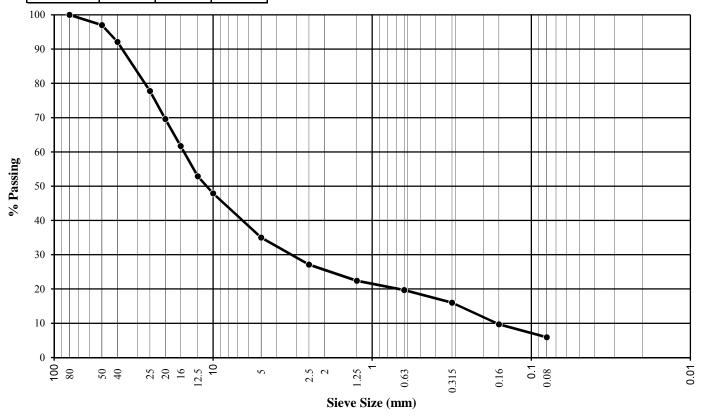
Classification

 $C_{C} = 3.8$

GP

 $C_U = 91.7$


Specification


 ${\color{red}\textbf{Comments}} \qquad {\color{red}\textbf{Gavel}} \qquad \qquad 65.0 \ \%$

Sand 29.1 % **Silt/Clay** 5.9 %

TH 1

Depth 26 - 27m

1.25

0.63

0.315

7505 - 40 Street SE Calgary, Alberta T2C 2H5 Telephone: (403) 236-8880

Aggregate Analysis Report ASTM C-136

Client Mountain Ash Limited Partnership Job No. 099-86-17

Date Sampled July 31/17 Ву AA **Date Received** July 31/17 Ву AA **Date Tested** Aug 14/17 MTS By

Attention Tige Brady

Project Summit Pit Ph 2, Gravel

Investigation

Sieve Size	Percent Passing by Weight		
(mm)		Min.	Max.
200			
150			
400			

100 80 100.0 50 98.8 40 95.0 25 82.3 20 75.9 16 69.6 12.5 61.0 10 55.9 5 41.7 2.5 34.3

30.8

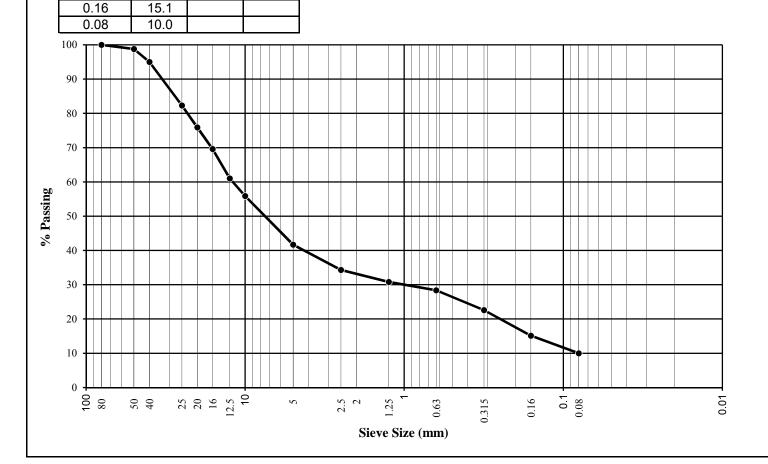
28.4

22.6

Aggregate Type Aggregate Source Sandy Gravel, trace silt/clay

Classification **GW-GM**

 $C^{c}=$ 1.1 C_U= 150.1


Specification

Comments Gavel 58.3 %

Sand 31.7 % Silt/Clay 10.0 %

ΤH

12 - 13m Depth

Aggregate Analysis Report ASTM C-136

Client Mountain Ash Limited Partnership Job No. 099-86-17

Date Sampled Aug 1/17 Ву AA **Date Received** Aug 1/17 Ву AA **Date Tested** Aug 4/17 DK By

Attention Tige Brady

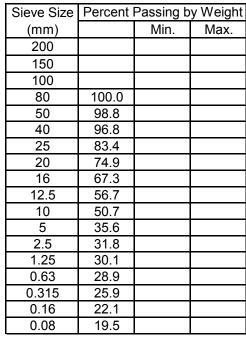
Project Summit Pit Ph 2, Gravel

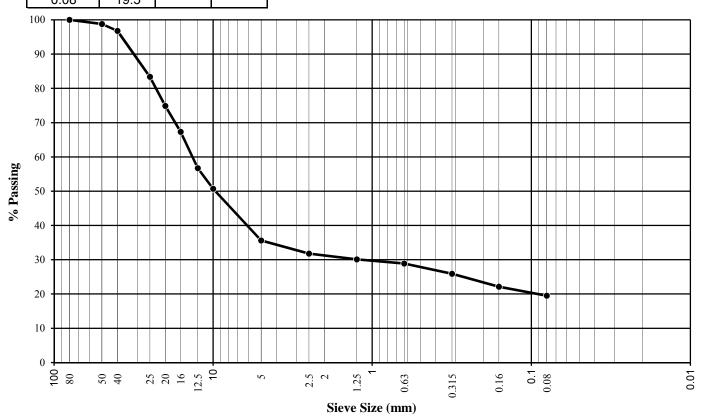
Investigation

Aggregate Type Aggregate Source Gravel, some sand, some silt/clay

Classification GM or GC

 $C^{c}=$ 1.4 C_U= 170.0


Specification


Comments Gavel 64.4 %

> Sand 16.1 % Silt/Clay 19.5 %

ΤH

20 - 21m Depth

Aggregate Analysis Report ASTM C-136

Sandy Gravel, some silt/clay

Client Mountain Ash Limited Partnership Job No. 099-86-17

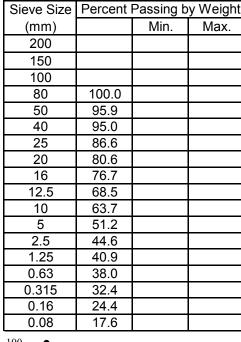
> **Date Sampled** Aug 1/17 Ву AA**Date Received** Aug 1/17 Ву AA **Date Tested** Aug 14/17 Ву DK

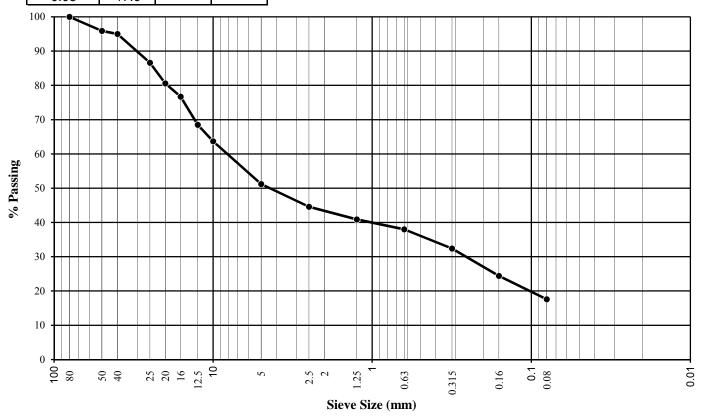
Attention Tige Brady

Project Summit Pit Ph 2, Gravel

Investigation

stigation	Aggregate Type
	Aggregate Source
cent Passing by Weight	


(mm)	Min.	Max.	Classification	GM or GC		
200				$C^{C}=$	0.1	
150				C _U =	106.7	
100						


Specification

Comments	Gavel	48.8 %
	Sand	33.6 %

Silt/Clay 17.6 %

TH 3 Depth 3 - 4m

Aggregate Analysis Report ASTM C-136

Client Mountain Ash Limited Partnership Job No. 099-86-17

Date Sampled Aug 1/17 By AA
Date Received Aug 1/17 By AA
Attention Tige Brady Date Tested Aug 2/17 By JKC

Project Summit Pit Ph 2, Gravel

Investigation

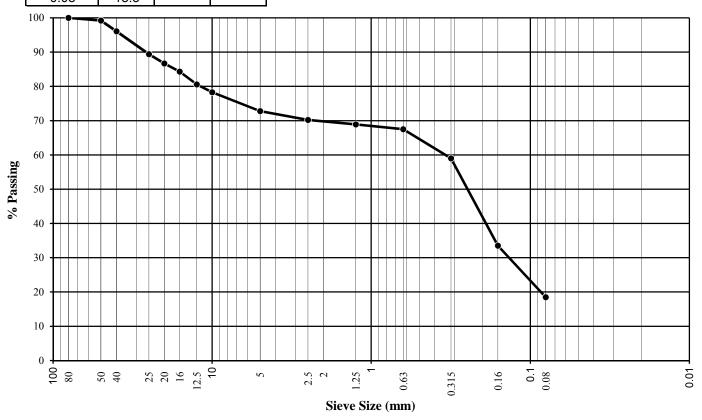
Sieve Size	Percent Passing by Weigh		
(mm)		Min.	Max.
200			
150			
100			
80	100.0		
50	99.2		·
40	96.1		
25	89.4		
20	86.7		
16	84.3		
12.5	80.6		
10	78.3		
5	72.8		
2.5	70.2		
1.25	68.9		
0.63	67.5		
0.315	59.0		
0.16	33.5		
0.08	18.5		

Aggregate Type
Aggregate Source

Gravelly Sand, some silt/clay

Classification SM or SC

 $C_{C} = 0.7$ $C_{U} = 4.4$


Specification

Comments Gavel 27.2 %

Sand 54.3 % **Silt/Clay** 18.5 %

TH 3

Depth 15 - 16m

Attention

7505 - 40 Street SE Calgary, Alberta T2C 2H5 Telephone: (403) 236-8880

Aggregate Analysis Report ASTM C-136

Client Mountain Ash Limited Partnership Job No. 099-86-17

Date Sampled Aug 1/17 Ву AA **Date Received** Aug 1/17 Ву AA PS **Date Tested** Aug 2/17 By

Tige Brady **Project** Summit Pit Ph 2, Gravel

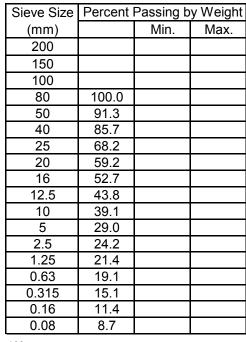
Investigation

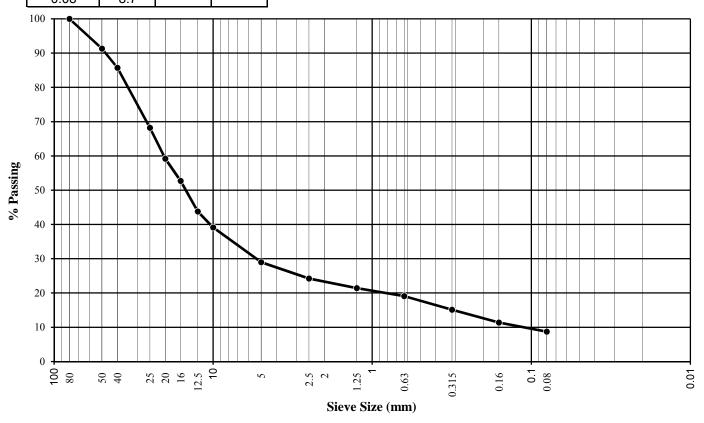
A

ggregate Type	Sandy Gravel, trace silt/clay
---------------	-------------------------------

Aggregate Source

Classification GP-GM


 $C^{c}=$ 12.6 C_U= 173.9


Specification

Comments Gavel 71.0 %

Sand 20.3 % Silt/Clay 8.7 %

TH 3 Depth 19.5m

Aggregate Analysis Report ASTM C-136

Client Mountain Ash Limited Partnership Job No. 099-86-17

Date Sampled Aug 2/17 Ву AA **Date Received** Aug 2/17 Ву AA BM **Date Tested** Aug 14/17 Ву

Attention Tige Brady

Project Summit Pit Ph 2, Gravel

Investigation

Sieve Size	Percent Passing by Weight		
()		N /1:	N /

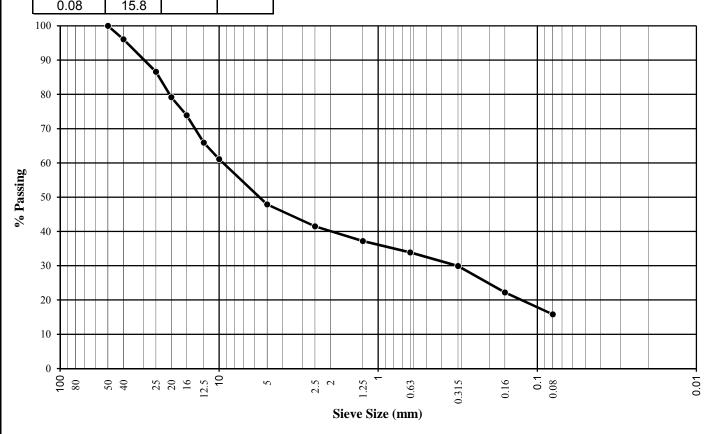
0.0.0			,
(mm)		Min.	Max.
200			
150			
100			
80			
50	100.0		
40	96.1		
25	86.6		
20	79.2		
16	73.9		
12.5	65.9		
10	61.1		
5	47.9		
2.5	41.5		
1.25	37.2		
0.63	33.9		
0.315	29.9		
0.16	22.2		
0.00	15 Q		

Aggregate Type

Sandy Gravel, some silt/clay

Aggregate Source

Classification GM or GC


 $C_{C}=$ 0.1 C_U= 120.0

Specification

Comments Gavel 52.1 %

Sand 32.1 % Silt/Clay 15.8 %

TH 6 - 7m Depth

Attention

7505 - 40 Street SE Calgary, Alberta T2C 2H5 Telephone: (403) 236-8880

Aggregate Analysis Report ASTM C-136

Client Mountain Ash Limited Partnership Job No. 099-86-17

Date SampledAug 2/17ByAADate ReceivedAug 2/17ByAADate TestedAug 6/17ByDK

Project Summit Pit Ph 2, Gravel

Tige Brady

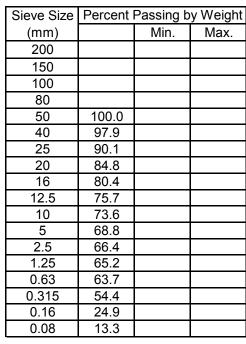
Investigation Aggregate Type

Aggregate Source

Gravelly Sand, some silt/clay

Classification SM or SC

 $C_C = 0.9$ $C_U = 6.3$


Specification

Comments Gavel 31.2 %

Sand 55.5 % **Silt/Clay** 13.3 %

TH 4

Depth 7 - 7.5m

Project

7505 - 40 Street SE Calgary, Alberta T2C 2H5 Telephone: (403) 236-8880

Aggregate Analysis Report ASTM C-136

Client Mountain Ash Limited Partnership Job No. 099-86-17

Date SampledAug 2/17ByAADate ReceivedAug 2/17ByAADate TestedAug 15/17ByBM

Attention Tige Brady

Summit Pit Ph 2, Gravel

Investigation

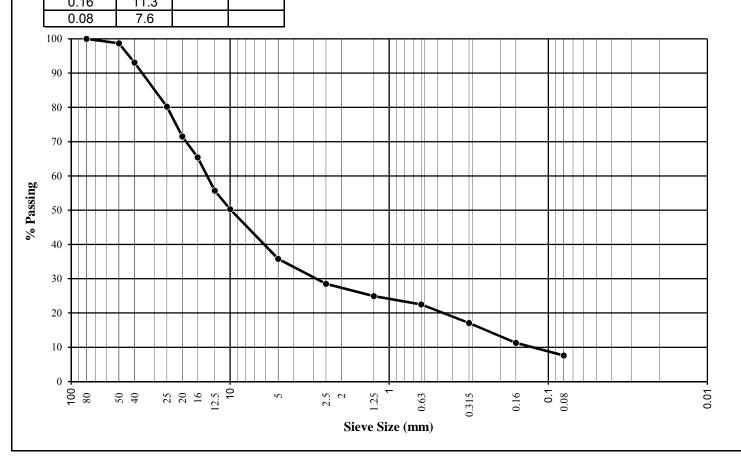
Sieve Size	Percent	y Weight	
(mm)	·	Min.	Max.
200			
150			
100			
80	100.0		
50	98.7		
40	93.1		
25	80.2		
20	71.5		
16	65.4		
12.5	55.7		
10	50.3		
5	35.8		
2.5	28.5		
1.25	24.9		
0.63	22.5		
0.315	17.1		
0.16	11 2		

Aggregate Type
Aggregate Source

Sandy Gravel, trace silt/clay

Classification GP $C_C=$

 $C_C = 3.7$ $C_U = 107.0$


Specification

Comments Gavel 64.2 %

 $\begin{array}{ccc} \textbf{Sand} & 28.2 \ \% \\ \textbf{Silt/Clay} & 7.6 \ \% \end{array}$

TH 4

Depth 20 - 20.5m

Aggregate Analysis Report ASTM C-136

Client Mountain Ash Limited Partnership Job No. 099-86-17

Date Sampled Aug 2/17 Ву AA **Date Received** Aug 2/17 Ву AA DK **Date Tested** Aug 12/17 Ву

Attention Tige Brady

Project Summit Pit Ph 2, Gravel

Investigation

Size	Percent	Passing	by	Weight

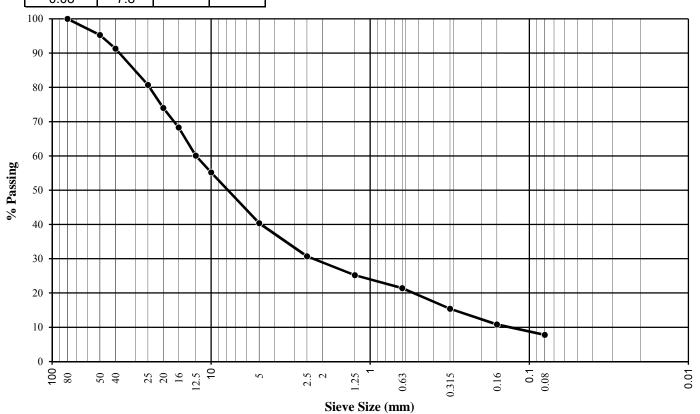
Sieve Size	Percent Passing by We		y Weight
(mm)		Min.	Max.
200			
150			
100			
80	100.0		
50	95.3		
40	91.3		
25	80.7		
20	74.0		
16	68.3		
12.5	60.1		
10	55.2		
5	40.4		
2.5	30.7		
1.25	25.2		
0.63	21.4		
0.315	15.4		
0.16	10.8		
0.08	7.8		

Aggregate Type

Sandy Gravel, trace silt/clay

Aggregate Source

Classification GW


C_C= 2.1 C_U= 89.4

Specification

Comments Gavel 59.6 %

Sand 32.6 % Silt/Clay 7.8 %

TH 5 Depth 5 - 6m

Aggregate Analysis Report ASTM C-136

Client Mountain Ash Limited Partnership Job No. 099-86-17

Date Sampled Aug 3/17 By AA
Date Received Aug 3/17 By AA
Attention Tige Brady Date Tested Aug 5/17 By DK

Project Summit Pit Ph 2, Gravel

Investigation

Sieve Size	Percent	Passing b	y Weight
(mm)		Min.	Max.
200			
150			·
100			·
80			·
50	100.0		
40	96.7		·
25	89.8		
20	86.3		
16	84.2		
12.5	80.7		
10	79.3		
5	76.7		
2.5	75.4		
1.25	74.6		
0.63	73.7		
0.315	51.2		
0.16	26.9		
0.08	18.0		

Aggregate Type
Aggregate Source

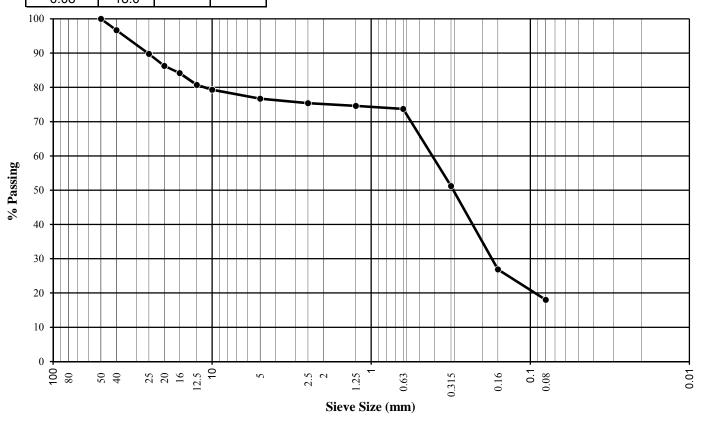
e Gravelly Sand, some silt/clay

SM or SC $C_C = 0.9$

 $C_{C} = 0.9$ $C_{U} = 5.5$

Specification

Classification


Comments Gavel 23.3 %

 Sand
 58.7 %

 Silt/Clay
 18.0 %

TH 6

Depth 11 - 11.5m

Aggregate Analysis Report ASTM C-136

Client Mountain Ash Limited Partnership Job No. 099-86-17

> **Date Sampled** Aug 4/17 Ву JC **Date Received** JC Aug 4/17 Ву **Date Tested** Aug 6/17 Ву DK

Attention Tige Brady

Project Summit Pit Ph 2, Gravel

Investigation

ize	Percent Passing by Weight

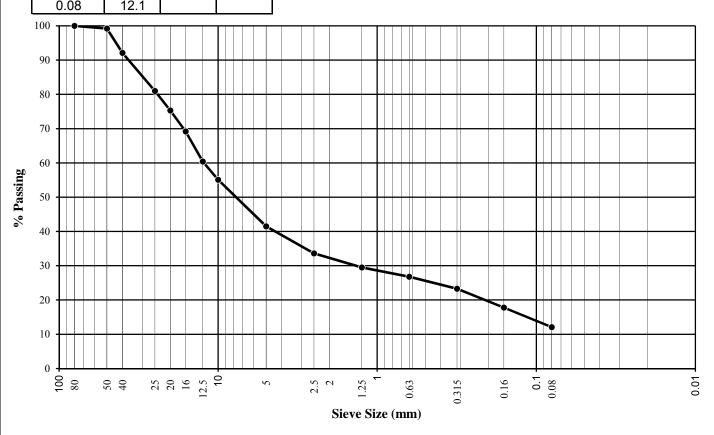
Sieve Size	Percent	Passing b	y Weight
(mm)		Min.	Max.
200			
150			
100			
80	100.0		
50	99.2		
40	92.1		
25	81.0		
20	75.3		
16	69.2		
12.5	60.4		
10	55.1		
5	41.5		
2.5	33.6		
1.25	29.5	·	·
0.63	26.8	·	·
0.315	23.3		
0.16	17.8	·	·
0.00	10.1		

Aggregate Type

Sandy Gravel, some silt/clay

Aggregate Source

Classification GM or GC


 $C_{C}=$ 1.8 C_U= 154.0

Specification

Comments Gavel 58.5 %

Sand 29.4 % Silt/Clay 12.1 %

TH Depth 5 - 6m

Aggregate Analysis Report ASTM C-136

Client Mountain Ash Limited Partnership Job No.

099-86-17 JC **Date Sampled** Aug 4/17 Ву **Date Received** Aug 4/17 Ву JC CS **Date Tested** Aug 6/17 By

Attention Tige Brady

Project Summit Pit Ph 2, Gravel

Investigation

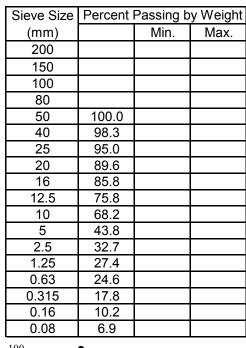
Aggregate	Type
Aggregate	Source

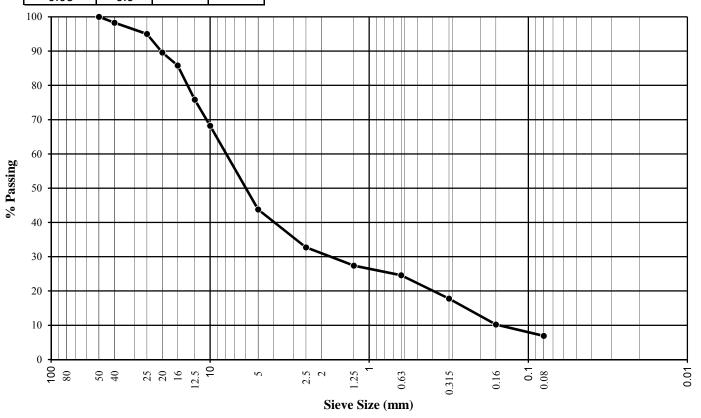
Sandy Gravel, trace silt/clay

Classification

GW $C^{c}=$ 2.0

C_U= 53.7


Specification


Comments Gavel 56.2 %

Sand 36.9 % Silt/Clay 6.9 %

TH

Depth 23 - 23.5m

Aggregate Analysis Report ASTM C-136

Client Mountain Ash Limited Partnership Job No. 099-86-17

> **Date Sampled** Aug 5/17 Ву AA **Date Received** Aug 5/17 Ву AA BM **Date Tested** Aug 15/17 Ву

Attention Tige Brady

Project Summit Pit Ph 2, Gravel

Investigation

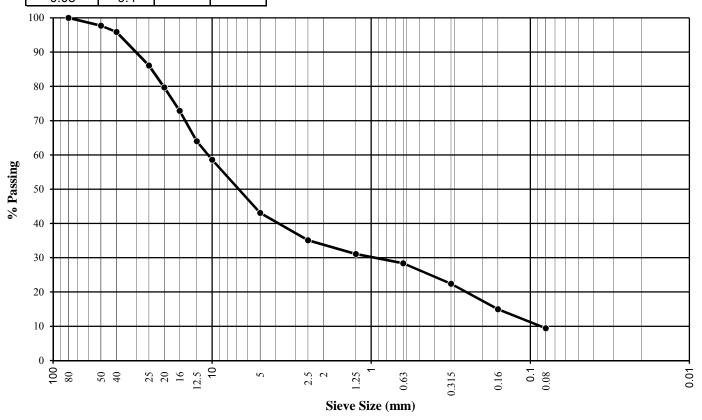
Percent Passing by Weight

Sieve Size	Percent	Passing b	y Weight
(mm)		Min.	Max.
200			
150			
100			
80	100.0		
50	97.7		
40	95.9		
25	86.1		
20	79.7		
16	72.9		
12.5	64.0		
10	58.6		
5	43.1		
2.5	35.1		
1.25	31.1		
0.63	28.4		
0.315	22.4		
0.16	15.0		·
0.08	9.4		

Aggregate Type Aggregate Source Sandy Gravel, trace silt/clay

Classification GW-GM

 $C_{C}=$ 1.1 C_U= 120.8


Specification

Comments Gavel 56.9 %

Sand 33.7 % Silt/Clay 9.4 %

TH

7 - 7.5m Depth

0.63

0.315

7505 - 40 Street SE Calgary, Alberta T2C 2H5 Telephone: (403) 236-8880

Aggregate Analysis Report ASTM C-136

Client Mountain Ash Limited Partnership Job No. 099-86-17

Date Sampled Aug 5/17 Ву AA **Date Received** Aug 5/17 Ву AA Ву ВМ **Date Tested** Aug 14/17

Attention Tige Brady

Project Summit Pit Ph 2, Gravel

Investigation

Sieve Size	Percent Passing by Weight		
(mm)		Min.	Max.
200			
150			
100			
80			
50	100.0		
40	99.0		
25	86.2		
20	73.8		
16	65.7		
12.5	53.2		
10	46.1		
5	31.0		
2.5	25.7		
1 25	23.3		

21.8

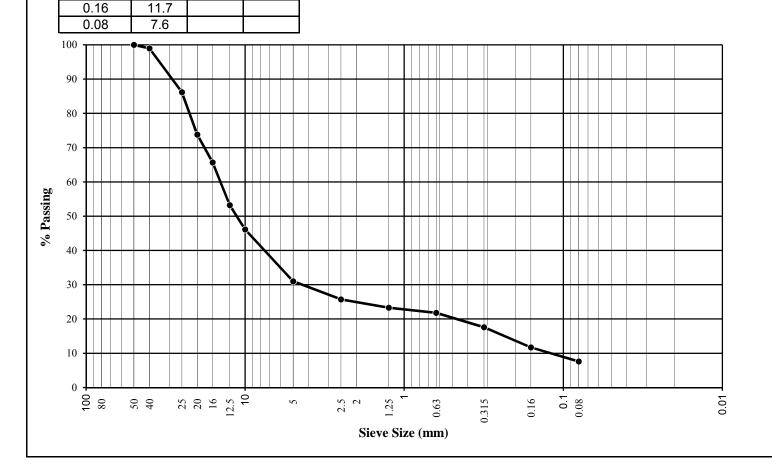
17.6

Aggregate Type Aggregate Source Sandy Gravel, trace silt/clay

Classification

C_C= 10.8

C_U= 113.2


Specification

Comments Gavel 69.0 %

Sand 23.4 % Silt/Clay 7.6 %

TH 10

10 - 10.5m Depth

Aggregate Analysis Report ASTM C-136

Silty Sand, some gravel/clay

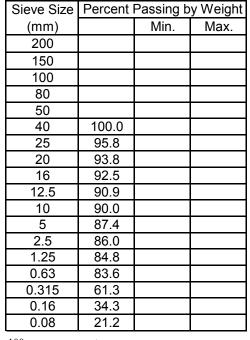
Client Mountain Ash Limited Partnership Job No. 099-86-17

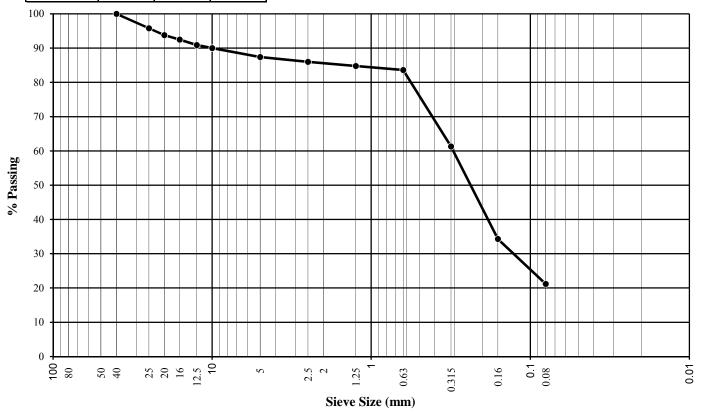
Date Sampled Aug 5/17 By AA
Date Received Aug 5/17 By AA
Attention Tige Brady Date Tested Aug 15/17 By BM

Project Summit Pit Ph 2, Gravel

Investigation Aggregate Type
Aggregate Source

(mm)	Min.	Max.	Classification	SM or SC	;
200				C _C =	0.7
150				C _U =	3.8
400					


Specification


Comments	Gavel	12.6 %
	Sand	66.2 %

Silt/Clay 21.2 %

TH 10

Depth 17.1 - 17.3m

Grain Size Distribution

ASTM D-422

Project	Summit Pit Ph 2	Test Hole #	TH1
Client	Mountain Ash Limited Partnership	Depth	9 - 11m
Almor Job #	099-86-17	Technician	JC

Date Recieved July 31/17 Date Tested Aug 7/17

2

0.425

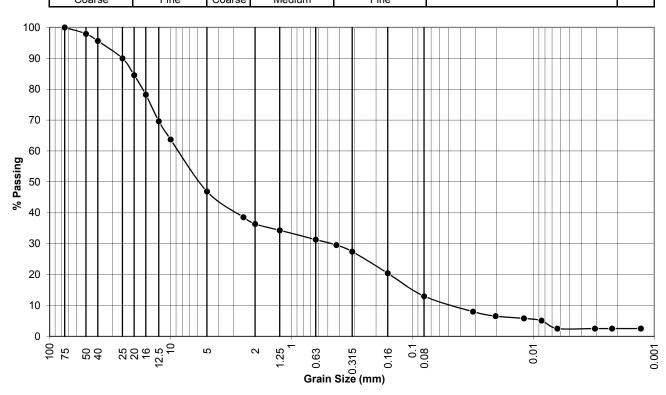
0.080

0.005 0.002

36.4

29.6

13.0 2.5


2.5

t	ed Aug 7/17	7		Soil Classification Grav	el 5	53.1%
				Sar	nd 3	33.9%
	Sieve Size			S	ilt 1	10.5%
l	(mm)	%	Passing	Cla	ау	2.5%
	150		•			

150			
100		Soil Description	Sandy GRAVEL, some silt, trace clay
80	100.0		
50	97.9	Soil Properties	Natural Moisture Content %
40	95.7		Liquid Limit %
25	90.0		Plastic Limit %
20	84.6		Plasticity Index %
10	63.8		Specific Gravity 2.65
5	46.9		

Comments

Gra	Gravel		Sand		Qil+	Clay
Coarse	Fine	Coarse	Medium	Fine	Siit	Clay

Aggregate Analysis Report ASTM C-136

Client Mountain Ash Limited Partnership Job No. 099-86-17

Date Sampled Aug 2/17 Ву AA **Date Received** Aug 2/17 Ву AA ВМ **Date Tested** Aug 12/17 Ву

Attention Tige Brady

Project Summit Pit Ph 2, Gravel

Investigation

Percent Passing by Weight	

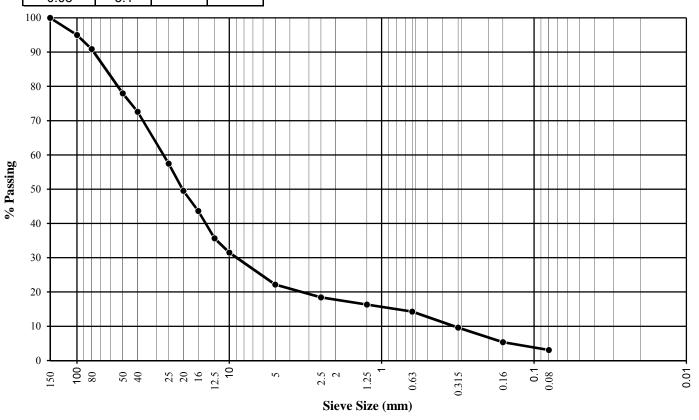
Sieve Size	Percent	Passing b	y Weight
(mm)		Min.	Max.
200			
150	100.0		
100	95.0		
80	90.9		
50	77.9		
40	72.6		
25	57.5		
20	49.5		
16	43.7		
12.5	35.7		
10	31.5		
5	22.2		
2.5	18.4		
1.25	16.3		
0.63	14.3		
0.315	9.6		
0.16	5.3		
0.08	3.1		

Aggregate Type

Gravel, some sand, trace silt

Aggregate Source

Classification $C_C =$


9.0 C_U= 80.6

Specification

Comments Gavel 77.8 %

Sand 19.1 % Silt/Clay 3.1 %

TP Depth 5 - 6m

2.5

1.25

0.63

0.315

7505 - 40 Street SE Calgary, Alberta T2C 2H5 Telephone: (403) 236-8880

Aggregate Analysis Report ASTM C-136

Client Mountain Ash Limited Partnership Job No. 099-86-17

Date Sampled Aug 2/17 Ву AA **Date Received** Aug 2/17 Ву AA MTS **Date Tested** Aug 14/17 By

Attention Tige Brady

Project Summit Pit Ph 2, Gravel

Investigation

Sieve Size Percent Passing by Weight

(mm)		Min.	Max.
200			
150			
100	100.0		
80	95.5		
50	83.8		
40	79.7		
25	62.9		
20	53.3		
16	46.2		
12.5	36.6		
10	31.8		
5	20.4		

15.7

12.9

10.3

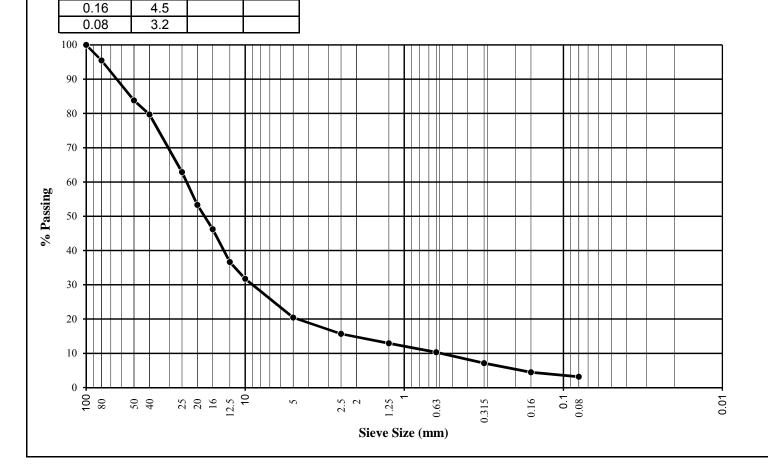
7.1

Aggregate Type

Gravel, some sand, trace silt

Aggregate Source

Classification $C^{C}=$ 6.0


C_U= 39.2

Specification

Comments Gavel 79.6 %

Sand 17.3 % Silt/Clay 3.2 %

TP 2 Depth 5 - 6m

Attention

7505 - 40 Street SE Calgary, Alberta T2C 2H5 Telephone: (403) 236-8880

Aggregate Analysis Report ASTM C-136

Client Mountain Ash Limited Partnership Job No. 099-86-17

Date Sampled Aug 2/17 Ву AA **Date Received** Aug 2/17 Ву AA DK **Date Tested** Aug 6/17 Ву

Project Summit Pit Ph 2, Gravel

Tige Brady

Investigation

Sieve Size	Percent	Passing b	y Weight
(mm)		Min.	Max.
200			
150			
100	100.0		
80	94.3		
50	81.5		
40	72.5		
25	55.3		
20	47.4		
16	41.0		
12.5	33.1		
10	28.8		
5	20.4		
2.5	17.8		
1.25	16.5		
0.63	15.7		
0.315	13.2		
0.16	8.1		

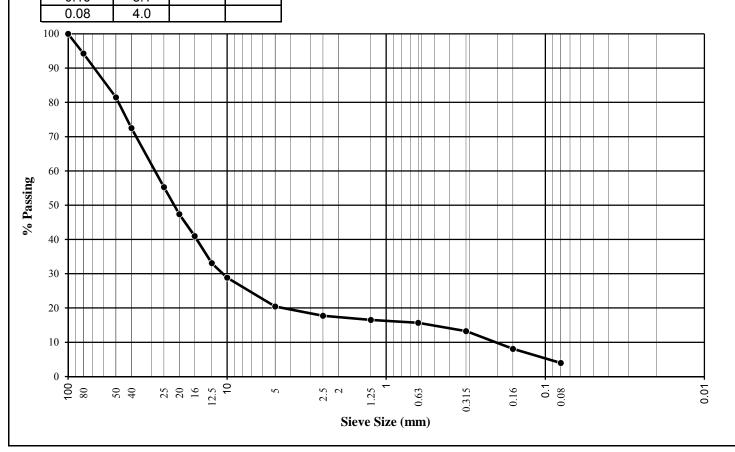
Aggregate Type

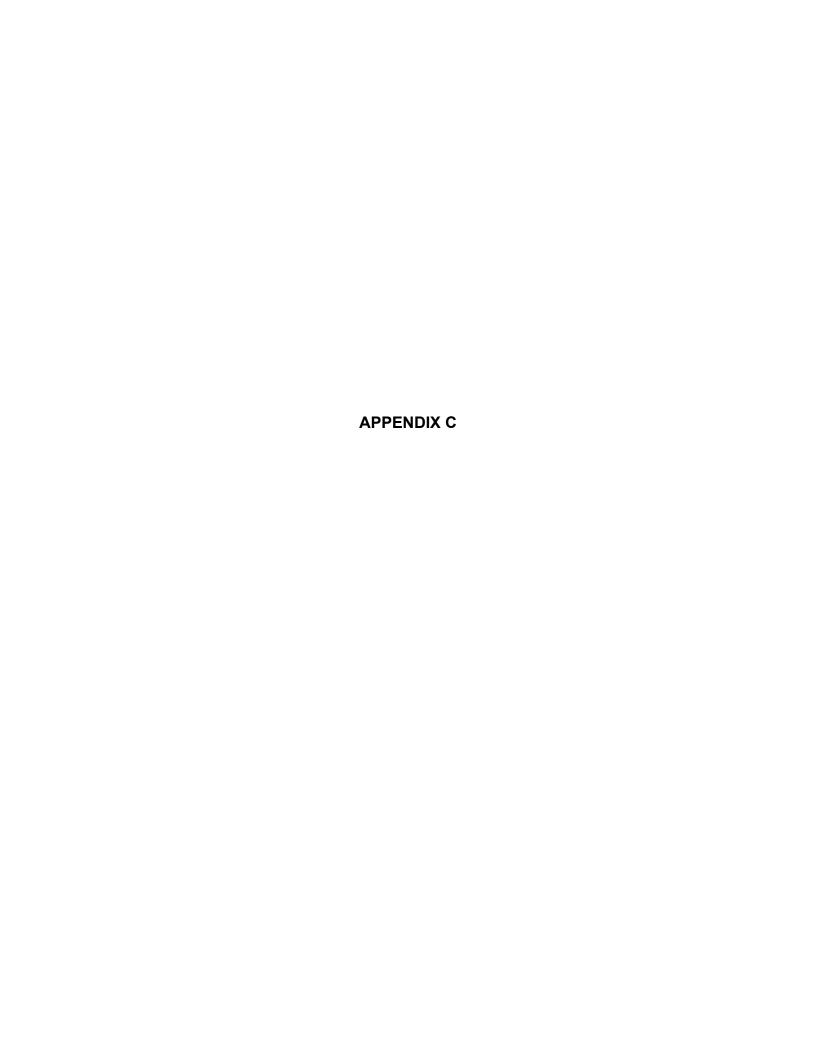
Gravel, some sand, trace silt

Aggregate Source

Classification C_C= 18.0

C_U= 133.6


Specification


Comments Gavel 79.6 %

Sand 16.5 % Silt/Clay 4.0 %

TP 3

5.0 - 6.0m Depth

Email: aalemi@almor.com

Aug 23, 2017 File: 317-Misc.

Almor Testing Services Ltd.

7505 - 40 Street SE Calgary, AB T2C 2H5

Attn: Abdul Alemi

Re: <u>LA Abrasion Testing (ASTM C - 131)</u>

Curtis Geo Solutions Inc. tested one (1) sample in accordance with ASTM C-131 Standard Test Method for resistance to degradation of small-size coarse aggregate by abrasion and impact in the Los Angeles machine. The sample was delivered to our office washed, graded (Gradation A) and dried. The sample was run through the test process and the results are tabulated below.

Sample ID	Mass Prior To Test	Mass After Test	Mass Loss	Percent
	(g)	(g)	Due to Test (g)	Loss (%)
Summit Pit Ph. 2	5002.7	3385.2	1617.5	32.3

We trust that the above is sufficient for your requirements. Should you need further information, please call.

Yours very truly,

Curtis GEO Solutions Inc.

Michael Staple, B.Sc., P.Eng.

Geotechnical Engineer

MS/bd

Email: aalemi@almor.com

Aug 23, 2017 File: 317-Misc.

Almor Testing Services Ltd.

7505 - 40 Street SE Calgary, AB T2C 2H5

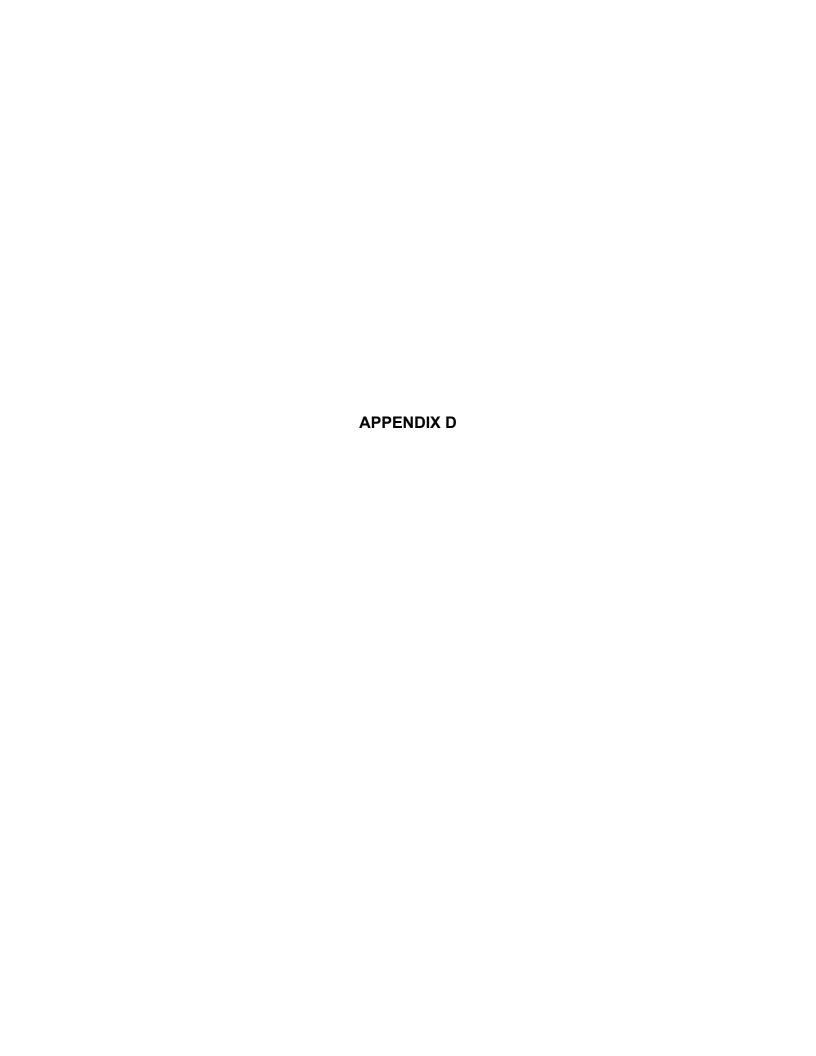
Attn: Abdul Alemi

Re: <u>LA Abrasion Testing (ASTM C - 535)</u>

Curtis Geo Solutions Inc. tested one (1) sample in accordance with ASTM C-535 Standard Test Method for resistance to degradation of Large-size coarse aggregate by abrasion and impact in the Los Angeles machine. The sample was delivered to our office washed, graded (Gradation 1) and dried. The sample was run through the test process and the results are tabulated below.

Sample ID	Mass Prior To Test	Mass After Test	Mass Loss	Percent
	(g)	(g)	Due to Test (g)	Loss (%)
Summit Pit Ph. 2	10030.1	7735.6	2294.5	22.9

We trust that the above is sufficient for your requirements. Should you need further information, please call.


Yours very truly,

Curtis GEO Solutions Inc.

Michael Staple, B.Sc., P.Eng.

Geotechnical Engineer

MS/bd

Gravel/Sand Volume Calculations

As requested, we submit our gravel/sand calculations based on the limited test holes advanced to the depth of bedrock, with a Diesel Hammer Rig.

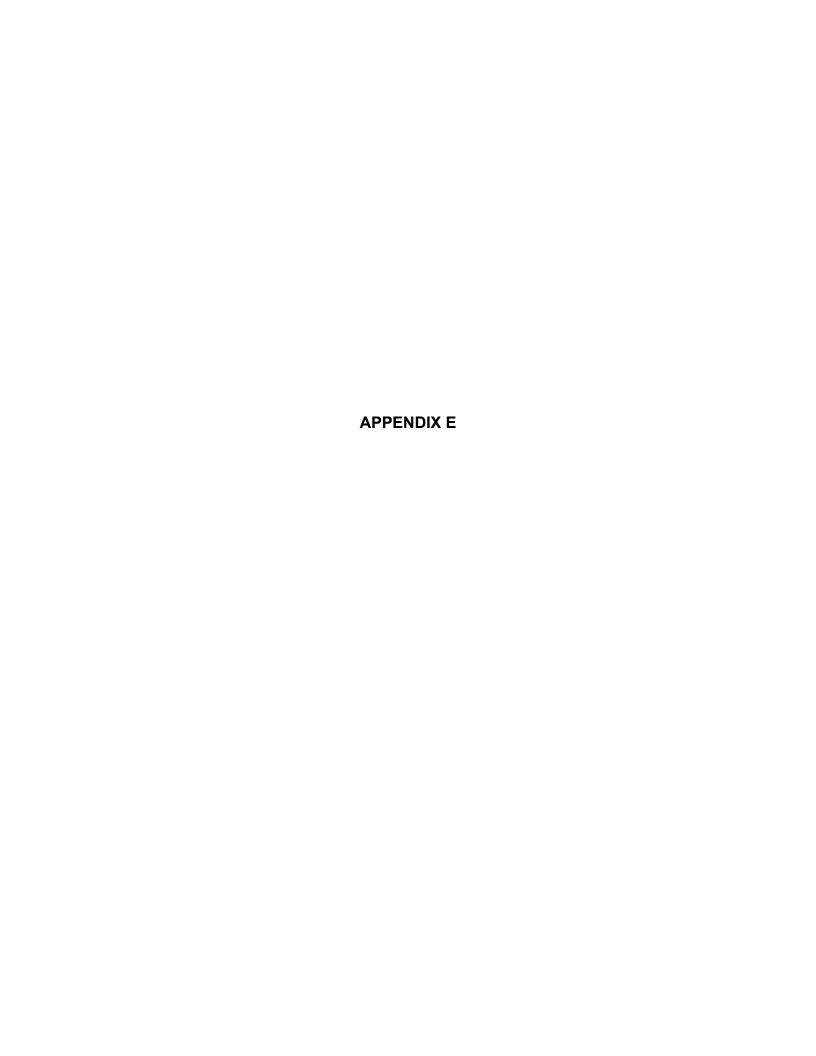
Per your request, we have combined the data obtained during the 2014 Waterman Gravel Pit Investigation and the data from the Summit Phase 2 Investigation.

Waterman Pit

Test Hole No.	Depth (m)
1	20.4
2	22.8
3	20.6
4	21.9
5	<u>16.8</u>
Average	20.5

Summit Phase 2

Test Hole No.	Depth (m)
1	18.5
2	14.2
3	14.0
4	21.5
5	9.3
6	10.5
7	19.1
8	22.6
9	23.0
10	<u>22.6</u>
Average	17.5


Combined Average = 18.5m

1 acre = $\pm 4046.89 \text{ m}^2$

160 acres = 160 x 4046.89 m^2 = ±647502.4 m^2

Based on the test hole logs (Waterman Pit and Summit Phase 2), total volume of aggregate:

Total volume = Average Depth x Area = 18.5 m x 647502.4 m³ = 11,978,794.4 m³

Grain Size Distribution

ASTM D-422

ProjectSummit Pit Ph 2Test Hole #TH3ClientMountain Ash Limited PartnershipDepth0.2mAlmor Job #099-86-17TechnicianKC

Date Recieved Aug 1/17

Date Test	ed Aug 4/1	7	Soil Classification Gravel	0.2%
			Sand	11.8%
	Sieve Size		Silt	67.3%

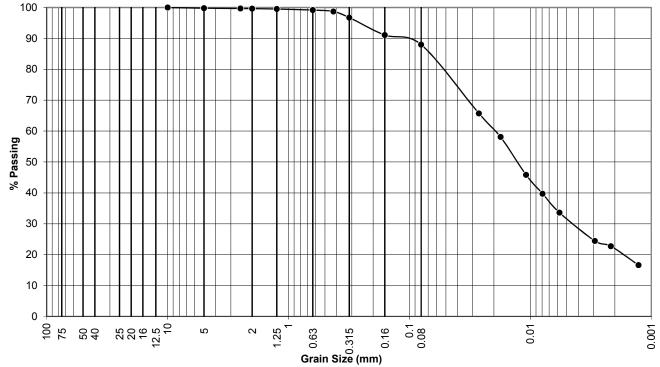
Sieve Size (mm)	% Passing
150	
100	
80	
50	
40	
25	
20	
10	100.0
5	99.8
2	99.6
0.425	98.7
0.080	88.0
0.005	31.2

20.7

0.002

Soil Description Clayey SILT, some Sand, trace Gravel

Clay

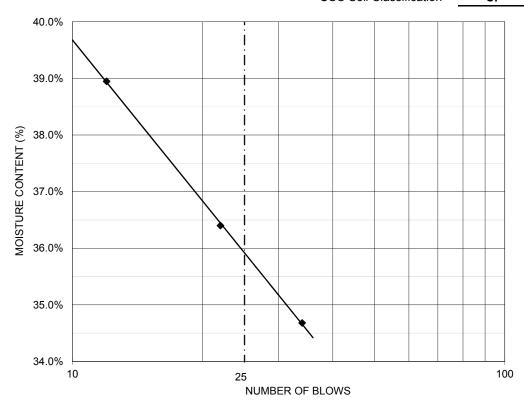

Soil Properties Natural Moisture Content 18.7 %

Liquid Limit %
Plastic Limit %
Plasticity Index %
Specific Gravity 2.65
Organic Content 12.6 %

20.7%

Comments Topsoil - Grain Size Distribution

Gra	vel	Sand			Silt	Clay	
Coarse	Fine	Coarse	Medium	Fine		Siit	Clay
	_	_	_				



Atterberg Limits Determination ASTM D4318

CLIENT	Mountain Ash Limite	ed Partnership	DATE Sept 28/17		
PROJECT	Summit Pit Ph 2		JOB # <u>099-86-17</u>		
TESTHOLE	TH1	DEPTH_	4.5m	TECH. JKC	
SAMPLE ID				DATE REC'D. Aug 1/17	
SOIL DESCRIPTION					

LIQUID LIMIT						PLASTIC LIMIT	
Trial No.	1	2	3			1	2
Number of Blows	34	22	12				
Tare Number	AT-41	AT-42	AT-43		MF-96	AT-44	AT-45
Wet + Tare (g)	34.340	41.740	47.312		210.0	37.664	36.373
Dry + Tare (g)	29.370	34.661	38.440		199.8	35.178	34.125
Tare Weight (g)	15.039	15.213	15.661		3.8	15.278	15.669
Weight Dry Soil (g)	14.331	19.448	22.779		196.0	19.900	18.456
Weight Water (g)	4.970	7.079	8.872		10.2	2.486	2.248
Moisture Content (%)	34.7%	36.4%	38.9%		5.2%	12.5%	12.2%

Natural Moisture Content (%) = 5.2 Liquid Limit $(L_L) =$ 36 Plastic Limit (P_L) = 12 Plasticity Index (I_P) = 24 USC Soil Classification = CI

Grain Size Distribution

ASTM D-422

Project	Summit Pit Ph 2	Test Hole #	TH1
Client	Mountain Ash Limited Partnership	Depth	3.0m
Almor Job#	099-86-17	Technician	KC

Date Recieved Aug 1/17

Date Tested	Aug 4/17	7	Soil Classification Gravel	20.8%
			Sand	22.3%
S	ieve Size		Silt	31.2%

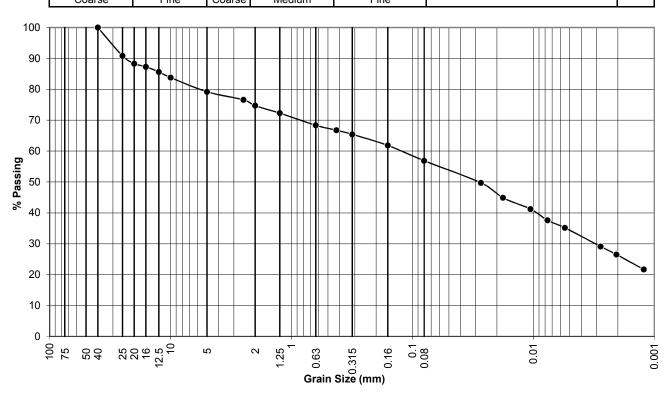
Sieve Size (mm)	% Passing
150	
100	
80	
50	
40	100.0
25	90.8
20	88.3
10	83.8
5	79.2
2	74.7
0.425	66.8
0.080	56.9
0.005	34.1

25.7

0.002

Soil Description	Sandy Clavey SILT, some gravel

Clay


Soil Properties	Natural Moisture Content	7.7 %
	Liquid Limit	%

Plastic Limit %
Plasticity Index %
Specific Gravity 2.65

25.7%

Comments Silty Clay Till (Overburden) - Grain Size Distribution

Gra	vel		Sand		Qilt	Clay
Coarse	Fine	Coarse	Medium	Fine	Siit	Clay

ALMOR TESTING SERVICES LTD.

7505 - 40 STREET S.E., CALGARY, AB T2C 2H5 PHONE (403) 236-8880 + FAX (403) 236-1707

2017 12 28

099-144-17

Mountain Ash Limited Partnership

Attention: Mr. Tige Brady, C.E.T. (tige.brady@telus.net)

Re: Gravel Pit Investigation

John Nugter Property

Highway 567 and Range Road 40 Rocky View County, Alberta

Almor Testing Services Ltd. observed and obtained gravel samples, during the advancement of six (6) test holes, at the subject site from August 8 to August 12, 2017. Test holes designated as JN01 through JN06 were advanced mostly to the north and northeast of the SW 1/4, Section 31, Township Road 26, Range Road 3, W5M. The test holes were advanced using a Becker Hammer drill rig, operated by Great West Drilling of Calgary, Alberta. Refer to Figure 1 in Appendix 'A' for the approximate test hole locations.

Test hole depths ranged from a minimum of 7.6m (JN06) to a maximum of 28.6m (JN04). The thickness of the granular deposit in the test holes ranged from a minimum 7.1m (JN03) to a maximum 24.2m (JN04). The mean average thickness of the granular deposit encountered is 20.2m and groundwater seepage was not encountered in the test holes. This value does not include the data from Test Hole JN06, as no gravel was encountered in this test hole.

Samples were obtained for gradation analysis, representative of the granular deposit encountered below the silty clay overburden. Four (4) Gradation Analyses were performed on samples from Test Hole No.'s JN01 through JN04. The Test Hole logs and the results of the Gradation Analyses are attached in Appendix 'B'. The Gradation Analyses of the samples indicated fines contents (material passing the 80 µm sieve size) in the range of 9.8% to 16.4%.

The fines content of the gravel samples obtained using a Becker Hammer drill rig is typically higher, due to the crushing or fracture of the rocks during pounding of the hammer casing into the gravels. A fines content to a maximum of 10% is generally considered desirable for gravels used for structural purposes (roads construction, foundation base, etc.). Aggregates for use in the manufacture of concrete and asphalt products typically have more stringent fines content requirements. In order to estimate the insitu fine content of gravel at the site, two (2) test pits were advanced in close proximity of Test Hole No.'s 2 and 3 and gravel samples were obtained. The Test Pit logs and the results of the Gradation Analyses of the test pit samples are attached in Appendix 'C'. Table 1 compares the fine content of gravel samples obtained using the Becker Hammer drill rig and from the test pits.

TABLE 1
Fine Content Comparison of Gravel Samples
Becker Hammer Drilling vs Test Pits

TP/TH No.	Depth (m)	Fines Content (%)
TP01	4.5 - 5.25	5.8
JN02	5.5	16.2
TP02	4.5 - 5.25	7.9
JN03	4.9 - 5.5	9.8

Table 1 indicates the fines content of the samples obtained using Becker Hammer drill rig is almost 1.3 to 3 times higher than those obtained from test pits. It is anticipated that the granular material recovered, during a commercial mining operation would yield lower fines contents than what is indicated by the samples recovered, during this investigation using a hammer rig.

Overall, the aggregates and gradation of the gravels at the test hole locations are suitable for producing aggregates required in the construction industry, with some sorting and blending sand seams.

The volume of the gravel has been estimated based on the limited bore holes advanced and is presented in Appendix 'D'.

The overburden in the subject areas consisted of topsoil/browns overlying silty clay till.

The topsoil/browns were encountered in all test hole locations and ranged from 100 to 300mm in thickness.

Below topsoil/browns, silty clay till was encountered in all test hole locations. The thickness of silty clay overburden ranged from 3500mm (JN05) to 7500mm (JN06). The thickness of the overburden at the test hole JN06 location may be more, as drilling was terminated at a depth of 7.5m. The overburden soil was described as silty clay till of low to medium plasticity.

The silty clay and topsoil overburden can be utilized for grading, during the pit rehabilitation stages of the gravel pit.

We trust this meets with your present requirements.

Respectfully submitted, ALMOR TESTING SERVICES LTD.

* APEGA Permit to Practice #P2260

J.B. Montgomery, P.Eng. AA:ms:A06268

Attachments

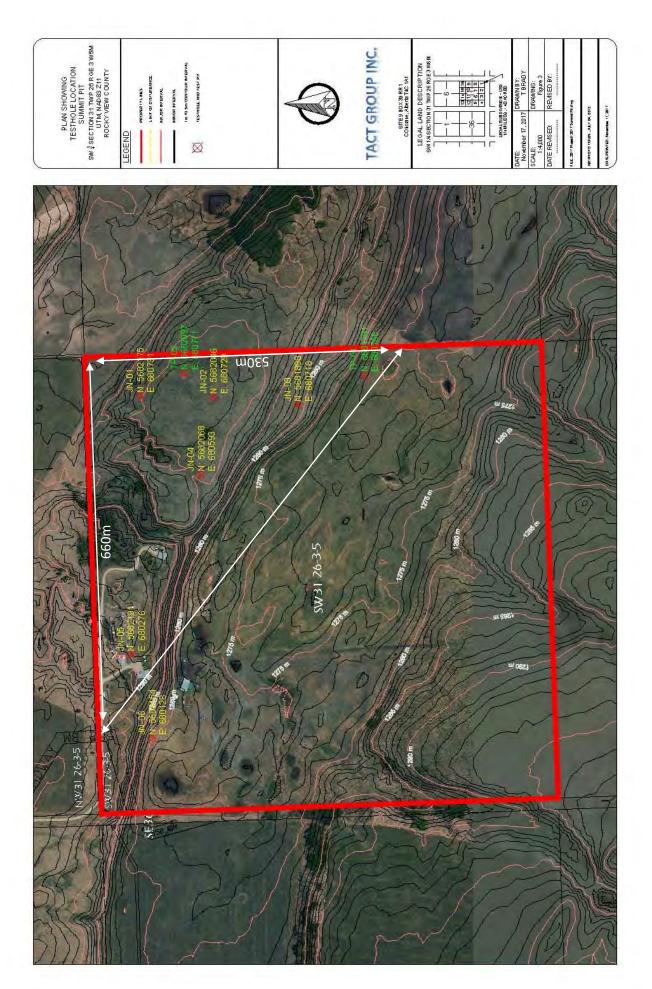
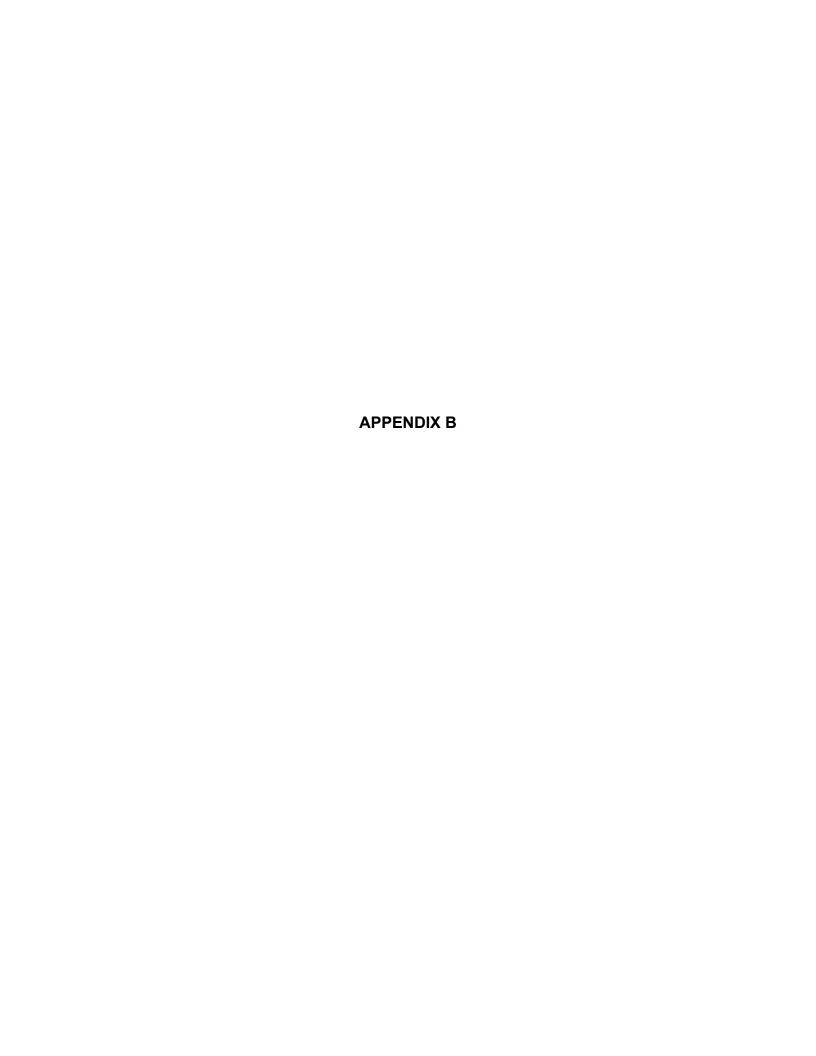



Figure 1

PROJECT: GRAVEL PIT ASSESSMENT JOHN NUGTER PROPERTY					PROJECT HOLE JN01 NO.					
CLIEN	IT: MOUNTAIN ASH LIMITED PARTNERSHIP				RILL DIESEL HAI PE	MMER RIG				
GEODE ELEVA	TIC DATUM		-YPE	G. 6	WATER (%) ● CONTENT	COMPRES	SSIVE H			
DEPTH (m)	SOIL DESCRIPTION	DEPTH (ft)	SAMPLE TYPE	MOD UNIFIED SOIL CLASS	PLASTIC LIQUID LIMIT LIMIT	Unconfined Pocket Pe TSF 2 3	n △ 4 5	OTHER TESTS		
1	TOPSOIL	_2								
-1	Silty CLAY (TILL) stiff to very stiff, low to medium plastic, trace to some sand, trace gravel, olive, damp	<u>-</u> 4 _6								
- 2 6	to moist	_8								
-3 2		_10 _12								
-4 2	Gravelly SAND compact, trace to some silt, fine	_14								
− 5	grained, poorly graded, olive, damp	_16 _18								
−6 Þ	5.	_20								
-7 o	Silty GRAVEL compact to dense, some sand to sandy, fine to coarse grained, poorly graded, brown,	<u>−</u> 22 −24								
-8	damp	_26								
-9 S		-28 -30								
– 10 p [°]		_32								
- 11 S		_34 _36								
- 12 o		38								
– 13		_40 _42								
- 14 \cdot		<u>-</u> 44 46								
Po		_ 4 8								
– 15 þ`		_50 _52								
ے 16 – 'ہ		_52 _54								
ە 17 – كىر		_56 _58								
– 18 o		_ 60								
– 19 ြို့		_62 _64								
– 20 þ	- occasional medium to high plastic clay lens below	_ 66						Gravel 57.1 %		
– 21 c	Ⅲ 20.0 m	_68 _70						Sand 26.5 % Silt & Clay 16.4 %		
- 22 o		_ ₇₂						Siit & Clay 10.4 //		
– 23 o		_74 _76								
- 24)		_ ₇₈								
– 25 p		_80 _82								
– 26		84 86								
– 27 ×	SILTSTONE (BEDROCK)	88								
- 28	END OF TEST HOLE AT 26.6m - no standpipe installed	_90 _92								
- 29	- test hole dry at completion	_ 94								
	- test hole backfilled with soil cuttings	_96 _98								
- 30		_ 100								
- 31		_102 _104								
- 32		_104 _106		KNI	16 19 20 22	20 40	60			
∆\ ⁄	ALMOR TESTING SERVICES LTD.			I KIN/	n ³ 16 18 20 22 100 120 140	PENETRA	60 TION ■	GROUNDWATER		
~					F L	RESISTAN	CE Case	▼ Date Measured		
	TEST HOLE LOG				T UNIT WEIGHT (☐ SPT ☐ Cone ■	BT Pen			
COMF DEPT	PLETION DATE DRILLED August 8, 2017			L(GGED Kevin C	arter	PLATI NO.	11		

PROJECT: GRAVEL PIT ASSESSMENT JOHN NUGTER PROPERTY			1	PROJECT HOLE JN02 NO.					JN02						
CLIENT: MOUNTAIN ASH LIMITED PARTNERSHIP					RILL /PE		DIESE	EL HA	MM	ER F	RIG				
GEODETIC ELEVATION	I (m)	DATUM		LYPE	9.6	WA CO	TEF	R ENT (%) •	C S	TRE	NGT			
DEPTH (m)	SOI DESCRII		DEPTH (ft)	SAMPLE TYPE	MOD UNIFIED SOIL CLASS	PLA LI	STIC MIT	LI L	QUID IMIT - 60	Po	ocke 2		d ▲ n △ 4 0 40	5	OTHER TESTS
- 1	TOPSOIL Silty CLAY (TILL) stiff to	very stiff low to medium	2												
- 2	plastic, trace to some sa	nd, trace gravel, olive, damp	<u>-</u> 4 -6												
- 3 W			-8 -10							1		:		:	
										1		:		:	
5	Sandy GRAVEL compact silt, fine to coarse graine		<u></u> 14 −16			:		: :		1		-		:	
- 6 ° 6	damp		18							1				:	Gravel 47.4 % Sand 36.4 %
7			_20 _22												Silt & Clay 16.2 %
- 8 °	Gravelly SAND compact, grained, poorly graded, of	trace to some silt, fine blive, damp	-24 -26											:	
-9 0			_28												
- 10 °			_30 _32									-		:	
- 11 b			_34 _36			:			: :			- :		:	
- 12 Ø			_38											:	
- 13 ° (_40 _42											:	
- 14 Ø			<u></u> 44 −46									<u>:</u>		:	
- 15 °			48											:	
- 16 Au	- some gravel below 15.0		50 52									-		:	
- 17 S		dense, some sand to ined, poorly graded, brown,	_54 _56												
- 18 °	damp		<u>_</u> 58												
- 19 g			_60 _62							1		-		:	
- 20 0			64 66							1		-		:	
- 21	- occasional medium to hig	gh plastic clay lens below	68							:		-		:	
- 22	20.5 m		_70 _72							1				:	
- 23 °			-74 -76							1				:	
- 24			- 78							1					
- 25			_80 _82			:		: :	: :	:		:		:	
- 26 o			=84 =86			:	: :			1 :		:		:	
- 27			_ 88			- :				1	: :	-		:	
– 28 × ×	SILTSTONE (BEDROCK)		90 92							:		- :		$\frac{1}{1}$	
- 29	END OF TEST HOLE AT		=94 =96			-				+		-		$\frac{1}{1}$	
- 30	 no standpipe installed test hole dry at completic 		_ 98			<u> </u>		<u> </u>		+	: :	:			
- 31	- test hole backfilled with s	oil cuttings	_100 _102			:		: :	: :	1:		:		:	
- 32			⊟104 ⊟106			:	<u> </u>	: :		1	: :	:		:	
Alm.	IR	10.0FD\#050:==	. 100		KN _{/I}	m ³ 16	18		22	PE	20 NET	40 「RA	60 TION	1=	GROUNDWATER
		G SERVICES LTD.			PC	100 F		120 	140 	RE	SIS	TAN	CE		■ Date Measured
		OLE LOG						/EIGH	IT ()				Case BT F	Pen	
COMPLE DEPTH	TION 28.5 m	DATE August 8, 2017	7		LC B\	OGGI Y	ÉD	K	evin C	Carte	r		PL NC	ATE).	12

PROJECT: GRAVEL PIT ASSESSMENT JOHN NUGTER PROPERTY					PROJECT HOLE JN03 NO.							
CLI	ENT:	MOUNTAIN ASH LIMITED	PARTNERSHIP			DF TY	RILL DIE	ESEL HA	MMER RIG			
GEO ELE	DETIC VATION (r	m)	DATUM		ΓΥΡΕ	S	WATER CONTEN	T ^(%) ●	COMPRES	ГН		
DEPTH (m)		SOIL DESCRIP		DEPTH (ft)	SAMPLE TYPE	MOD UNIFIED SOIL CLASS	PLASTIC LIMIT LOUID	LIQUID LIMIT	Unconfine Pocket Pe TSF 2 3 KPa 200 30	n △ 4 5	OTHER TESTS	
		TOPSOIL Silty CLAY (TILL) stiff to ve	ery stiff low to medium									
_ 1		plastic, trace to some sand to moist	d, trace gravel, olive, damp	-2 -								
•				<u>-</u> 4								
– 2				-6								
				- 8								
– 3				_ _10								
				_								
– 4				-12 -								
		Silty GRAVEL compact to	dense, some sand to	<u> </u> -14 -								
– 5		sandy, fine to coarse grain damp	ned, poorly graded, brown,	- 16							Gravel 58.6 %	
				-18							Sand 31.6 % Silt & Clay 9.8 %	
- 6		- occasional medium to high	n plastic clay lens below	-20								
		6.0 m		- -22								
- 7				_ -24								
				-								
- 8				-26 -								
				-28 -								
— 9				-30								
10	00			-32								
— 10				_ _34								
– 11				_ -36								
		MUDOTONE (DEDDOOK)		_ 38								
- 12		MUDSTONE (BEDROCK)		F								
				- 40 -								
- 13		END OF TEST HOLE AT 1	2.8m	-4 2								
		no standpipe installedtest hole dry at completion		<u>-44</u>								
- 14		- test hole backfilled with so	ıl cuttings	_ -46								
				- -48								
				<u> </u>		KN _{/r}		20 22	20 40 PENETRA	60 TION —	CDOUNDWATER	
A	<u>IMU</u>		S SERVICES LTD.			PC	100 120	0 140	PENETRA RESISTAN		GROUNDWATER Date Measured	
-	MDI ==	TEST HC					T UNIT WEI	IGHT ()	☐ SPT ☐ Cone ■			
CO DEI	MPLET PTH	1ON 12.8 m	DATE DRILLED August 10, 2017			LC BY	GGED	Kevin C	arter	PLATI NO.	E 13	

PROJECT: GRAVEL PIT ASSESSMENT JOHN NUGTER PROPERTY					ROJECT D.		HOLE NO.	JN04
CLIENT: MOUNTAIN ASH LIMITED PARTNERSHIP					RILL DIESEL HA	MMER RIG		
GEODETIC ELEVATION (m) DATUM			9.6	WATER (%) ● CONTENT	COMPRES STRENGT	SSIVE		
DEPTH (m)	SOIL DESCRIPTION	DEPTH (ft)	SAMPLE TYPE	MOD UNIFIED SOIL CLASS	PLASTIC LIQUID LIMIT LIMIT 	Unconfined Pocket Per TSF 2 3 KPa 200 300	n △ 4 5	OTHER TESTS
- 1	TOPSOIL Silty CLAY (TILL) stiff to very stiff, low to medium plastic, trace to some sand, trace gravel, olive, damp	2 4						
- 2 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3 - 3	to moist	6 -8 -10						
-4	Sandy GRAVEL compact to dense, trace to some silt, fine to coarse grained, poorly graded, brown,	12 14						
- 5 - 6	damp	16 18 20						
-7								
-8 0 -9 0		_26 _28 _30						
- 10 g		_32 _34						
- 11 0 1 - 12 0		_36 _38 _40						
- 13)		_42 _44 _46						
- 15 g		_48 _50						
- 16 0 - 17 0		_52 _54 _56						
- 18) 0		_58 _60						Gravel 56.6 % Sand 33.2 %
- 19 °) - 20 ° 9		_62 _64 _66						Silt & Clay 10.2 %
- 21 °		68 70						
– 22 ₀ ♥ – 23 ♭		_72 _74 _76						
- 24 ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	- occasional medium to high plastic clay lens below 24.0 m	_78 _80 _82						
- 25 0 - 26 0	- becoming silty	84 86						
- 27 0 - 28 2		88 90 92						
- 29	MUDSTONE (BEDROCK) END OF TEST HOLE AT 28.6m	94						
- 30	- no standpipe installed - test hole dry at completion	_96 _98 _100						
- 31 - 32	- test hole backfilled with soil cuttings	_102 _104 _106) 					
AIMD	$oldsymbol{R}$ ALMOR TESTING SERVICES LTD.	<u> </u>	ı		n ³ 16 18 20 22 100 120 140	20 40 PENETRAT RESISTAN	60	GROUNDWATER
	TEST HOLE LOG			WE	T UNIT WEIGHT (Case	Date Measured
COMPLET DEPTH	TON 28.8 m DATE August 11, 2017	7		L(GGED Kevin C		PLATI NO.	14

PROJECT: GRAVEL PIT ASSESSMENT JOHN NUGTER PROPERTY					PROJECT HOLE JN05 NO.										
CLIENT: MOUNTAIN ASH LIMITED PARTNERSHIP					RILL /PE	D	IESE	L HA	MME	ER R	RIG				
GEODETIC ELEVATION (m)	DATUM		YPE	Д	WA	TER	R NT ⁽⁹	%) ●	CO	OMP REN		SIVE		
DEРТН (m)	SOII DESCRIF		DEPTH (ft)	SAMPLE TYPE	MOD UNIFIED SOIL CLASS	PLA LI	STIC MIT	LIC	QUID MIT - 1 50	Po	nconf ocket	fined Pen	▲ 1 △ 4 5		OTHER TESTS
	TOPSOIL														
<u> </u>		ery stiff, low to medium and, trace gravel, olive, damp	<u>-</u> 4 -6												
<u>−</u> 2	to moist		- 8			-				1			: :		
- 3			<u>_</u> 10			-	: :	: :	: :	1:	+ +	: :	: :		
-4	Sandy GRAVEL compact	to dense, trace to some	-12 -14			-:	<u> </u>	::	: :	1	<u> </u>	- : :	- : :		
- 5	silt, fine to coarse grained damp	d, poorly graded, brown,	-14 -16			<u>:</u>				1	<u> </u>	: :			
			_18			:									
F 6			_20 _22			:									
⊢ 7 0 1	- occasional fine to coarse	grained sand lens below				-				+ :					
8 0	6.8 m Gravelly SAND compact, 1	race to some silt, fine				- :				1		-	: :		
_9 [° (grained, poorly graded, o - trace to some gravel belo	live, damp	−28 −30			<u> </u>				1					
- 10 [©]	-	w 0.5 III	_32												
	- some gravel below 9.8 m Sandy GRAVEL compact	to dense, trace to some	34												
- 11 J	silt, fine to coarse grained	d, poorly graded, brown,	<u></u> 36 −38												
12 0	damp		40			H									
- 13 g			_42 _44			- :	: :	: :	: :	1 :	1 1	: :	: :		
- 14 o			_ 44			- :	: :	: :	: :	:	: :	: :	: :		
- 15 d			48			1									
			_50 _52			:									
- 16 b			_54												
<u> </u>			_ 56												
- 18 g			_58 _60			-:	: :	: :	: :	1:	1 1	- : :	::		
- 19 o			62			-				<u> </u>					
- 20			<u>−</u> 64 −66			L									
_ 21 0			68												
[9]			-70			:									
- 22 °)			<u></u> −72 −74			:									
23 9			- 76												
− 24 0 (1)			<u></u> −78 −80			-	<u>: :</u>	<u>: : : : : : : : : : : : : : : : : : : </u>	<u>: : : : : : : : : : : : : : : : : : : </u>	1	1 1	: :	: :		
- 25 o			82			:	: :	: :	: :	1	<u> </u>	: :	: :		
26			-84			- :				1			<u> </u>		
- 27 °	 occasional medium to hig 26.0 m 	h plastic clay lens below	_86 _88			:				:					
<u> </u>	SILTSTONE (BEDROCK)														
28 7	END OF TEST HOLE AT	28.0m	92												
- 29	- no standpipe installed		- 96			-				1					
- 30	 test hole dry at completio test hole backfilled with s 		<u>−</u> 98 −100			<u>;</u>				1:	1 1		: :		
- 31	200 Buolimou will o	90	-102	1		<u> </u>		1 1		:	1 1				
- 32			_104	4						1			-		
			<u></u> 106	<u> </u>	KN _{/i}	m ^{, 16}	18	20	22			40	60		
	$oldsymbol{R}$ ALMOR TESTIN	G SERVICES LTD.				100	, 1	120	140	PE RF	NETI SIST	RAT	ION		ROUNDWATER
					PC		:				SPT			¥	Date Measured
		DLE LOG						'EIGH	r O				BT Pen		
COMPLET DEPTH	TION 28.2 m	DATE August 11, 201	17		LC B\	OGG Y	ED	Ke	vin C	arte	r		PLATI NO.	15	

PROJECT: GRAVEL PIT ASSESSMENT JOHN NUGTER PROPERTY					PR NO	OJECT			HOLE NO.	JN06
CLI	ENT: MOUNTAIN ASH LIMITED	PARTNERSHIP			DR TYI	ILL PE DIESEL	- HAI	MMER RIG		
GEO ELE	DETIC /ATION (m)	DATUM		L L	0	WATER (%) •	COMPRES STRENGT	H	
DEPTH (m)	SOIL DESCRIPT	TION	DEPTH (#)	SAMPLE TYPE MOD UNIFIED	SOIL CLAS	PLASTIC LIQUE LIMIT LIME 20 40 60	1IT	Unconfined Pocket Per TSF 2 3 KPa 200 300	n △	OTHER TESTS
		ry stiff, low to medium , trace gravel, olive, damp -2 -4 -4 -6 -8 -1 -1 -1 -1 -1 -1 -2 -2 -2 -5m	22 14 16 18 18 12 12 12 14 14 16 18 18 12 12 14 14 16 18 18 18 18 18 18 18 18 18 18 18 18 18	SAM		\vdash				
- 8 - 9	test hole dry at completion test hole backfilled with soi									
		-3 -3								
A	ALMOR TESTING			i	PCF	100 120		20 40 PENETRAT RESISTAN		GROUNDWATER Date Measured
<u> </u>	TEST HO	DATE				COED		■ Cone ■		
DEI	MPLETION PTH 7.5 m	DATE August 12, 2017			LO BY	GGED Kev	/in C	arter	PLATE NO.	16

Attention

7505 - 40 Street SE Calgary, Alberta T2C 2H5 Telephone: (403) 236-8880

Aggregate Analysis Report ASTM C-136

Sandy GRAVEL, some silt/clay

Client Mountain Ash Limited Partnership Job No. 099-144-17

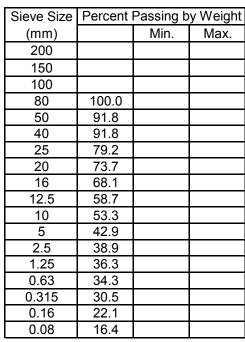
Date SampledAug 8/17ByKCDate ReceivedAug 8/17ByKCDate TestedAug 16/17ByBM

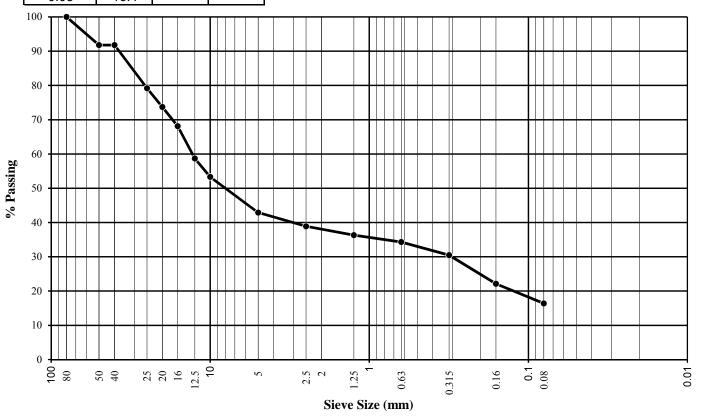
Project John Nugter Property, Gravel

Tige Brady

Investigation Aggregate Type
Aggregate Source

Classification GM or GC


 $C_C = 0.1$ $C_U = 162.3$


Specification

Comments Gavel 57.1 %

Sand 26.5 % **Silt/Clay** 16.4 %

TH JN01 Depth 20.5m

Aggregate Analysis Report ASTM C-136

Client Mountain Ash Limited Partnership Job No. 099-144-17

Date Sampled Aug 8/17 By KC
Date Received Aug 8/17 By KC
Attention Tige Brady Date Tested Aug 16/17 By BM

Project John Nugter Property, Gravel

Investigation

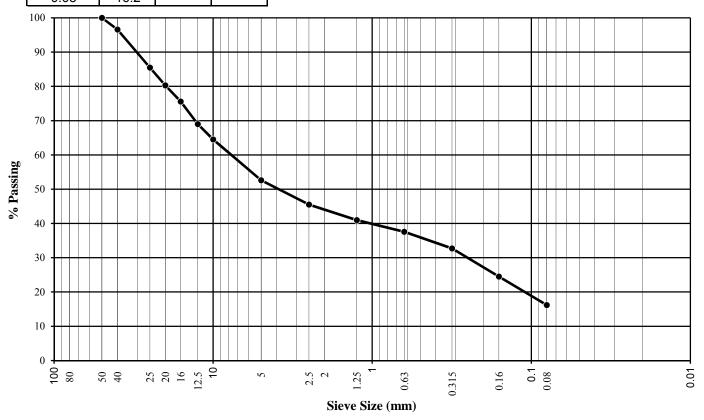
Sieve Size	Percent	Passing b	y Weight
(mm)		Min.	Max.
200			
150		·	·
100			·
80			
50	100.0		
40	96.6		
25	85.5		
20	80.3		
16	75.6		
12.5	69.0		
10	64.5		
5	52.6		
2.5	45.5		
1.25	41.0		
0.63	37.6		
0.315	32.7	·	·
0.16	24.5		
0.08	16.2		

Aggregate Type
Aggregate Source

Sandy GRAVEL, some silt/clay

Classification GM or GC

 $C_C = 0.1$ $C_U = 101.3$


Specification

Comments Gavel 47.4 %

Sand 36.4 % **Silt/Clay** 16.2 %

TH JN02 **Depth** 5.5m

Compare to TP Sample

7505 - 40 Street SE Calgary, Alberta T2C 2H5 Telephone: (403) 236-8880

Aggregate Analysis Report ASTM C-136

Client Mountain Ash Limited Partnership Job No. 099-144-17

Date SampledAug 10/17ByKCDate ReceivedAug 10/17ByKCDate TestedAug 12/17ByBM

Attention Tige Brady

Project John Nugter Property, Gravel

Investigation

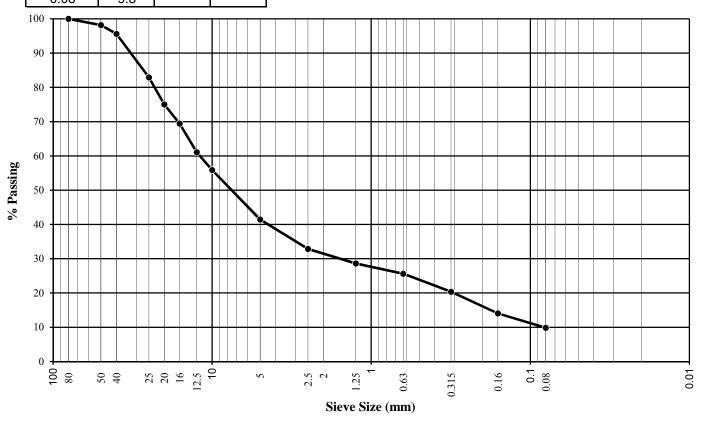
Sieve Size	Percent	Passing b	y Weight
(mm)		Min.	Max.
200			
150			
100			
80	100.0		
50	98.2		
40	95.6		
25	82.9		
20	75.0		
16	69.4		
12.5	61.1		
10	55.9		
5	41.4		
2.5	32.8		
1.25	28.6		
0.63	25.6		
0.315	20.4		
0.16	14.0		
0.08	9.8		

Aggregate Type
Aggregate Source

Sandy GRAVEL trace silt/clay

Classification GW-GM

 $C_C = 2.3$ $C_U = 144.6$


Specification

Comments Gavel 58.6 %

Sand 31.6 % **Silt/Clay** 9.8 %

TH JN03 **Depth** 4.9 to 5.5m

Compare to TP Sample

Attention

7505 - 40 Street SE Calgary, Alberta T2C 2H5 Telephone: (403) 236-8880

Aggregate Analysis Report ASTM C-136

Client Mountain Ash Limited Partnership Job No. 099-144-17

Date Sampled Aug 11/17 Ву KC **Date Received** Aug 11/17 Ву KC **Date Tested** Aug 12/17 BM By

Project John Nugter Property, Gravel

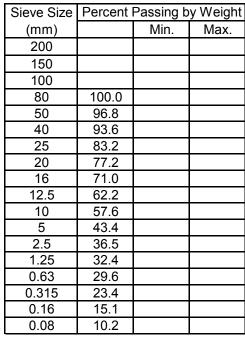
Tige Brady

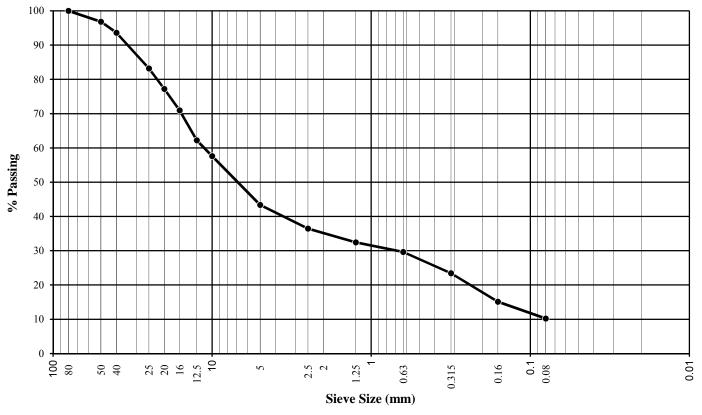
Investigation

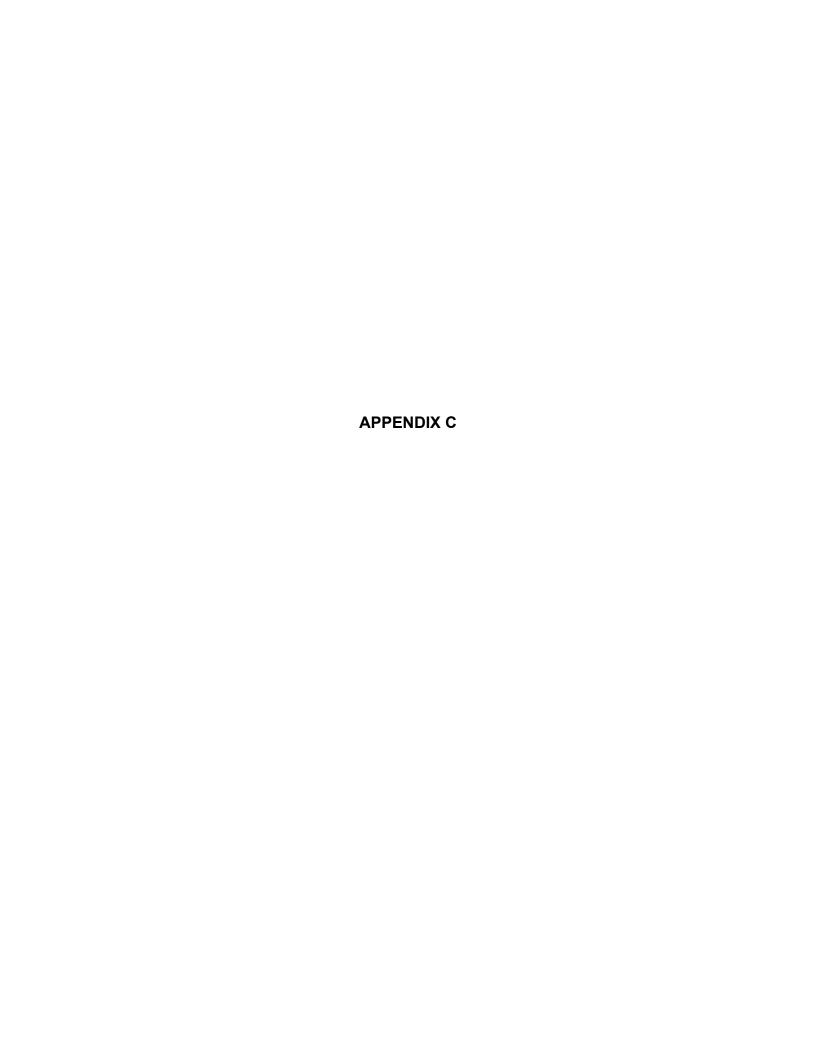
Aggregate Type Sandy GRAVEL some silt/clay

Aggregate Source

Classification GW-GM


> $C^{c}=$ 0.6 C_U= 141.1


Specification


Comments Gavel 56.6 %

Sand 33.2 % Silt/Clay 10.2 %

TH JN04 Depth 18.0m

Attention

7505 - 40 Street SE Calgary, Alberta T2C 2H5 Telephone: (403) 236-8880

Aggregate Analysis Report ASTM C-136

Client Mountain Ash Limited Partnership Job No. 099-144-17

> **Date Sampled** Aug 6/17 Ву KC **Date Received** KC Aug 6/17 Ву **Date Tested** Aug 12/17 Ву BM

Project John Nugter Property, Gravel

Investigation

Tige Brady

Sieve Size	Percent	Passing b	y Weight
()		N/i	Max

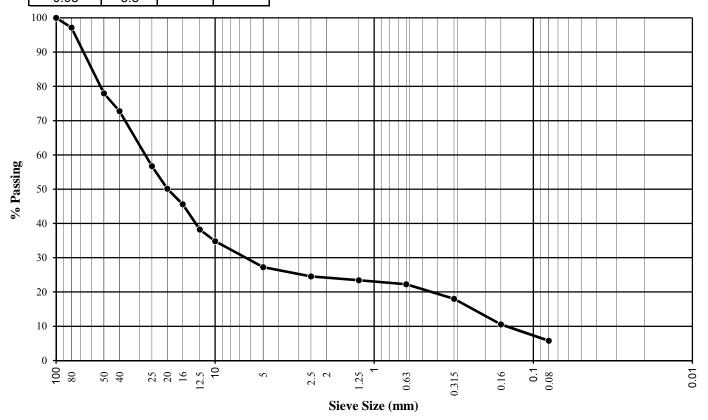
Sieve Size	Percent	Passing b	y Weight
(mm)		Min.	Max.
200			
150			
100	100.0		
80	97.2		
50	78.0		
40	72.8		
25	56.7		
20	50.1		
16	45.6		
12.5	38.2		
10	34.8		
5	27.3		
2.5	24.5		
1.25	23.4		
0.63	22.3		
0.315	18.0		
0.16	10.5		
0.08	5.8		

Aggregate Type Aggregate Source

Sandy GRAVEL trace silt/clay

Classification

 $C_C =$ 10.9 C_U= 185.5


Specification

Comments Gavel 72.7 %

Sand 21.5 % Silt/Clay 5.8 %

TP adj to JN02 4.5 to 5.25m Depth

Compare to TH JN02 Sample

Attention

7505 - 40 Street SE Calgary, Alberta T2C 2H5 Telephone: (403) 236-8880

Aggregate Analysis Report ASTM C-136

Sandy GRAVEL trace silt/clay

Client Job No. 099-144-17 Mountain Ash Limited Partnership

> **Date Sampled** Aug 6/17 Ву KC **Date Received** Aug 6/17 Ву KC **Date Tested** Aug 12/17 By BM

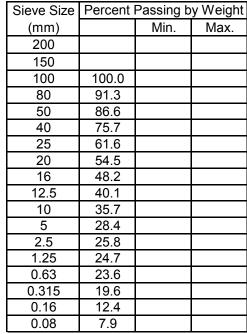
Project John Nugter Property, Gravel

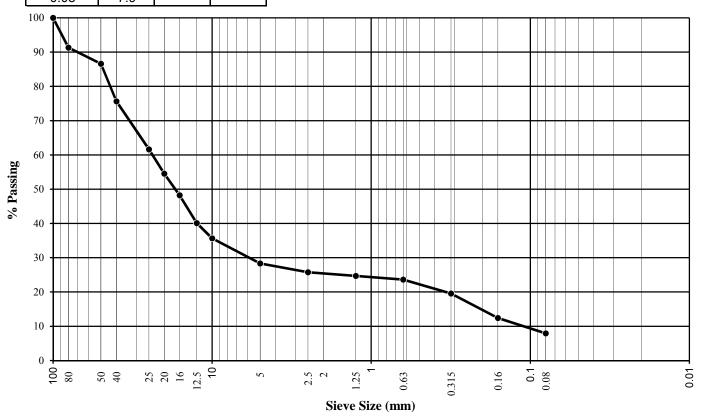
Tige Brady

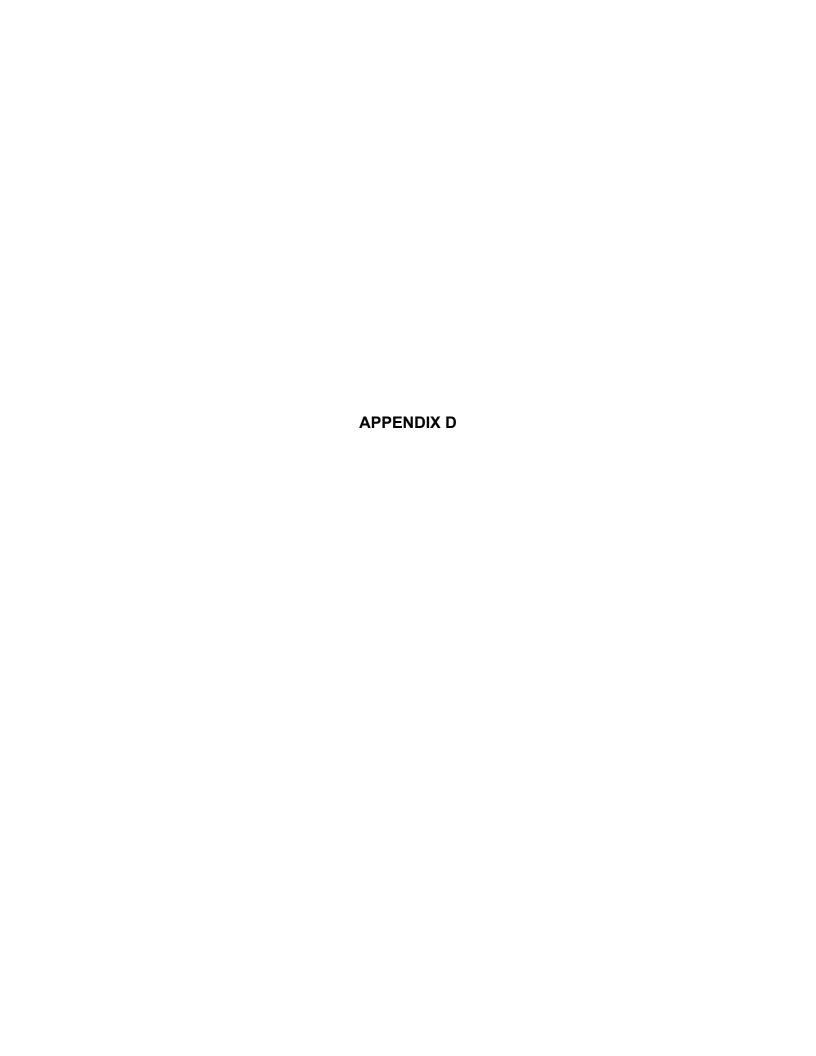
Investigation

Aggregate Type Aggregate Source

Classification	GP	
	$C_{C}=$	13.4
	C _U =	203.9


Specification


Comments Gavel 71.6 %


Sand 20.4 % Silt/Clay 7.9 %

TP adj to JN03 4.5 to 5.25m Depth

Compare to TH JN03 Sample

Estimated Sand/Gravel Volumes

As requested, we submit our sand/gravel calculations for the above noted project, based on the limited test holes advanced to the depth of bedrock, with a Diesel Hammer Rig.

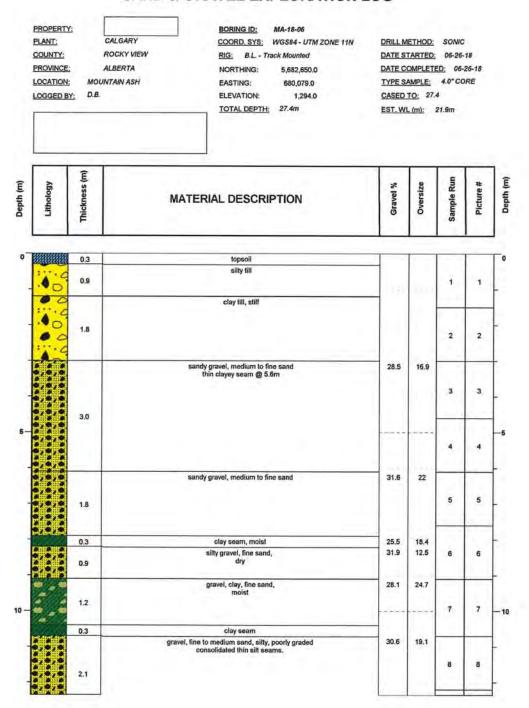
Please refer to the site plan indicating the triangular shaped area used for the sand/gravel volume calculations.

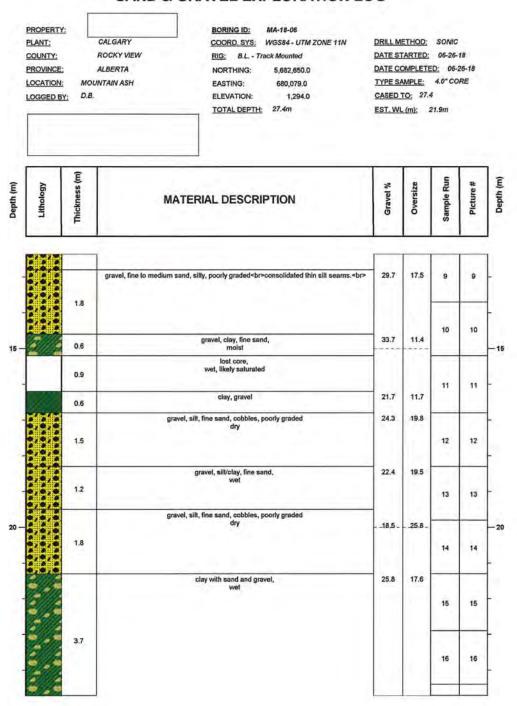
Based on the logs, the thickness of sand/gravel in the test holes are as follows:

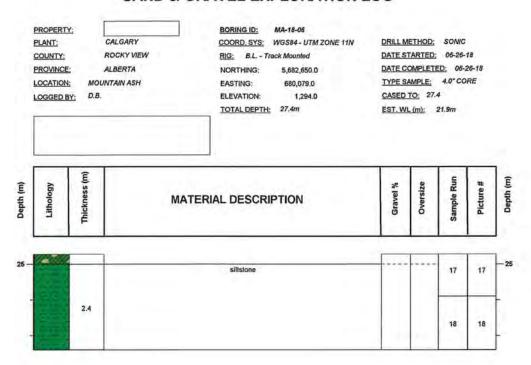
JN01 - 22.1m JN02 - 23.8m JN03 - 7.1m JN04 - 24.2m JN05 - 24.0m

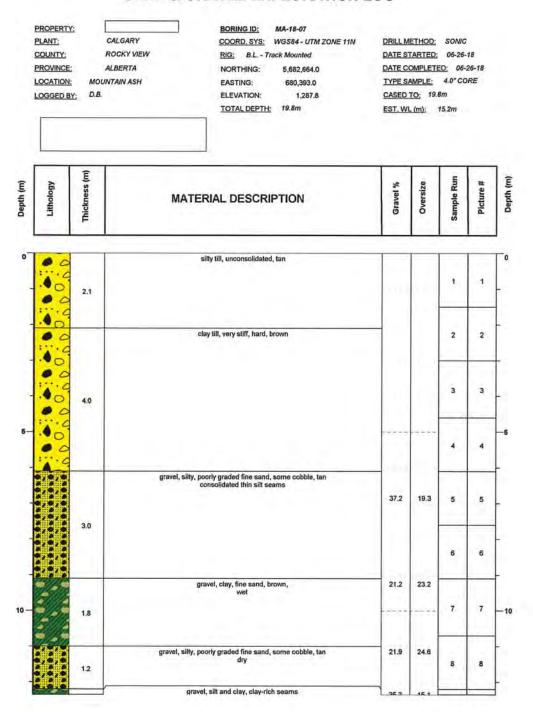
The average depth of sand/gravel is 20.2m

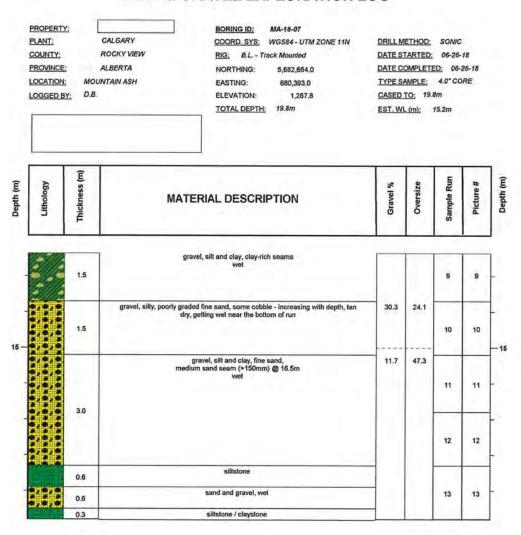
The area of triangle is:

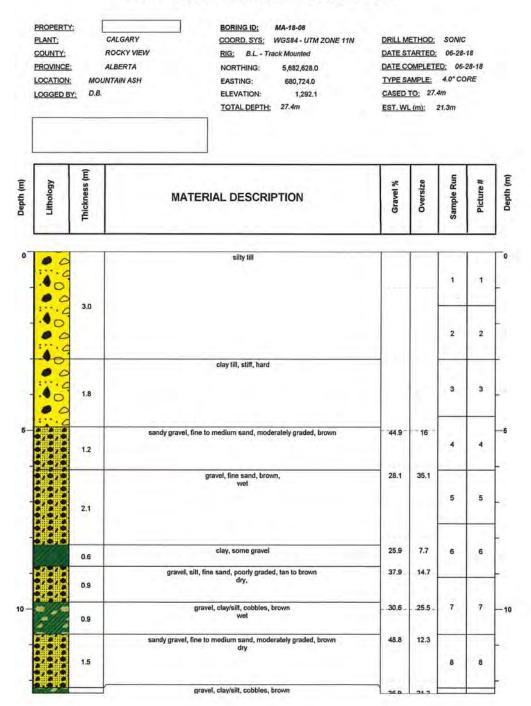

Base of triangle = 660m Height of triangle = 530m

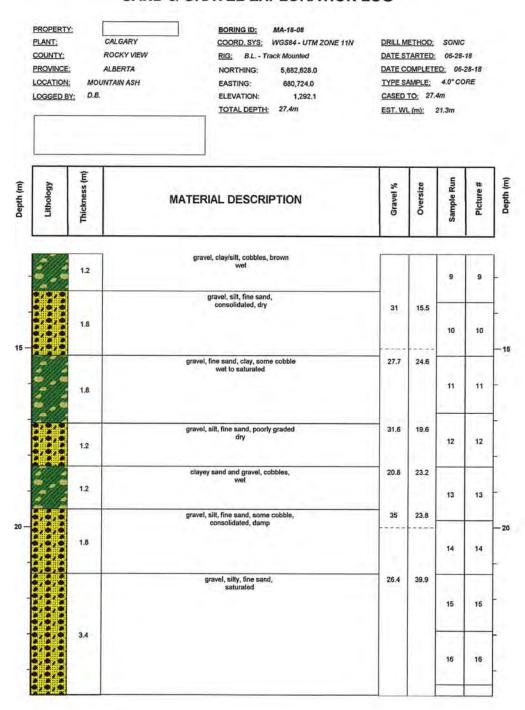

Total area of triangle = $\frac{1}{2}$ x Base x Height

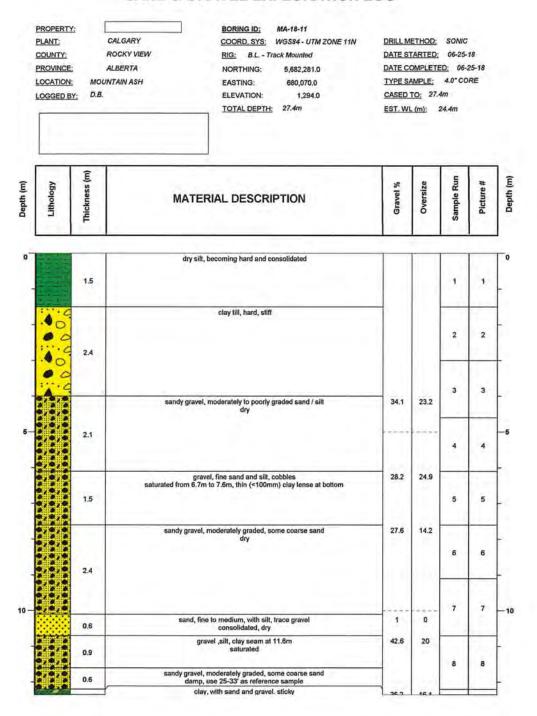

= ½ x 800m x 490m = 174,900 m²

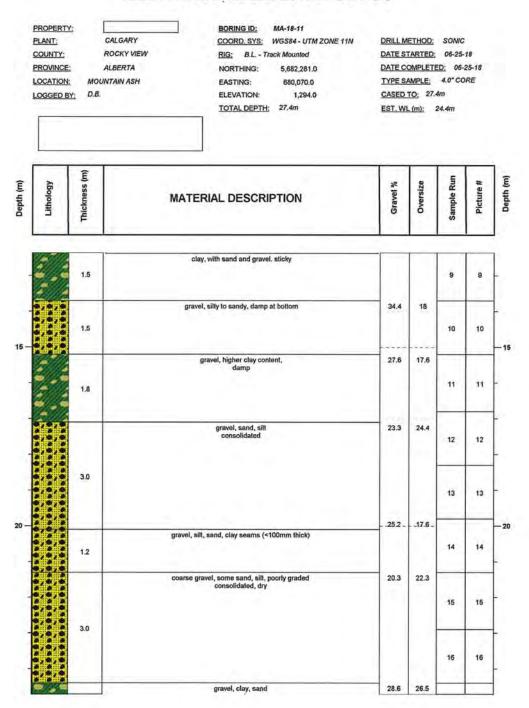

The estimated volume of aggregate is:


Average Depth x Area = Total Volume (m^3) 20.2m x 174,900 m^2 = 353,2980 m^3









PROPE PLANT: COUNT PROVIN LOCATI LOGGE	CY: RINCE: AL	ALGARY OCKY VIEW LBERTA TAIN ASH	COORD. SYS: WG RIG: B.L Track I NORTHING: E EASTING: ELEVATION:	-18-11 S84 - UTM ZONE 11N Mounted ,682,281.0 580,070.0 1,294.0 7.4m	DATE S DATE C TYPE S CASED	ETHOD: TARTED; OMPLETE AMPLE; TO: 27.4	06-25- D: 06- 4.0° CO	18 25-18
Lithology	Thickness (m)	М	ATERIAL DESCRIPT	ON	Gravel %	Oversize	Sample Run	Picture #
	1.2		wet				17	17
	1.8		siltstone				18	18

APPENDIX B SLR Consulting Ltd – Monitoring Well Construction Logs

Hydrogeological Assessment Report
Mountain Ash Limited Partnership Aggregate Operation
NW and SW Section 31, Twp 26, Rge 3 W5M
Rocky View County, Alberta
SLR Project No. 212.06650.00003

	~			CLIENT: Summit Aggregates Resource			LL	LOG	
	SI	_R		PROJECT: Hydrogeological Assessment NW 31-026-3 W5M Alberta	BOREHOLE NO:	MW14	4-1	0 TM COORDIN 568286	Α 69
SLR	CONSULTII	NG (C	ANADA) L		SURFACE ELEVATION:	1293.53 n		680066	6.4
	1				TEST DATA	z	긥		
SAMPLE TYPE	□	ery	ᆔ		1231 5/1/1/	WELL	WATER LEVEL		
, E	SAMPLE ID	Recovery	SOIL TYPE	SOIL DESCRIPTION	■SPT Count	. .	I H	WELL COMPLETION	
SAMPLE T	AMI	% Re	0		♦ % Moisture	/ELI	/ATI	NOTES	
1 –	Ŋ	1%	Ö			≥ ŏ	\$		+
·									+
+								stickup, above ground steel	ŀ
1								ground steel protector	-
o-			12. 18. 12.	Ground Surface TOPSOIL			4		╬
				¬ Clay, some silt, occasional gravel, rootlets, brown, moist,	soft /		Ž		F
				\to firm	0.3		Ž	backfilled with drill	-
				CLAY TILL Sandy, gravelly (fine to coarse grained) clay, light brown,	dny		Ĭ	cuttings	t
1 -	WP1			very hard	٠٠٠y,		Ž		ŀ
	VVFI		$ \downarrow $	•			Ŋ		+
									ŀ
- 2-									-
									ŀ
	•								ļ
]			+						-
3-									1
1									-
]									ŀ
-									t
1						- —			-
-									ŀ
1									
5-						-			-
+									-
1									ŀ
-									1
6-			ЩЩ	CAND AND ODAVE					-
				SAND AND GRAVEL Fine to medium grained sand, fine to coarse grained grav	6.1 el.				1
-	WP2			well graded, light brown to orangey brown, dry, compact v	vith				ŀ
7-				occasional hard, calcified bands	L				F
7									ŀ
+									ŀ
1									-
3-									ŀ
1									F
]								hydrated bentonite	+
+							ĺ	chips	ļ
9-									-
+									ŀ
1									ŀ
0-									-
+									ŀ
1									ŀ
1									-
									-
-									-
+									t
2						[] [-
-									-
+									ļ
]									-
DRI	LLING ME	THO	D:	Becker Hammer Notes:■■ GRA	B SAMPLE			1	_

SLR CONSULTING (CANADA) LT (III) HALL (III) SAMPLE ID CLIENT: Summit Aggregates Resource PROJECT: Hydrogeological Assessment	BC	DREHO	<u>LE</u>	LOG JITM COORDIN	ATE	
SAMPLE TYPE SAMPLE TYPE SAMPLE TYPE SAMPLE TYPE SAMPLE TYPE SOIL TYPE	NW 31-026-3 W5M Alberta	BOREHOLE NO:	MW14	4-1(0 1 TM COORDIN 568286	
WP3 WP3 WP4 WP5	N) LTD. PROJECT No. 203.50065.00001	SURFACE ELEVATION: TEST DATA	1293.53 m		680066	
4- 5- WP3 6- WP4 WP5	SOIL DESCRIPTION	■SPT Count ◆ % Moisture	WELL	WATER LEVEL	WELL COMPLETION NOTES	
9- 	with occasional hard bands Below 15.2 m: Occasional cobbles Below 16.8 m: Wet				50 mm solid PVC pipe GW = 16.40 mbg (2Oct2014)	
WP5					50 mm 010 slot PVC pipe	
	SANDSTONE Fine grained, brown, grey, wet, weak Below 21.6 m: Weathered, clayey, silty, soft		·		bentonite chips	
	End of borehole at 22.3 m Well Completion Details: Screened interval from 16.5 m to 21.0 m below surface Elevation at top of pipe (TOP) = 1294.240 m Groundwater Information: Depth to groundwater from TOP = 17.11 m (2Oct2014)					
DRILLING METHOD: B	Becker Hammer Notes: GRAB SAME	PLE				

		C:			CLIENT: Summit Aggregates Resource	e	BO	JRE	10	LE	LOG	145
		SL	R		PROJECT: Hydrogeological Assessment NW 31-026-3 W5M Alberta		BOREHOLE NO:	MW	/14	1-1	02TM COORDIN 568228	1A1 80
	SLR C	CONSULTIN	G (C/	ANADA) L			SURFACE ELEVATION:	1283.			680791	
\Box							TEST DATA		ž	Ē		T
	SAMPLE TYPE		Recovery	밀					WELL COMPLETION	WATER LEVEL		
<u> </u>	PLE	P.E	900		SOIL DESCRIPTION		■SPT Count		L IPLE	EB	WELL COMPLETION	
DEPIH (m)	SAM	SAMPLE ID	% Re	SOIL TYPE			♦ % Moisture		VEL	٧AT	NOTES	
1-	0)	0)	0.	(0)					>0	>		+
+												ŀ
1											stickup, above ground steel	ŀ
4					Ground Surface						protector	ŀ
0				71 N. 71	TOPSOIL							╁
-				ШШ	Sandy, occasional gravel, dark brown, rootlets, moi	st 0.3					silica sand	t
-				• .	CLAY TILL Silty, sandy clay, some gravel, brown, moist, very ha	ard						-
1-					Only, Sandy day, Some graver, brown, moist, very no	aiu						ŀ
												F
												ŀ
-												-
2-		WP7					- – – – – – – – –				Investment 11 - 5 C	+
1		l									hydrated bentonite chips	ŀ
-												F
3-				$\ \ \ \ $								+
٦]							· — — —	_ :				ŀ
1												-
1												1
4-					SAND	3.96						-
1		WP8			Medium to coarse grained, well graded, grayelly (fir							ŀ
4				500	coarse, rounded), occasional cobble, brown, moist GRAVEL AND SAND	4.57		Q.				İ
ا ۔				600	Well graded, fine to coarse gravel and well graded,			Ģ.				ŀ
5-				000	coarse sand, occasional cobble, rounded, moist							ŀ
-		WP9						Ģ				ŀ
				60				Ģ				ŀ
6-				ÞŽΔ		_						ľ
-				P. C.				QF 2				ŀ
]					SAND AND GRAVEL	6.4					backfilled with drill cuttings	t
					Fine grained, trace medium, trace coarse sand. Fin coarse, rounded gravel, red, moist	e to		Ģ.				ŀ
7-		WP10			3 ,							ŀ
-								Q.				-
1					From 7.6 to 7.9 m: Rounded, medium to coarse gra	ıvel, sandy,		9				ŀ
8-					dry	-						
1								9				ŀ
-								9				ļ
ٔ												-
ء -								10	7 (5			ļ
+											hydrated bentonite chips	-
1											'	ŀ
0-						+					50 mm solid PVC pipe	F
1								:	Ш		Pipe	ŀ
+								-	\blacksquare			-
1					GRAVEL Poorly graded, medium, rounded, sandy, trace silt,	10.7]:	Ħ			-
[WP11		60	coating on gravel, black and dark brown staining							ŀ
1				%Od	Below 11.3 m: Fine to coarse grained gravel, round	led, sandy,						+
1				500	fine, dark brown, moist				\blacksquare			ŀ
2-		WP12							Ħ			F
j				60%								ŀ
				000				[-]			50 mm 010 slot	ļ
_											PVC pipe	Ŧ
-	DRIL	LING MET	THOE	D:	Becker Hammer Notes:	GRAB SAMP	PLE					
	DD''		4 -	Ootob - · ·	1000ED DV: MIL							
	υKIL	L DATE:	1 (October :	2014 LOGGED BY: MH				:	She	et 1 of 2	

		SL	R			PROJECT: Summit Aggregat Hydrogeological NW 31-026-3 W5M	Assessment	BOREHOLE NO:	M۱	N14	4-1	LOG 02 ^{TM COORDIN} 56822	
DEPIH (m)	SAMPLE TYPE S	NITLU RIND SAMBLE ID	% Recovery	SOIL TYPE	LTD.	PROJECT No. 203.50065.00001 SOIL DESCRIPTION		SURFACE ELEVATION: TEST DATA SPT Count	1283	WELL COMPLETION	WATER LEVEL	68079: WELL COMPLETION	1.6
3 DEP		SAM	% B	600	GR	AVEL AND SAND	12.8			WEL CON	WAT	NOTES	i
- - 4-		WP13			Fine	e to medium, trace coarse, rounde dium, trace coarse sand, occasion ow 13.7 m: Increasing cobble	d gravel. Fine, trace						-1
- - 5-					SAN	NDSTONE	14.93					silica sand	
6-		WP14 WP15			•	ak, fine grained, silty, dry m 15.5 to 15.8 m: Higher clay and	silt					bentonite chips	· - - -
- -					Bec	coming more competent below 15.	8 m						-
					Screen	eened interval from 10.4 m to 14.9 vation at top of pipe (TOP) = 1284	0 m below surface .060 m						
	DRIL	LING MET	THOI): :	Becker	Hammer	Notes: GRAB SAM	 PLE					
	DRIL	L DATE:	1 (October	2014	LOGGED BY: MH					She	et 2 of 2	

		CI			CLIENT: Summit Aggregates Resource PROJECT: Hydrogeological Assessment	D(OREHO		LUM COODDIN	<u> </u>
		SL	K		NW 31-026-3 W5M Alberta	BOREHOLE NO:			103 ^{TM COORDIN} 568310	
		ONSULTIN	G (CA	NADA) L	TD. PROJECT No. 203.50065.00001	SURFACE ELEVATION:	1299.81 n	1	6807	739
	SAMPLE TYPE	₽	ary	, щ		TEST DATA		WATER LEVEL		
	PLE	PLE	Recovery	₹	SOIL DESCRIPTION	■SPT Count		ER L	WELL COMPLETION	
	SAM	SAMPLE ID	% Re	SOIL TYPE		◆ % Moisture	WELL	WAT	NOTES	
Ŧ										ŧ
									stickup, above ground steel	ŀ
]					Ground Surface				protector	F
+				7118 71	TOPSOIL Silty and clay, trace sand, rootlets, dark brown, moist				silica sand	Ŧ
1				<u>// </u>					Silica Saria	ŀ
1				 	CLAY TILL 0.61 Silty, sandy clay, trace rounded gravel, grey, moist, very hard,					ŀ
-					softer below 2.4 m					ŀ
1										ļ
2-										ŀ
1										-
1									hydrated bentonite chips	•
3-		WP16								-
1										-
1										-
-							- — - ·			-
+										-
-				 				Ž Ž		ŀ
j-								Ž		
1								Ž		-
										ŀ
5-				• -				g V		F
1					Below 6.4 m: Brown		K-71 K-2	n		ŀ
,							🖁 🖁	Ž		ŀ
					SAND AND GRAVEL 7.01 Very fine, trace coarse sand. Medium to coarse grained,			Š		-
-					rounded gravel. Some silt, red/brown, dry			g V		ŀ
3-								8		ŀ
1								3		-
=				000	GRAVEL AND SAND 8.53 Fine to medium, (trace coarse) gravel. Poorly graded, very			Ž V		-
,					fine sand, brown, moist			Ď Ž		-
+								8		-
1								3		ŀ
) -								Ž V		ŀ
1		WP17						Ž		-
1					Below 10.7 m: Increasing gravel			Š		-
-				°0 (3		F
1								Š		
2								Ž		
1				0.0				8		-
-								3		-
1 D	↓ RILI	LING MET	L HOE	7	Becker Hammer Notes:■■ GRAB SAM	l IPLE	<u> </u>			_

		CI			CLIENT: Summit Aggregates Resource PROJECT: Hydrogeological Assessment	В	JKE	HÜ	LE	E LOG	ידעו
SI	ВС	5L CONSULTIN	G (C	ANADA) I	NW 31-026-3 W5M Alberta	BOREHOLE NO: SURFACE ELEVATION:		V 1 4 9.81 n		103 TM COORDIN 56831 6807	
						TEST DATA			_		T
- 1	SAMPLE TYPE	SAMPLEID	% Recovery	SOIL TYPE	SOIL DESCRIPTION	■SPT Count ◆ % Moisture		WELL COMPLETION	WATER LEVEL	WELL COMPLETION NOTES	
3-					Below 12.8 m: Increasing gravel, some cobble					50 mm solid PVC pipe	-
5-					Below 14.0 m: Decreasing gravel, no cobble						
6-											-
7-					Below 16.8 m: Decreasing gravel						-
8-											-
9-		WP18			SAND AND GRAVEL Poorly graded, very fine sand. Medium with trace fine and trace coarse gravel. Occasional cobble, red/brown, moist						-
10-					nace coarse graves. Cookasional cossile, reductionin, moist						
11 -					Below 21.3 m: Increasing gravel						-
2-											-
44-					Below 23.2 m: 0.08 m clay lens				▼	GW = 23.49 mbg (2Oct2014)	-
25-										50 mm 010 slot PVC pipe	-
6-		WP19			Below 25.3 m: Wet gravel, very angular						
- - D	RIL	LING MET	ГНОІ	D:	Becker Hammer Notes:■■ GRAB SAM	 					-
		LING MET				 PLE					上

					CLIENT: Summit Aggregates Resource		BC	DRE	HO	LE	LOG
SL	R C	SL ONSULTING	R G (CA	NADA) L	PROJECT: Hydrogeological Assessment NW 31-026-3 W5M Alberta PROJECT No. 203.50065.00001		BOREHOLE NO: SURFACE ELEVATION:		V14 .81 m		03 COORDINA 568310 68073
ļ	PE						TEST DATA		N	Æ	
	<u> </u>		very	/PE	COIL DESCRIPTION		■CDT Count		ĒŢ	E	WELL
	SAMPLE TYPE	SAMPLE ID	% Recovery	SOIL TYPE	SOIL DESCRIPTION		■SPT Count ◆ % Moisture		WELL	WATER LEVEL	WELL COMPLETION NOTES
-											silica sand
		WP20 WP21		× × ×	WEATHERED SILTSTONE	27.4					hydrated bentonite chips
T		*** 2			Clay and silt, some sand, grey with red striations, moi Below 27.7 m: Siltstone, grey, dry	st 27.7∫					V. III
					End of borehole at 27.7 m	,					
					Well Completion Details: Screened interval from 22.6 m to 27.1 m below surface Elevation at top of pipe (TOP) = 1300.720 m	ce					
					Groundwater Information: Depth to groundwater from TOP = 24.40 m (2Oct201)	4)					
D	RILI	LING MET	HOE):	Becker Hammer Notes:	GRAB SAM	PLE				
D	RILL	L DATE:	1 (October	2014 LOGGED BY: MH				5	She	et 3 of 3

	SI	P		CLIENT: Mountain Ash Limited Partnership PROJECT: Proposed Summit Pit		OREH NANA	<u>10</u> /1() <u>LE</u> 0_1	LOG 08 ^{UTM COORDIN} 6803	JA.
SLR	CONSULTIN	G (CAN	ADA) LTD	NW 31-026-03 W5M Cochrane, AB PROJECT No. 212.06650.00003	BOREHOLE NO: SURFACE ELEVATION:	1293.6			5682	
					TEST DATA			Æ		
DEPTH (m) SAMPLE TYPE	SAMPLE ID	Recovery	TYPE	SOIL DESCRIPTION	■ SPT Count		WELL COMPLETION	WATER LEVEL	WELL	
DEPTH (m) SAMPLE T	MPL	Rec	SOIL T	COLE BESONII TION	◆ % Moisture		ELL MPI	ATE	COMPLETION NOTES	
3 8	Š	%	S		// Worker	1	≶ၓ	🔰		_
]										-
-									above ground steel	
-									protector	
0-				Ground Surface CLAY TILL						+
1				Fine trace gravel, dark grey brown, minor sample recovery, dry						-
-										
1-										
-										
				@ 1.5 m: Some fine to coarse gravel						
-				@ 1.5 m. Some line to coarse graver					hydrated bentonite chips	
2-					 				chips	
]										
3-										
-										
-				SAND AND GRAVEL 3.35						
1				Fine to coarse sand and gravel, brown, dry		25	ž Ž	ź		
4						. — — 🗜		Ž		
-								Ž Ž		
-		:						X		
-		0		SANDY GRAVEL 4.57 Medium to coarse gravel, coarse sand, brown, dry				<u>A</u>		
5-				Medium to coarse gravel, coarse sand, brown, dry				3		
_		1 10	[0/]							
-		Į						2		
-		0	0,7					A		
								Z Z		
6-		0								
-		P	20)							
-			No.]			K.		Z A A		
_ {								Ž S		
7-			C°7					PK C		
]			00				į			
-			0.9							
+		6	30			K.		Z Z Z		
8-			D°7			- — - 13 17		A		
]		0						Ž		
			()°					A 3 3		
		0	Šď					Š		
9-	LI INO MET			ol0dov				2		_
UKI	LLING METI	HUD:	Soni	c/Odex Notes: ■ GRAB SAM	VIPLE					
DDII	LL DATE:	June	3, 2019	LOGGED BY: NY				She	eet 1 of 4	

		CI	D		PROJECT: Proposed Sum	imited Partnership mit Pit	В	OREH	OLE	LOG OOUTM COORDIN	IAT
	L B G	SL	LI	NADO	NW 31-026-03 \	N5M Cochrane, AB	BOREHOLE NO:	1293.64		08 ^{UTM COORDIN} 6803	
	- 1	ONSULTI	NG (CA	NADA) L	TD. PROJECT No. 212.00030.000	<u> </u>	SURFACE ELEVATION: TEST DATA		$\overline{}$	3002	T
Ē	SAMPLE TYPE	E D	wery	TYPE	OOU DECORUTE	ON		WELL	COMPLETION WATER LEVEL	WELL	
DEPTH (m)	MPL	SAMPLE ID	Recovery	SOIL T	SOIL DESCRIPTION	JIN	■ SPT Count ◆ % Moisture		JMPL \TER	COMPLETION NOTES	
占	SA	SA	%	8			- /o ivioisture	M M	ರ ≱	110.20	\downarrow
					GRAVELLY SAND Fine to coarse sand and gravel, yello	9.14 ow brown, dry			OKOKOROKOKOKOKOKOKOKOKOKOKOKOKOKOKOKOKO		-
-					3 , 3	• •		20	20		
-								22			-
0-							<u> </u>				-
1											ŀ
-											-
-											-
1-											-
											ŀ
]											
-											Į
2-									22		ŀ
1											ŀ
]											ŀ
-											
3-											ļ
1								,	22		-
											ŀ
]											İ
4-											-
+								NG.			-
-								,			
]											ŀ
5-											
+											-
1								K.			-
1									XX .		ŀ
6-							L				t
-										slough and backfill	
+									10		-
1								NO.	18.CS		-
7-									NAC.		ŀ
+											-
+											-
+											ŀ
8-									14.CT		}
									NAC.		ļ
-											-
+											-
9-									NOKONONOKONOKONOKONOKONOKONOKONOKONOKON		-
) RILL	ING ME	THOD	Sc	onic/Odex	Notes: GRAB SAM			Ø		_
				6.5-							
D	RILL	DATE:	Ju	ne 3, 2019	9 LOGGED BY: NY				She	et 2 of 4	

		CI			CLIENT: Mountain Ash Li PROJECT: Proposed Sumn	mited Partnership	В	DREH	<u>)LE</u>	LOG	117
		SL	K		NW 31-026-03 W	/5M Cochrane, AB	BOREHOLE NO:			08 ^{UTM COORDIN} 680:	
		ONSULTIN	G (CA	NADA) L		3	SURFACE ELEVATION:	1293.64	$\overline{}$	5682	182
_	SAMPLE TYPE	Ω	2	ш			TEST DATA	WELL	WATER LEVEL		
DEP I II (III)	H	JE I	cove	LΣ	SOIL DESCRIPTIO	N	■ SPT Count] [WELL COMPLETION	
	SAME	SAMPLE ID	% Recovery	SOIL TYPE			◆ % Moisture	WELL	WATE	NOTES	
-	-				0 40 0 mm Trans all transacratic 00 7			Ž.			+
-					@ 19.2 m: Trace silt present to 20.7	m					
-											
٦											-
0-											ŀ
-								NO.			
-											
1-											-
-											
-								I I I I I I I I I I I I I I I I I I I			
-											
2-											
1											
-											
-								Ŋ.			
3-											
]											
_											
-											
24-											
]											
-											
-											
:5-											
-											
6-											
]								2			
4											
-					SAND	26.8					
7-					Some gravel, brown, fine to coarse sa	and and gravel, dry	´				
-											
-											
8-				::::i							}
]											
-											
9-) 	INIO NATE		<u> </u>	ia/Oday	N	<u> </u>	· <u> </u>			
	JKILL	ING MET	HUD:	S0	iic/Odex	Notes: GRAB SA	AMPLE				
_		DATE:	lin	ne 3, 2019	LOGGED BY: NY				Shee	et 3 of 4	

	CI			CLIENT: Mountain Ash Lin PROJECT: Proposed Summi	nited Partnership	BC	DKEH)LE	E LOG	IATE
	SL			NW 31-026-03 W	5M Cochrane, AB	BOREHOLE NO:			108 ^{UTM COORDIN} 6803	
	ONSULTING	G (CAI	NADA) LTI	project No. 212.06650.00003		SURFACE ELEVATION:	1293.64	\neg	5682	
SAMPLE TYPE	SAMPLE ID	% Recovery	SOIL TYPE	SOIL DESCRIPTION	ı	TEST DATA ■ SPT Count ◆ % Moisture	WELL	WATER LEVEL	WELL COMPLETION NOTES	
90-	03							<u> </u>	GW = 1263.34 m	-
11 -			· · · · · · · · · · · · · · · · · · ·	BEDROCK Siltstone, grey, dry	30.48		· — — · · · · · · · · · · · · · · · · ·		filter pack sand	-
32-			× × × × × × × × × × × × × × × × × × ×							- - - -
33-			× × × × × × × × × × × × × × × × × × ×				. — — ·			-
35-			^						bentonite pellets	-
- - - - -			× × × × × × × × × × × × × × × × × × ×							- - -
				End of borehole at 36.6 m	36.6					
DDILLI	ING METH	HOD:	Son	ic/Odex	Notes: GRAB SAMP	1 F				_
Litziiii		. 00.	5011		INUICO. I UNAD JAIVIP					

		CI	D		CLIENT: Mountain Ash Limited Partnership PROJECT: Proposed Summit Pit	ВС)REF		<u>_</u> E	LOG 09 ^{UTM COORDIN} 56818	IAT
٥.	D.C.C	JL	K	IADA: 13	NW 31-026-03 W5M Cochrane, AB	BOREHOLE NO: SURFACE ELEVATION:	1271.6		-1	56818	
		NSULTING) (CA	NAUA) L	D. FROJECTINO. 214.00030.00003	TEST DATA			<u>—</u>	0000	
	SAMPLE TYPE	E ID	very	/PE	OOU DECODIDATION			COMPLETION	WATER LEVEL	WELL	
	MP	SAMPLE ID	% Recovery	SOIL TYPE	SOIL DESCRIPTION	■SPT Count ◆ % Moisture	-	MPL	\TER	COMPLETION NOTES	
3 5	S S	SA	%	SC		70 Worsture	×	8	<u>*</u>	110120	+
-								-1			
-										above ground steel	Į
					Ground Surface					protector	
0				•	CLAY TILL Trace fine gravel, dark brown, moist						7
-					Trace into grave, can alem, most						Ī
1											
1-						L					-
-											
-											
					@ 1.5 m: Some fine gravel					hydrated bentonite	
2-										chips	
-											
-											
3-						 					
-											
-					SAND AND GRAVEL Coarse sand, fine to coarse gravel, grey brown, dry	5					
4-					222.22 Sairs, into to could grave, grey brown, dry						
1								SACACACACA			
-								3823			
+											
5-								200			
-								MON			
+					GRAVELLY SAND 5.49 Fine to coarse gravel and sand, grey brown, dry			3875			
6					i ino to course graver and same, grey brown, try			NO.			
6-								X23			
-								3825			
+											
7-						L		NOW N		slough and backfill	
-								MON		2.5 2 340	
+								NA NA			
1											
8-						 	\$	100			
+								1000			-
1											-
]								NOVOVOVOVOVOVOVOVOVOVOVOVOVOVOVOVOVOVOV			-
9-						<u> </u>		NO.			
DI	RILLI	NG METH	HOD:	OI	EX Air Rotary Drilling Notes:						
					LOGGED BY: NY						

		CI			CLIENT: Mountain Ash Lin	nited Partnership	В	OREHO)LE	LOG	
_		SL	.K		PROJECT: Proposed Summi NW 31-026-03 W5	M Cochrane, AB	BOREHOLE NO:			09UTM COORDIN 56818	
- 1		ONSULTIN	IG (CA	NADA) L	TD. PROJECT No. 212.06650.00003		SURFACE ELEVATION:	1271.68		6806	
Ê	SAMPLE TYPE	₽	ery				TEST DATA	WELL	WATER LEVEL		
	APLE	SAMPLE ID	% Recovery	SOIL TYPE	SOIL DESCRIPTION		■SPT Count	-	TER.	WELL COMPLETION	
j	SAN	SAN	%	los .			◆ % Moisture		\$ \$	NOTES	i
1											ŀ
-											-1
1									2		'
0-											-
]											-
-											Ĺ
-											-
1-								·!:			ŀ
-											ŀ
1				٩٣٠	SANDY GRAVEL	11.58					Į.
٦				50°	Fine to coarse gravel and sand, grey b	rown, dry					-
2-										filter pack sand GW = 1259.36 m	-
-				00						(5June2019)	
-											ŀ
3-								::::			ŀ
_				[0,0]							ŀ
-											-
]											-
4-					DEDDOOK	44.00					
1					BEDROCK Could not determine lithology with mini	14.02 mal returns					-
]											-
-											ľ
5-								- — -		bentonite pellets	-
1											ŀ
-											L
\dashv	\dashv		\vdash	Y///>	End of borehole at 15.8 m	15.8					Ŧ
					Groundwater Information: Depth to groundwater from TOP = 12.3	32 m (5June2019)					
					,	(,					
					OFVA: D. I. D. III	Taxa					
	JRILL	LING MET	HOD:	OI	DEX Air Rotary Drilling	Notes:					
	ORILL	DATE:	Jur	ne 4, 201	9 LOGGED BY: NY				She	et 2 of 2	

	CI	D		CLIENT: Mountain Ash Lim PROJECT: Proposed Summi	t Pit		<u> </u>	/10	1 <u>L</u> E	LOG 10 ^{UTM COORDIN} 56820	JAT
SLE	R CONSULTIN	IG (CAN	ΙΔΠΔ) Ι Τ	NW 31-026-03 W5 D. PROJECT No. 212.06650.00003	M Cochrane, AB	BOREHOLE NO: SURFACE ELEVATION:	1 VIV 1291.			1U 56820	
			INDICATE I	5. 11100E01110. E1E1000010000		TEST DATA			$\overline{}$		T
DEPTH (M)	SAMPLE ID	Recovery	SOIL TYPE	SOIL DESCRIPTION		■SPT Count		WELL COMPLETION	WATER LEVEL	WELL	
7 M	I WILL	Rec	1	GOIL DEGONIT HON		◆ % Moisture		ELL OMPI	ATEF	COMPLETION NOTES	
3 0	8	%) N			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		≶ၓ [🔰		+
-								Н			ŀ
-										above ground steel protector	
0				Ground Surface	pe					protector	
٦				CLAY TILL Trace gravel, dark brown, moist							-
-				J							
1											
1-						L					-
.			 								ŀ
-											-
1											
2-											
-			 •								
-											•
1											
3-											
_											
-				SAND AND GRAVEL	3.35	-					
1				Fine to coarse sand and gravel, yellow	brown, dry						
4-											
`		:									
-											
1				GRAVELLY SAND Fine to coarse sand and gravel, reddish	4.57						
5-		[:		Fine to coarse sand and graver, reduisi	i brown, dry						
1											
-											ŀ
1				@ 5.5 m: Yellow brown to 11.6 m						hydrated bentonite chips	
6-											
1											
-											
1											
7-						L					}
-											ŀ
-											-
1											
8-						L					-
-		:									
+											
1											
9-						L					-
		HOD:	OD	EX Air Rotary Drilling	Notes: GRAB SAM	l IPLE					_
							- 1				

	CI				CLIENT: Mountain	Ash Limited Partners	ship	В	DREH	10	LE	LOG	107
	SL	.K			NW 31-026	Summit Pit 6-03 W5M Cochrane,	AB	BOREHOLE NO:				10 ^{UTM COORDIN} 56820	
	CONSULTIN	NG (C	ANADA) L	TD.	PROJECT No. 212.06650	.00003		SURFACE ELEVATION:	1291.1			6807	
SAMPLE TYPE		ery	Й					TEST DATA		WELL	WATER LEVEL		
SAMPLE T	SAMPLE ID	% Recovery	SOIL TYPE		SOIL DESCR	RIPTION		■ SPT Count	-	r. ÆLE	띪	WELL COMPLETION	
SAN	SAN	%	SOI					◆ % Moisture	į	₩ <u></u> 8	WA.	NOTES	
]				@9	0.1 m: Clay layer, dark brow	vn, moist to 10.1 m							-
1													-
-													ŀ
0-													
													-
-													-
-													ŀ
1-													L
-													-
-			PÁ.	GRA	AVEL AND SAND		11.58						-
,			000	Fine	e to coarse sand and grave	I, yellow brown, dry							[
2-													ŀ
-			00						X. X.				-
1													
3-			200						8				-
			600										-
-													
1			000										-
4-			%0 Q						\$				-
-			000										
1			600										-
]			60										-
5-													ŀ
-			P 1						V.C				
			600										-
-			50										ŀ
6-			000										ļ
]													-
-			$P \sim 10^{-1}$										ŀ
-													ŀ
7-			100 1										_
-			[00]										-
-													-
,			60°										Ī
8-			50										_
-			000										-
-													ļ
9-													-
	LLING MET	 THOD		DEX Air	Rotary Drilling	Notes:	GRAB SAM	PLE	<u></u>	1 6	1		L
		ı.											
υKl	ILL DATE:	JU	ne 4, 201	ਤ	LOGGED BY: NY						Shee	et 2 of 4	

	CI			CLIENT: Mountain Ash Lim PROJECT: Proposed Summit	ited Partnership	ВС	DREH	OLI	E LOG	ΝΔΤ
	SL	-K		NW 31-026-03 W5	M Cochrane, AB	BOREHOLE NO:			110 ^{UTM COORDIN} 5682	
	CONSULTIN	IG (CAI	NADA) LTD	PROJECT No. 212.06650.00003		SURFACE ELEVATION:	1291.14		680	0788
SAMPLE TYPE	₽	ery	щ			TEST DATA	WELL	COMPLETION WATER LEVEL		
SAMPLE T	SAMPLE ID	% Recovery	SOIL TYPE	SOIL DESCRIPTION		■ SPT Count	بـ ا	PLE ER I	WELL COMPLETION	
SAN	SAN					◆ % Moisture	WEL	5 §	NOTES	
			000				ir ir		slough and backfill	Ţ
]										-
]										-
0-			00							-
-			.0°							-
1			00				20	V		İ
1			$\Gamma_0 \cap \Lambda_a$							
1-			00	@ 20.7 m: Grey - brown to 29.3 m						
']										-
4			50							ŀ
-										ŀ
1			100				j.			İ
2-			.0°					200		
]			00							-
-							Ĭ			ŀ
-			00							ŀ
3-						 				ŀ
1			00							
]								M23		
]			00							-
4-								KA		-
-			20 C							ŀ
1										Ī
1			200							
5-										
5		1 1	~ N 1				70	M		
-		1 1	° (°)							ŀ
4										ŀ
+										
6-			0 0							
]			600							}
-			000					NO.		
-								····KOKOKOKOKOKOKOKOKOKOKOKOKO		ŀ
7-			200			 	 	X		-
+			C°O;							
1							 			-
]		1 1	; D; d					<u> </u> :		-
8-			200				:[<u></u>]:		ŀ
-			°0°/					<u>[:]</u>		ŀ
+			20 C					∄ :		ŀ
+									7	ļ
1			000					$ \cdot ^{\sum}$	GW = 1262.29 m (5June2019)	
9-	LINGMET	1100	$\Gamma \circ \Lambda$	Y Air Patany Drilling	Notes: ODAD CAA	ADI E		1::		
DKIL	LING MET	טטרו:	ODE	X Air Rotary Drilling	Notes: GRAB SAM	/IPLE				
DRII	L DATE:	Jun	e 4, 2019	LOGGED BY: NY				Sh	eet 3 of 4	

		CI	PROJECT: Proposed Sum NW 31-026-03 NW 31-026	mited Partnership	ВС	DREH	<u>JL</u>	E L(JTM COOPDIA	NATI		
		<u>SL</u>	K		NW 31-026-03 W	/5M Cochrane, AB	BOREHOLE NO:			110	JTM COORDIN 56820	
- 1		ONSULTING	G (CA	NADA) LTD.	PROJECT No. 212.06650.0000	3	SURFACE ELEVATION:	1291.14	\neg	_ _	680	1788
,	SAMPLE TYPE	₽	ery	핃			TEST DATA	WELL	<u></u>	WAIEK LEVEL		
,	APLE	1PLE	Secov	LT	SOIL DESCRIPTIO	N	SPT Count	-	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	<u> </u>	WELL OMPLETION	
i	SAN	SAN	%				◆ % Moisture	WE	3 3	X	NOTES	
1				\ \ \ \ \ \	EDROCK	29.3						-
4				× × × × = 5	iltstone, grey, dry			i:E				ŀ
+				× × × × × ×				i i				F
)-				× × × ×				·		filter	pack sand	
1				X X X								
]				× × × × × ×								-
-				\times \times \times								ŀ
1-				×××				·{:[
1				× × × × × × × × × × × × × × × × × × ×								
]				× × × × × ×								-
-				\times \times \times								-
2-				× × × × × ×				<u> </u> :[ŀ
-				× × × × × ×								
]				XXX								-
-				× × × × × ×						I	2 0 1	-
;-				× × × × × × × × × × × × × × × × × × ×						bent	onite pellets	ŀ
					nd of borehole at 33.2 m	33.2						
					Groundwater Information: Depth to groundwater from TOP = 28	3.85 m (5June2019)						
	DRILI	ING METH	HOD:	ODEX	Air Rotary Drilling	Notes: GRAB SAM	PLE					
-	J. (ILL											

APPENDIX C Alberta Water Well Records

Hydrogeological Assessment Report
Mountain Ash Limited Partnership Aggregate Operation
NW and SW Section 31, Twp 26, Rge 3 W5M
Rocky View County, Alberta
SLR Project No. 212.06650.00003

Reconnaissance Report

View in Imperial

Export to Excel

Groundwater Wells

Please click the water Well ID to generate the Water Well Drilling Report.

GIC Well	LSD	SEC	TWP	RGE	М	DRILLING COMPANY	DATE COMPLETED	DEPTH (m)	TYPE OF WORK	USE	СНМ	LT	PT	WELL OWNER	STATIC LEVEL (m)	TEST RATE (L/min)	SC_DIA (cm)
350194	SW	31	26	3	5	LOU'S WATER WELL DRILLING	1990-03-09	35.05	New Well	Domestic		9		DAVIDSON, D.W.	15.24	54.55	14.12
<u>360164</u>	SE	6	27	3	5	AERO DRILLING & CONSULTING LTD.	1991-10-08	73.15	New Well	Domestic		10		BARGETZI, ERNIE	33.53	136.38	14.12
387449	NE	36	26	4	5	PARSONS DRLG	1962-08-10	33.83	New Well	Unknown		9		BRISTOW, C.R.	21.95	72.74	0.00
390998	SE	6	27	3	5	ALBERTA SOUTHERN EXPLORATION DRILLING LTD.	1987-02-11	65.53	New Well	Domestic & Stock		11		STRANGE, R.	45.72	36.37	16.84
390999	SE	6	27	3	5	ALBERTA SOUTHERN EXPLORATION DRILLING LTD.	1987-11-19	73.15	New Well	Stock		15		STRANGE, R.	39.62	45.46	16.84
<u>391000</u>	4	6	27	3	5	DIVERSIFIED DRILLING & EXPLORATION CO.	1984-11-07	40.23	New Well	Domestic & Stock	<u>1</u>	7		CIRCLE J RANCHES	28.96	68.19	13.97
<u>391598</u>	NW	31	26	3	5	PARSONS DRILLING		39.62	New Well	Domestic & Stock				MURRAY, R.J.			17.78
391599	NE	31	26	3	5	KRIEGER DRILLING LTD.		49.38	New Well- Decommissioned	Investigatio n		14		PARKER, G.L.	0.00		0.00
391600	NE	31	26	3	5	KRIEGER DRILLING LTD.	1981-10-14	27.43	New Well- Decommissioned	Domestic		9		PARKER, G.L.			0.00
<u>395786</u>	NE	31	26	3	5	PARSONS DRILLING	1981-11-19	62.48	New Well	Domestic & Stock		21		PARKER, G.L.	48.77	68.19	17.78
<u>395793</u>	NE	31	26	3	5	UNKNOWN DRILLER		62.48	Chemistry	Domestic				KIRK, S.			0.00
<u>494773</u>	NE	36	26	4	5	ALKEN BASIN DRILLING LTD.	1999-11-16	30.48	New Well	Stock		4	9	GOETJEN, MORRIE	22.25	63.65	13.97
498400	NW	31	26	3	5	MEDICINE VALLEY WATER WELLS	2001-05-14	74.68	New Well	Domestic		14	24	GIBBS, DAVE	10.82	9.09	13.97
1022436	9	36	26	4	5	AARON DRILLING INC.	2014-05-05	30.48	New Well	Investigatio n		6		LAFARGE CANADA INC			16.81
1475698	16	31	26	3	5	M&M DRILLING CO. LTD.	2003-01-14	39.62	New Well	Domestic		10	24	QUICK WAY FARMS LTD	32.00	45.46	14.13
1475699	15	31	26	3	5	M&M DRILLING CO. LTD.	2003-01-17	53.95	New Well	Domestic		10	24	QUICK WAY FARMS LTD	32.64	24.55	14.13
2095665	SW	6	27	3	5	UNKNOWNDRILLINGCOMP11		25.60	Well Inventory	Domestic & Stock		1		CIRCLE J RANCHES LTD			

Printed on 9/30/2019 3:15:18 PM Page: 1 / 1

Owner Name

DAVIDSON, D.W.

Well Identification and Location

Water Well Drilling Report

GIC Well ID

View in Imperial Export to Excel 350194

GoA Well Tag No. Drilling Company Well ID

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

Date Report Received 1990/03/16 Measurement in Metric Address Postal Code Town Province Country P.O. BOX 970 COCHRANE T0L 0W0

1/4 or LSD SEC TWP Block W of MER Plan Additional Description Location Lot SW 31 026 03

GPS Coordinates in Decimal Degrees (NAD 83) Measured from Boundary of

Elevation Latitude 51.259801 Longitude -114.414277 m m from

How Location Obtained How Elevation Obtained m from Not Verified Not Obtained

Drilling Information

Method of Drilling Cable Tool

Type of Work New Well

Proposed Well Use

Domestic

Formation Log			Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description	
6.10		Boulders	
10.67		Sand & Gravel	
12.19		Sand	
15.24		Gravel	
18.29		Gray Shale	
22.86		Light Green Shale	
28.96		Green Shale	
32.00		Green Shale	
35.05		Green Shale	

Yield Test S	ummary		Measurement in Metric					
Recommende	ed Pump R	ate 0.	00 L/mir	1				
Test Date	Water	Removal Rate	(L/min)	St	atic Water Le	evel (m)		
1990/03/09		54.55		15.24				
Well Comple					Measurem	ent in M	etric	
,	rilled Fini	shed Well Dept			End L			
35.05 m			1990	/03/02	1990/	03/09		
Borehole								
	er (cm)		n (m)		To (r			
0.0			.00		35.0	5		
Surface Casi Steel	пд (іт аррі	icable)	Steel	asing/Li	ner			
Size	OD :	14.12 cm		Size OL	D: <u>11.</u>	43 cm		
Wall Thickne	ess :	0.478 cm	Wall 7	Thicknes	s : 0.3	18 cm		
Bottom	at:	15.24 m		Тор а	nt : 13.	13.72 m		
				Bottom a	nt : 35.	05 m		
Perforations								
		Diameter or Slot	Slo		Hala au C	1-4		
From (m)	To (m)	Width(cm)			Hole or S Interval(
22.86	35.05	0.318	20.190	(6)	25.40			
Perforated by	Torch	า						
Annular Seal	Driven							
Placed from	n0	.00 m to	15.2	4 m				
Other Seals								
	Type		At (m)					
Saraan Tuna								
Screen Type	OD ·	0.00 cm						
From			(m)		Slot Size	Slot Size (cm)		
				F				
	ngs		Botto	m Fitting	IS		-	
Pack								
Type			Grain	Size				

Contractor	Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name

LOU'S WATER WELL DRILLING

Certification No

0.00

Amount

Copy of Well report provided to owner Date approval holder signed

Printed on 12/24/2014 10:54:47 AM Page: 1 / 2

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel GIC Well ID 350194

GoA Well Tag No.

Drilling Company Well ID Date Report Received

1990/03/16

Owner Name DAVIDSON, D.W. Address P.O. BOX 970 COCHRANE Town Province Country Location 1/4 or LSD SW SEC 31 TWP 026 RGE 03 W of MER 5 Lot Block Block Plan Additional Description Measured from Boundary of m from GPS Coordinates in Decimal Degrees (NAD 83) Latitude Longitude -114.414277 Elevation no	Postal Code T0L 0W0
SW 31 026 03 5 Measured from Boundary of GPS Coordinates in Decimal Degrees (NAD 83) Latitude 51 250901 Langitude 114 414277 Florestices	
Latitude 51 250901 Longitude 114 414277 Elevation	
M from How Location Obtained How Elevation Obtained Not Verified Not Obtained	<u> </u>
Additional Information Measu	rement in Metric
Distance From Top of Casing to Ground Level cm Is Artesian Flow Is Flow Control Installed Rate L/min Describe	
Recommended Pump Rate 0.00 L/min Pump Installed Depth m	
Did you Encounter Saline Water (>4000 ppm TDS) Depth m Well Disinfected Upon Completion Gas Depth m Geophysical Log Taken Submitted to ESRD Sample Collected for Potability Submitted to ESR Additional Comments on Well	
	rement in Metric
Test Date Start Time Static Water Level 1990/03/09 12:00 AM 15.24 m Drawdown (m) Elapsed Time Reco	very (m)
Method of Water Removal Type Bailer Removal Rate 54.55 L/min Depth Withdrawn From 0.00 m If water removal period was < 2 hours, explain why	
Water Diverted for Drilling	
Water Source Amount Taken Diversion Date & Time L	

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name

LOU'S WATER WELL DRILLING

Certification No

Water Well Drilling Report

View in Imperial Export to Excel

Measurement in Metric

GIC Well ID GoA Well Tag No. 360164

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

Drilling Company Well ID Date Report Received

		accu	uracy. The infor		Date Report Received	1991/10/24					
Well Identi	fication and L	ocation									Measurement in Metric
Owner NameAddressBARGETZI, ERNIE233 RATCLIFF PLA					Town ACE SE, CALGARY					Country	Postal Code
Location	1/4 or LSD SE	SEC 06	<i>TWP</i> 027	RGE 03	W of MER 5	Lot	Block 2	<i>Plan</i> 9110979	Additio	onal Description	
Measured from Boundary of m from m from					GPS Coordinates in Decimal Degrees (NAD 83) Latitude 51.274744 Longitude -114.40 How Location Obtained				5998	Elevation How Elevation Obtain	m ned
		-			Not Verified					Not Obtained	

Drilling Information Method of Drilling Type of Work New Well Rotary Proposed Well Use Domestic

Yield Test Summary

Formation Log			Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description	
9.45		Till & Clay	
21.64		Gravel	
25.30		Brown Shale	
34.75		Gray Shale	
39.62		Gray Sandstone	
44.20		Gray Shale	
51.82		Gray Sandstone	
59.74		Gray Shale	
66.75		Gray Sandstone	
73.15		Gray Shale	

Recommended I	Pump Rate 1:	36.38 L/mir	<u>1</u>							
Test Date	Water Removal Ra			c Water Level (m)						
1991/10/08	136.38		33.53							
Well Completion	on		Measurement in Me							
Total Depth Drille	ed Finished Well D	,								
73.15 m		1991	/10/08	1991/10/08						
Borehole										
Diameter (rom (m)		To (m)						
0.00				73.15						
Surface Casing (if applicable) Steel Well Casing/Liner Steel										
Size OD	: 14.12 cm			11.43 cm						
Wall Thickness	.: 0.620 cm	Wall	Thickness :	0.396 cm						
Bottom at	24.99 m		Top at:	18.29 m						
			Bottom at :	73.15 m						
Perforations										
	Diameter o		ot	Hala an Clah						
From (m) T	Slot o (m) Width(cm			Hole or Slot Interval(cm)						
36.58	57.06 0.157	20.190	,	15.24						
Perforated by	Torch									
Annular Seal	Orive Shoe									
Placed from	0.00 m to	24.9	9 m							
Amount _										
Other Seals										
	Type		A	t (m)						
Screen Type										
Size OD	: 0.00 cm									
From (m	1)	To (m)		Slot Size (cm)						
Attachmen	t									
	S		Bottom Fittings							
Pack										
Туре		Grain	Grain Size							
Amount		_								

Contractor	Certification

Name of Journeyman responsible for drilling/construction of well UNKNOWN NA DRILLER

Company Name

AERO DRILLING & CONSULTING LTD.

Certification No

Copy of Well report provided to owner Date approval holder signed

Printed on 10/24/2014 1:38:16 PM Page: 1 / 2

Water Well Drilling Report

View in Imperial Export to Excel

GIC Well ID GoA Well Tag No. Drilling Company Well ID 360164

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database. 1991/10/24 Date Report Received Well Identification and Location Measurement in Metric Owner Name Address Postal Code Town Province Country

BARGETZI	, ERNIE		233 RATCL	IFF PLAC	JE SE, CALGARY					
Location	1/4 or LSD SE	SEC 06	<i>TWP</i> 027	RGE 03	W of MER 5		Block 2	<i>Plan</i> 9110979	Additional Description	1
Measured t	from Boundary	of m from			GPS Coordina Latitude 51.		•		5998 Elevation	m
	-	m from			How Location		How Elevati			
		III IIOIII			Not Verified				Not Obtaine	d
Additional	Information									Measurement in Metric
	rom Top of Ca				cm					
Is Artesia	n Flow					Is F	low Con	trol Installed		
	Rate		L/min							
Recomme	nded Pump Ra	te			136.38 L/min	Pump Ir	nstalled		Depth	m
Recomme	nded Pump Inte	ake Depth (From TOC)		0.00 m	Type			Make	H.P.
									Model (Ou	tput Rating)
Did you	Encounter Salir	ne Water (>	4000 ppm TE	OS)	Depth		m	Well Disinfe	cted Upon Completion	
			G	as						
								S	ubmitted to ESRD	
						S	ample Co	allected for Po	tability	Submitted to ESRD
Addition	nal Comments o	n Well								
Yield Test								Take	n From Ground Level	Measurement in Metric
Test Date		Start Time	2	Stat	tic Water Level				Depth to water leve	el
1991/10/08		12:00 AM		Stat	33.53 m		Drawdown (m)		Elapsed Time Minutes:Sec	Recovery (m)
Method o	f Water Remov	ral .								
	Type _	Air				_				
F	Removal Rate	13	6.38 L/min							
Depth Wit	thdrawn From	3	9.62 m							
If water re	moval period w	as < 2 hour	s explain wh	V						
	o.ui poilou w	\ <u>L</u> 110011	s, explain wil	7						
Water Div	erted for Drilli	ina								
	23G .G. 311111	9								

Water Diverted for Drilling		
Water Source	Amount Taken L	Diversion Date & Time

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name

AERO DRILLING & CONSULTING LTD.

Certification No

Water Well Drilling Report

GIC Well ID

View in Imperial Export to Excel

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

GoA Well Tag No. Drilling Company Well ID Date Report Received

										Date Report IV	0001104	
Well Identificati	on and Lo	cation									N	Measurement in Metric
Owner Name BRISTOW, C.R.			Address COCHRAN	ΙE	Town Provin			Province	Cou	ntry	Postal Code	
Location 1/4 NE	or LSD	SEC 36	<i>TWP</i> 026	RGE 04	W of MER 5	Lot	Block	Plan	Additior	nal Description		
Measured from B	r	m from m from			GPS Coordin Latitude 5 How Location Map	1.267032	Longit	s (NAD 83) ude114.42		Elevation How Elevatio Estimated		
Drilling Informa	tion											
Method of Drillin Cable Tool					Type of Work New Well	k						
Proposed Well U Unknown	<i>J</i> se											
Formation Log				Me	easurement in N	Metric	Yield Tes	t Summary	y		N	Measurement in Metric
Depth from	Water	Lithology	Description	1			Recomme		Rate			
ground level (m)	Bearing						Test Da	ite Wat	er Removal	Rate (L/min)	Sta	tic Water Level (m)
4.88		Yellow (Clay				1962/08	/10	72.7	4		21.95
21.03		Gravel					Well Com	pletion			Λ	Measurement in Metric
23.77		Fine Gra	ained Sand					h Drilled F	inished Well	Depth Start	Date	End Date
25.91		Yellow (Clay				33.83 m					1962/08/10
26.82		Blue Cla	ау				Borehole					
27.13		Hard Sh	nale					eter (cm)		From (m)		To (m)
28.04		Sand						0.00 asing (if ap	nlicable)	0.00	sing/Lin	33.83
32.00		Blue Sh	ale & Sandst	tone Ledge	es		Surface C	asing (ii ap	ipiicabie)	Well Ca	ising/Lin	ei
33.83		Gray Sh	ıale				Si	ze OD :	0.00 cm	<u>1</u>	Size OD	: 0.00 cm
		,						kness :			hickness	
							Bot	tom at :	0.00 m	_	Top at	: 0.00 m
										E	Bottom at	: 0.00 m
							Perforatio	ns	D:			
							From (m)	To (m)	Diamete Slot Width(d	Slo		Hole or Slot Interval(cm)
							Perforated	by		'		
								from ount	0.00 m to	0.00) m_	
								Туре			,	At (m)
							Screen Ty	rpe ze OD :	0.00 cm	<u>1</u>		
							Fre	om (m)		To (m)		Slot Size (cm)
							Attac	hment				
							Тор Е	-ittings		Bottor	n Fittings	
							Pack					
							Туре			Grain	Size	
						[Amount					

Contractor Certification

Name of Journeyman responsible for drilling/construction of well UNKNOWN NA DRILLER

Company Name PARSONS DRLG Certification No

Copy of Well report provided to owner Date approval holder signed

Printed on 10/24/2014 1:38:56 PM Page: 1 / 2

Water Well Drilling Report

GoA Well Tag No.

View in Imperial Export to Excel 387449

GIC Well ID Drilling Company Well ID

The driller supplies the data contained in this report. The Province disclaims responsibility for its

		4000	naoy. The inio	mation on th	o report will be re-	anica in a pabi	io database.			Date Report Re	ceived	
Well Iden	tification and L	ocation									Measu	ement in Metric
Owner Nar BRISTOW			Address COCHRAN	NE		Town			Province	e Coun	try	Postal Code
Location	1/4 or LSD NE	SEC 36	<i>TWP</i> 026	RGE 04	W of MER 5	Lot	Block	Plan	Additio	onal Description		
Measured	from Boundary o	of			GPS Coord	inates in Dec	imal Degree	es (NAD 83 ₎)			
Mododrod	•	m from			Latitude	51.267032	Longi	ude -114.4	26119	Elevation	1292.35 m	<u> </u>
		m from			How Location	on Obtained				How Elevation	Obtained	
		mmom			Мар					Estimated		
Additional	Information										Measu	ement in Metric

NE	36 026	04 5			
Measured from Bou	undary of		in Decimal Degrees (NAD 83)		
	m from		7032 Longitude -114.426		
	m from	How Location Ob	tained	How Elevation (Obtained
		l Map		Estimated	
Additional Informa	ation				Measurement in Metric
Distance From Top	o of Casing to Ground Level	cm			
			Is Flow Control Installed		
	L/min				
Recommended Pu	ımp Rate	0.00 L/min			m
Recommended Pu	mp Intake Depth (From TOC)	0.00 m	Pump InstalledType	Make	H.P.
				Model (Output	Rating)
Did you Encount	er Saline Water (>4000 ppm TDS	S) Depth	m Well Disinfe	ected Upon Completion	
	Ga	as Depth	m Geop	hysical Log Taken	
				ubmitted to ESRD	
			Sample Collected for Po	stability Su	Ibmitted to ESRD
Additional Comm	ments on Well				
Yield Test			Take	n From Ground Level	Measurement in Metric
Test Date	Start Time	Static Water Level		Depth to water level	
1962/08/10	12:00 AM	21.95 m	Drawdown (m)	Elapsed Time	Recovery (m)
			_	Minutes:Sec	
Method of Water					
	Type Bailer				
Removal	Rate 72.74 L/min				
Removal					
Removal Depth Withdrawn	Rate 72.74 L/min From 0.00 m		_		
Removal Depth Withdrawn	Rate 72.74 L/min		_		
Removal Depth Withdrawn	Rate 72.74 L/min From 0.00 m		_		
Removal Depth Withdrawn	Rate 72.74 L/min From 0.00 m eriod was < 2 hours, explain why		_		

Water Diverted for Drilling			
_			
Water Source	Amount Taken	Diversion Date & Time	
	L		

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name PARSONS DRLG Certification No

Water Well Drilling Report

View in Imperial Export to Excel

GIC Well ID GoA Well Tag No. 390998

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

Drilling Company Well ID 1987/03/05

				<u>'</u>	· ·				Date Report Receiv	eu 1967/03/03
Well Identification a	nd Location									Measurement in Metric
Owner Name STRANGE, R.		Address P.O. BOX	(981 COCH	IRANE	Town			Province	Country	Postal Code T0L 0W0
Location 1/4 or L SE	SEC 06	<i>TWP</i> 027	RGE 03	W of MER 5	Lot	Block	Plan	Additio	onal Description	
Measured from Bound	m from			GPS Coordir Latitude 5 How Location Not Verified	1.274744	U	es (NAD 83) itude114.4		Elevation How Elevation Obt	mained

Drilling Information Method of Drilling Type of Work New Well Rotary Proposed Well Use Domestic & Stock

Formation Log			Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description	
7.62		Till	
10.36		Gravel	
11.58		Silty Clay	
17.68		Weathered Shale	
27.43		Shale	
39.62		Sandstone	
48.77		Shale	
60.96		Sandstone	
62.48		Shale	
63.70		Sandstone	
65.53		Shale	

rieid Test Su	mmary					IVIE	asurement in i	летпо
Recommended	l Pump Ra	te	27.2	8 L/min	_			
Test Date						tatic	Water Level (m)	
1987/02/11		36.37					45.72	
Well Complet	ion					Me	asurement in N	/letric
Total Depth Dri	illed Finis	hed Well D	epth	Start	Date		End Date	
65.53 m				1987	02/10		1987/02/11	
Borehole								
Diameter		F		(m)			To (m)	
0.00			0.0				65.53	
Surface Casin Steel	•	•		Well Ca Plastic	_			
		16.84 cm					12.70 cm	
Wall Thicknes	ss:	0.478 cm		Wall 7	hicknes	ss:	0.630 cm	
Bottom	at :	18.29 m			Тор а	at:	16.76 m	
				L	Bottom a	at:	65.53 m	
Perforations		Diameter of	or					
		Slot		Slo	-		Hole or Slot	
From (m) 47.24		Width(cm 0.000	1)	Lengtl	n(cm)		Interval(cm) 0.10	
Annular Seal Placed from	Driven 0.	00 m to		11.58	3 m_			
Other Seals				_				
	Type					At	(m)	
Screen Type Size O	D :	0.00 cm						
From (То	(m)			Slot Size (cm)	
Attachme	nt							
Top Fitting	gs		_	Botto	m Fitting	gs_		_
Pack								
Туре			_	Grain	Size			
Amount			_					

Contractor	Certification

Name of Journeyman responsible for drilling/construction of well ${\tt UNKNOWN\ NA\ DRILLER}$

Company Name

ALBERTA SOUTHERN EXPLORATION DRILLING LTD.

Certification No

Copy of Well report provided to owner Date approval holder signed

Printed on 10/24/2014 1:39:37 PM Page: 1 / 2

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel GIC Well ID

390998

GoA Well Tag No. Drilling Company Well ID

1987/03/05 Date Report Received

Well Identification and Location					Measurement in Metric
Owner NameAddressSTRANGE, R.P.O. BOX 981	COCHRANE	Town	Province	Country	Postal Code ToL 0W0
	03 5			al Description	
Measured from Boundary of m from m from		in Decimal Degrees (N 4744 Longitude tained	/	Elevation How Elevation Ob Not Obtained	
Additional Information					Measurement in Metric
Distance From Top of Casing to Ground Level Is Artesian Flow Rate L/min	cm		nstalledescribe		
Recommended Pump Rate	27.28 L/min			Depth	m
Recommended Pump Intake Depth (From TOC)	62.48 m	Туре			H.P.
				Model (Output R	ating)
Did you Encounter Saline Water (>4000 ppm TDS, Gas) Depth S Depth	m We	ell Disinfected Upon Geophysical Log Submitted to ed for Potability	Taken ESRD	mitted to ESRD_
Additional Comments on Well Yield Test			Taken From G		Measurement in Metric
Test Date Start Time	Static Water Level			to water level	Wood of the first would
1987/02/11 12:00 AM	45.72 m	Drawdowi		apsed Time Inutes:Sec	Recovery (m)
Method of Water Removal Type Air Air Removal Rate 36.37 L/min Depth Withdrawn From 0.00 m					
If water removal period was < 2 hours, explain why		_			
Water Diverted for Drilling					
Water Source	Amount Taken L		Diversion	n Date & Time	

Contractor Certification

Name of Journeyman responsible for drilling/construction of well UNKNOWN NA DRILLER

Company Name

ALBERTA SOUTHERN EXPLORATION DRILLING LTD.

Certification No

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel GIC Well ID 390999

GoA Well Tag No. Drilling Company Well ID

1987/12/02

Measurement in Metric

Date Report Received Well Identification and Location Measurement in Metric Address Postal Code Town Owner Name Province Country STRANGE, R. P.O. BOX 981 COCHRANE T0L 0W0 1/4 or LSD SEC TWP Block RGE W of MER Plan Additional Description Location Lot SE 06 027 03 GPS Coordinates in Decimal Degrees (NAD 83) Measured from Boundary of Elevation _ Latitude 51.274744 Longitude -114.405998 m m from How Location Obtained How Elevation Obtained m from Not Verified Not Obtained

Drilling Information Method of Drilling Type of Work New Well Rotary Proposed Well Use Stock

Yield Test Summary

Formation Log			Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description	
5.79		Till	
8.84		Gravel	
9.75		Till	
16.76		Yellow Sandstone	
20.12		Gray Sandstone	
30.48		Shale	
36.88		Sandstone	
39.62		Shale	
40.23		Moist Sandstone	
50.29		Shale	
51.82		Sandstone	
58.22		Shale	
64.01		Shale	
71.32	Yes	Water Bearing Sandstone	
73.15		Shale	

Recommende	ed Pump R	ate31.8	82 L/min	1			
Test Date		r Removal Rate (atic Wate	er Level (m)	
1987/11/19)	45.46			39	.62	
Well Compl	etion				Measur	ement in N	Лet
Total Depth L	Orilled Fini	ished Well Depti	h Start	Date	E	nd Date	
73.15 m			1987	/11/18	19	987/11/19	
Borehole							
	er (cm)	Fron	n (m)		Т	o (m)	
0.0	00	0.	.00		7	73.15	
Surface Cas Steel	ing (if app	licable)	Well Ca Plastic	asing/Li	ner		
		16.84 cm				12.70 cm	
Wall Thickn	ess:	0.478 cm	Wall 7				
Botton	n at :	11.89 m		Тор а	at :	9.14 m	
			I	Bottom a	at:	73.15 m	
Perforations							
		Diameter or	61			CI .	
From (m)	To (m)	Slot Width(cm)	Slo Lengtl		Hole Inter	or Slot	
39.62	73.15	0.157	Lengu	ii(Ciii)		5.24	
Perforated by	/ Othe	r					
-							
Annular Sea		0.00 m to	0.7	5 m			
				5 111			
Other Seals			_				
Other Seals	Type				At (m)		
	Турс				At (III)		
Screen Type)						
Size	OD :	0.00 cm					
From	ı (m)	То	(m)		Slot	Size (cm)	
Attachn	nent						
Top Fitti	ings		Botto	m Fitting	IS		_
Pack							
Туре			Grain	Size			
Amount						_	

Contractor	Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name

ALBERTA SOUTHERN EXPLORATION DRILLING LTD.

Certification No

Copy of Well report provided to owner Date approval holder signed

Printed on 10/24/2014 1:41:07 PM Page: 1 / 2

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

GIC Well ID GoA Well Tag No.

View in Imperial Export to Excel

390999

Drilling Company Well ID Date Report Received

1987/12/02

	on and Location							Measurement in Metr
Owner Name STRANGE, R.		ddress .O. BOX 981 CC	OCHRANE	Town		Province	Country	Postal Code T0L 0W0
Location 1/4 o		TWP RG/ 027 03	5		lock Plan		al Description	
Measured from Bo	oundary of m from m from	_	l I	1.274744	Degrees (NAD 8 Longitude -114	1	Elevation How Elevation Ob Not Obtained	
Additional Inform	nation							Measurement in Metr
Distance From To Is Artesian Flow Rate	op of Casing to Ground L	/min	cm	Is Flo	w Control Installe Describ			
Recommended P Recommended P			31.82 L/min 60.96 m				Depth Model (Output R	м Н.Р.
Additional Com			Depth	m	Well Dis Ge	eophysical Log Submitted to		mitted to ESRD
	ES AT 130-132' @ 1 G	PM, 210-234' @	8-10 GPM.					
Yield Test	ES AT 130-132' @ 1 G	iPM, 210-234' @	2 8-10 GPM.		T	aken From G		Measurement in Metr
Yield Test Test Date 1987/11/19	Start Time 12:00 AM	,	Static Water Level 39.62 m		Trawdown (m)	Depth Ela	round Level to water level apsed Time inutes:Sec	Measurement in Metr
Test Date 1987/11/19 Method of Water Remove Depth Withdrawn	Start Time 12:00 AM	46 L/min	Static Water Level	_		Depth Ela	to water level apsed Time	
Test Date 1987/11/19 Method of Water Remove Depth Withdrawn	Start Time 12:00 AM r Removal Type Air al Rate 45.4 n From 0.0 period was < 2 hours, 6	46 L/min	Static Water Level			Depth Ela	to water level apsed Time	

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name

ALBERTA SOUTHERN EXPLORATION DRILLING LTD.

Certification No

Copy of Well report provided to owner Date approval holder signed

Printed on 10/24/2014 1:41:07 PM Page: 2 / 2

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel

391000

Measurement in Metric

GIC Well ID GoA Well Tag No.

Drilling Company Well ID Date Report Received

1984/12/05

Well Ident	ification and L	ocation									Measurement in Metric
Owner Nan CIRCLE J F			Address RR2, COC	HRANE		Town			Province	Country	Postal Code
Location	1/4 or LSD 04	SEC 06	<i>TWP</i> 027	RGE 03	W of MER 5	Lot	Block	Plan	Additio	onal Description	
Measured f	rom Boundary o	of			GPS Coordin	ates in Dec	imal Degre	es (NAD 83	3)		
		m from			Latitude 5	1.272936	Longi	tude <u>-114.</u> 4	420414	Elevation	m
		m from			How Location	n Obtained				How Elevation Obt	tained
		-			Мар					Not Obtained	

Drilling Information Method of Drilling Type of Work Cable Tool New Well Proposed Well Use Domestic & Stock

Yield Test Summary

Formation Log		Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description
3.05		Yellow Clay
7.32		Cemented Gravel
19.51		Gravel
20.12		Cemented Gravel
29.87		Gravel & Boulders
32.92		Brown Shale & Sandstone
40.23	Yes	Brown Water Bearing Sandstone

Recommended I	Pump Ra	ate0.0	00 L/min	<u> </u>			
		Removal Rate (tatic Wa	ter Level (m))
1984/11/07		68.19	28.96				
Well Completion					Measu	rement in I	Metric
Total Depth Drille	ed Finis	shed Well Depth	n Start	Date	I	End Date	
40.23 m			1984/	/10/15	•	1984/11/07	
Borehole							
Diameter (cm)	Fron				To (m)	
0.00			00			40.23	
Surface Casing Steel	(if appl	icable)	Well Ca Steel	ŭ			
		13.97 cm				11.43 cm	
Wall Thickness	::	0.620 cm	Wall 7				
Bottom at	t:	31.09 m		Тор а	at :	0.00 m	•
			E	Bottom a	at:	40.23 m	
Perforations							
		Diameter or Slot	Slo	\+	Hole	e or Slot	
From (m) T	o (m)	Width(cm)		n(cm)	Inte	rval(cm)	
	39.62	0.396	.,	, ,	2	25.40	
Perforated by	Torch	1					
Annular Seal [Drivon						
		.00 m to	1 22	? m			
_							
Other Seals			_				
3 30010	Type				At (m)		
	,,,,				()		
Screen Type							
Size OD	: <u> </u>	0.00 cm					
From (m	1)	То	(m)		Slot	Size (cm)	
Attachmen	t						
Top Fittings	3		Botto	m Fitting	gs		_
Pack							_
Туре			Grain	Size			
Amount							

Contractor	Certification

Name of Journeyman responsible for drilling/construction of well UNKNOWN NA DRILLER

Company Name

DIVERSIFIED DRILLING & EXPLORATION CO.

Certification No

Copy of Well report provided to owner Date approval holder signed

Page: 1 / 2 Printed on 12/24/2014 10:52:45 AM

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

391000

1984/12/05

GIC Well ID GoA Well Tag No. Drilling Company Well ID Date Report Received

View in Imperial Export to Excel

Well Identification and Location Measurement in Metric Address Town Postal Code Owner Name Province Country RR2, COCHRANE CIRCLE J RANCHES 1/4 or LSD SEC TWP W of MER RGE Block Plan Additional Description Location Lot 04 06 027 03 GPS Coordinates in Decimal Degrees (NAD 83) Measured from Boundary of Elevation _ Latitude 51.272936 Longitude -114.420414 m m from How Elevation Obtained How Location Obtained m from Not Obtained Additional Information Measurement in Metric Distance From Top of Casing to Ground Level cm Is Artesian Flow Is Flow Control Installed Rate Describe Recommended Pump Rate 0.00 L/min Pump Installed Depth m Recommended Pump Intake Depth (From TOC) 0.00 m H.P. Model (Output Rating) m Well Disinfected Upon Completion Did you Encounter Saline Water (>4000 ppm TDS) Depth m____ Gas ____ Depth Geophysical Log Taken Submitted to ESRD Sample Collected for Potability Submitted to ESRD Yes Additional Comments on Well Yield Test Taken From Ground Level Measurement in Metric Depth to water level Test Date Start Time Static Water Level Drawdown (m) Elapsed Time Recovery (m) 1984/11/07 12:00 AM 28.96 m Minutes:Sec Method of Water Removal Type Bailer 68.19 L/min Removal Rate Depth Withdrawn From 32.00 m If water removal period was < 2 hours, explain why Water Diverted for Drilling Water Source Amount Taken Diversion Date & Time

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name

DIVERSIFIED DRILLING & EXPLORATION CO.

Certification No

UNKNOWN NA DRILLER Company Name

PARSONS DRILLING

Water Well Drilling Report

GIC Well ID

View in Imperial Export to Excel

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

GoA Well Tag No. Drilling Company Well ID Date Report Received

391598

Well Identification and Location						Measurement in Metric
Owner Name MURRAY, R.J.	Address 511 19ST NW, CALGARY	Town		Province	Country	Postal Code
Location 1/4 or LSD SEC NW 31	TWP RGE W of ME 026 03 5	ER Lot BI	lock Plan	Additional De	escription	
Measured from Boundary of		ordinates in Decimal	•	· ·	uation 1	200.02
m from		51.267033 cation Obtained	Longitude -1		vation <u>1</u> w Elevation Obta	290.83 m
m from	Map				imated	
D 30: 1.4						
Drilling Information Method of Drilling	Type of	Work				
Cable Tool	New We					
Proposed Well Use Domestic & Stock						
Formation Log	Measuremen	t in Metric Yie	eld Test Sum	mary		Measurement in Metric
Depth from Water Litholog	gy Description		commended F		L/min	Shakin Makan Lavral (m)
ground level (m) Bearing			Test Date	Water Removal Rate	(L/MIN) S	Static Water Level (m)
		We	ell Completio	n		Measurement in Metric
		Tota	tal Depth Drille	ed Finished Well Dep	th Start Date	End Date
			62 m rehole			
			Diameter (c	m) Fro	m (m)	To (m)
			0.00		0.00	39.62
		Ste	_	(if applicable)	Well Casing/L Steel	.iner
			Size OD		Size C	
		W	Vall Thickness		Wall Thickne	
			Bottom at	20.82 111	Bottom	
		Per	rforations			
				Diameter or Slot	Slot	Hole or Slot
				0 (m) Width(cm) 8.10 0.000	Length(cm)	Interval(cm) 0.00
			rforated by	0.100	'	0.00
			nular Seal D	rive Shoe		
			Placed from _	0.00 m to	0.00 m	
			Amount		_	
		Oth	her Seals	Туре		At (m)
				.,,,,		, tt ()
		Scr	reen Type			
			Size OD			
			From (m)) To) (m)	Slot Size (cm)
			Attachment			
			, ,		Bottom Fittin	ngs
		Pad			Croin Sins	
			Type Amount		Grain Size	
					_	
Contractor Contification						
Contractor Certification	r drilling/construction of well		Certific	ration No		

Printed on 10/24/2014 1:42:30 PM Page: 1 / 2

Water Well Drilling Report

GoA Well Tag No.

View in Imperial Export to Excel

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

GIC Well ID Drilling Company Well ID Date Report Received

Well Iden	tification and I	Location									Meas	urement in Metri
Owner Nar MURRAY,			Address 511 19ST N	NW, CALC	GARY	Town			Province	Cour	ntry	Postal Code
Location	1/4 or LSD NW	SEC 31	<i>TWP</i> 026	RGE 03	W of MER 5	Lot	Block	Plan		nal Description		
Measured	from Boundary	of m from m from			GPS Coordi Latitude How Locatio	51.267033		ees (NAD 83) gitude114.4		Elevation How Elevation Estimated		<u>m</u>
Additiona	I Information										Meas	urement in Metri
	From Top of Ca an Flow Rate				cm		ls Flow Coi		·			
Recomme	ended Pump Ra				L/mi	n Pum	o Installed			Depth	m	
Recomme	ended Pump Inte	ake Depth ((From TOC)		m	Тур	9		Make	Madal (Outo	H.P.	
											ut Rating)	
Did you	Encounter Salii	ne Water (>		DS) Gas		hh				Completion Taken ESRD		
Addition	nal Comments o	on Well					Sample C	Collected for I	Potability		Submitted to E	SRD
Yield Tes	t							Tal	ken From G	round Level	Meas	urement in Metri
Test Date	•	Start Tim	e	Stat	tic Water Level m							
Method o	of Water Remov	/al										
	Type _											
	Removal Rate											
Depth Wi	ithdrawn From		<u>m</u>									
If water re	emoval period w	as < 2 hour	rs, explain wl	ny								
Water Div	verted for Drill	ing										
Water Sou	ırce			An	nount Taken I	L			Diversion	n Date & Time		

Contractor Certification

Name of Journeyman responsible for drilling/construction of well ${\tt UNKNOWN\ NA\ DRILLER}$

Company Name PARSONS DRILLING

Certification No

Water Well Drilling Report

View in Imperial Export to Excel

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

GIC Well ID GoA Well Tag No. Drilling Company Well ID Date Report Received

										Date Report Ne	001104	
Well Identification	n and Lo	cation									N	leasurement in Metric
Owner Name PARKER, G.L.			Address P.O. BOX 1	23 COCH	RANE	Town			Province	Coun	try	Postal Code T0L 0W0
Location 1/4 o	or LSD	SEC 31	<i>TWP</i> 026	RGE 03	W of MER 5	Lot	Block	Plan	Addition	al Description		
Measured from Bo	n	n from n from			GPS Coordin Latitude 5 How Location Map	51.267033	Longitu	s (NAD 83) ude114.402	748	Elevation How Elevation Estimated		
Drilling Informati	ion											
Method of Drilling Rotary					Type of Wor New Well-Ab							
Proposed Well Us Investigation	se											
Formation Log				Me	asurement in	Metric	Yield Tes	t Summary			M	leasurement in Metric
Depth from	Water	Lithology	Description				Recomme	nded Pump R	Rate	0.00 L/min		
ground level (m)							Test Da	te Water	r Removal I	Rate (L/min)	Stat	ic Water Level (m)
0.30		Topsoil					1981/10,	/10				0.00
1.22		Gray Cla	ау			1 [Well Com	pletion			M	leasurement in Metric
4.27		Brown (Clay					•	ished Well	Depth Start D	ate	End Date
6.71		Brown S	andy Clay				49.38 m					
11.89		Sandy G	iravel				Borehole					
17.07		-	Grained Gra	vel				eter (cm)		From (m)		To (m)
18.90			ined Gravel					0.00		0.00		49.38
19.20		Sandsto					Surface C	asing (if app	licable)	Well Cas	sing/Line	er
24.69			ined Sand				Siz	ze OD :	0.00 cm	3	Size OD :	0.00 cm
32.92		-	ined Gravel				Wall Thic	kness :	0.000 cm	- Wall Th	ickness :	0.000 cm
36.27		Shale	illieu Gravei				Boti	tom at :	0.00 m	- -	Top at :	0.00 m
36.58		Dark Sh	ala							Во	ottom at .	0.00 m
43.59		_					Perforatio	ns				
49.38		Clay & Unknov					From (m)	To (m)	Diameter Slot Width(c	Slot		Hole or Slot Interval(cm)
							Placed to Amo	pe Driven Type Type pe OD: pm (m) hment Fittings	0.00 cm	To (m)	Fittings	Slot Size (cm)

Contractor Certification

Name of Journeyman responsible for drilling/construction of well UNKNOWN NA DRILLER

Company Name

KRIÉGER DRILLING LTD.

Certification No

Copy of Well report provided to owner Date approval holder signed

Printed on 10/24/2014 1:43:45 PM Page: 1 / 2

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

GIC Well ID GoA Well Tag No. Drilling Company Well ID Date Report Received

View in Imperial Export to Excel

Well Identification and Location Measurement in Metric Address Postal Code Owner Name Town Province Country P.O. BOX 123 COCHRANE PARKER, G.L. TOL 0W0

Location	1/4 or LSD NE	SEC 31	<i>TWP</i> 026	RGE 03	W of MER 5	Lot B	lock P	lan	Additional Description	
Measured t	from Boundary (of m from m from			GPS Coordinat Latitude 51. How Location (Map	267033			8 Elevation How Elevation Estimated	
Additional	Information									Measurement in Met
	From Top of Cas In Flow Rate				cm	Is Flo				
Recomme	nded Pump Ra		L/111111		0.00 L/min	Pump Inst			Depth	m
Recomme	nded Pump Inta	ake Depth (I	From TOC)						ake	H.Put Rating)
			ATER, NO	SPECS FO	R SURFACE CASI		ple Collecte	ed for Potab	From Ground Level	Submitted to ESRD
Test Date		Start Time		Stat	ic Water Level		Drawdowr	n (m)	Depth to water level Elapsed Time	Recovery (m)
1981/10/10 Method o	f Water Remov				0.00 m		Diawdowi	T (III)	Minutes:Sec	Recovery (III)
	Removal Rate _ thdrawn From _					_				
If water re-	moval period wa	as < 2 hours	s, explain w	rhy						
Water Div	erted for Drilli	ng								

Water Diverted for Drilling		
Water Source	Amount Taken L	Diversion Date & Time

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name

KRIÉGER DRILLING LTD.

Certification No

Water Well Drilling Report

View in Imperial Export to Excel

391600

GIC Well ID GoA Well Tag No.

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

Drilling Company Well ID

		4000	naoy. The inioi	madon on d	no report win be rete	инса ита раб	ilo database.			Date Report Rece	eived 198	1/11/25
Well Identi	fication and L	ocation									Measure	ement in Metric
Owner Nam PARKER, G			Address P.O. BOX	123 COCH	HRANE	Town			Province	e Country	/	Postal Code T0L 0W0
Location	1/4 or LSD NE	SEC 31	<i>TWP</i> 026	RGE 03	W of MER 5	Lot	Block	Plan	Additio	onal Description		
Measured fi		m from			GPS Coordir Latitude 5	1.267033	•	es (NAD 83) tude114.4		Elevation How Elevation C	1295.40 m	
		m from			Map	n Obtained				Estimated	Diamed	

Drilling Information			
Method of Drilling	Type of Work	Plugged	1981/10/14
Rotary	New Well-Abandoned	Plugged with	Unknown
Proposed Well Use Domestic		Amount	

Formation Log			Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description	
0.30		Topsoil	
10.06		Sandy Till	
17.68		Clay & Shale	
20.12		Clay & Gravel	
21.03		Shale	
22.86		Clay & Silt	
24.08		Gray Clay	
26.82		Clay & Gravel	
27.43		Lost Circulation	

Yield Test S	Summary				Measure	ement in I	Metric
Recommende	ed Pump R	ate	L/mir	<u> </u>			
Test Date	Water	Removal Rate (L/min)	St	tatic Wate	er Level (m))
Well Comple					Measure	ement in I	Metric
	Drilled Fini	shed Well Depth				nd Date	
27.43 m			1981	/10/11	19	981/10/14	
Borehole							
Diamete			n (m)	-		o (m) 27.43	
0.00 0.00 27.43 Surface Casing (if applicable) Well Casing/Liner							
		0.00 cm				0.00 cm	-
Wall Thickn	ess:	0.000 cm	Wall 7	Thicknes	s:	0.000 cm	
Botton	n at :	0.00 m				0.00 m	
			1	Bottom a	at:	0.00 m	
Perforations		Dit					
		Diameter or Slot	Slo	ot	Hole (or Slot	
From (m)	To (m)	Width(cm)					
	n 0	. 00 m _to		0 m			
Other Seals							
	Type				At (m)		
Screen Type Size		0.00 cm					
	(m)	То	(m)		Slot 9	Size (cm)	
Attachn	nent						
				m Fitting	gs		_
Pack							
Туре _			Grain	Size			
Amount							

Contractor	Certification

Name of Journeyman responsible for drilling/construction of well UNKNOWN NA DRILLER

Company Name

KRIÉGER DRILLING LTD.

Certification No

Copy of Well report provided to owner Date approval holder signed

Printed on 10/24/2014 1:44:25 PM Page: 1 / 2

Water Well Drilling Report

GIC Well ID

View in Imperial Export to Excel

GoA Well Tag No.

391600

Drilling Company Well ID

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database. Date Report Received 1981/11/25 Well Identification and Location Measurement in Metric Address Postal Code Owner Name Town Province Country T0L 0W0 PARKER, G.L. P.O. BOX 123 COCHRANE 1/4 or LSD SEC TWP W of MER RGE Lot Block Plan Additional Description Location NE 31 026 GPS Coordinates in Decimal Degrees (NAD 83) Measured from Boundary of Elevation Latitude 51.267033 Longitude -114.402748 1295.40 m m from How Location Obtained How Elevation Obtained m from Estimated Additional Information Measurement in Metric Distance From Top of Casing to Ground Level Is Artesian Flow Is Flow Control Installed Rate Describe Recommended Pump Rate L/min Pump Installed Depth m Recommended Pump Intake Depth (From TOC) m H.P. Model (Output Rating) m Well Disinfected Upon Completion Did you Encounter Saline Water (>4000 ppm TDS) Depth ____m___ Depth Geophysical Log Taken Gas Submitted to ESRD Sample Collected for Potability Submitted to ESRD Additional Comments on Well Yield Test Taken From Ground Level Test Date Start Time Static Water Level Method of Water Removal Type L/min Removal Rate Depth Withdrawn From m If water removal period was < 2 hours, explain why Water Diverted for Drilling

	water Diverted for Drilling		
	Water Source	Amount Taken L	Diversion Date & Time
_			

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name KRIÉGER DRILLING LTD. Certification No

Water Well Drilling Report

View in Imperial Export to Excel GIC Well ID

395786

GoA Well Tag No.

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database. Date Report Received

Drilling Company Well ID 1982/02/02

Well Ident	tification and L	ocation									Measurement in Metric
Owner Nar PARKER, 0			Address P.O. BOX	123 COCH	RANE	Town			Province	Country	Postal Code
Location	1/4 or LSD NE	SEC 31	<i>TWP</i> 026	RGE 03	W of MER 5	Lot	Block	Plan	Additio	onal Description	
Measured	from Boundary o	of			GPS Coordi	inates in Dec	imal Degree	es (NAD 83	3)		
	•	m from			Latitude	51.267033	Longi	tude <u>-114.</u> 4	102748	Elevation	m
		m from			How Location	on Obtained				How Elevation Of	btained
				- 1	Мар					Not Obtained	

Drilling Information Method of Drilling Type of Work New Well Cable Tool Proposed Well Use Domestic & Stock

Formation Log			Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description	
1.83		Brown Clay & Boulders	
3.35		Gray Clay & Boulders	
3.96		Boulders	
10.97		Brown Clay & Gravel	
13.72		Gravel	
15.54		Brown Shale	
21.64		Gray Hard Shale	
23.16		Gray Hard Sandstone	
25.30		Gray Shale	
26.82		Gray Sandstone	
27.74		Gray Shale	
28.65		Gray Sandstone	
29.26		Gray Soft Sandstone	
30.78		Gray Hard Sandstone	
34.75		Gray Firm Shale	
36.88		Gray Hard Sandstone	
43.89		Gray Firm Shale	
45.11		Gray Hard Sandstone	
54.86		Gray Shale	
56.39	Yes	Gray Water Bearing Sands	tone
62.48		Gray Shale	

Yield Test Sur	nmary				Measu	urement in	Metric	
Recommended	Pump Rat	e 0.0	00 L/mir	<u>1</u>				
Test Date	Water R	Removal Rate ((L/min)	S	tatic Wa	ater Level (m	1)	
1981/11/19		68.19			4	18.77		
Well Completion					Measu	urement in	Metric	
Total Depth Drill	led Finish	ned Well Depti				End Date		
62.48 m			1981	/11/05		1981/11/19		
Borehole								
Diameter (n (m)			To (m)		
0.00 0.00 62.48 Surface Casing (if applicable) Well Casing/Liner Steel Steel								
Size OL) : <u> </u>	7.78 cm		Size O	D :	12.70 cm	_	
Wall Thickness	s :0	.587 cm	Wall	Thicknes	ss :	0.556 cm	_	
Bottom a	t :1	3.72 m		Тора	at :	0.00 m	_	
				Bottom a	at:	62.48 m	_	
Perforations								
		Diameter or Slot	SI	ot	Hol	e or Slot		
From (m)	Го (m)							
48.16		0.953				40.64		
Perforated by	Torch							
_	0.0	0 m to		2 m				
			_					
Other Seals								
	Type				At (m))		
Screen Type								
) <i>:</i>	0.00 cm						
From (n			(m)		Slo	t Size (cm)		
Attachmor	n f							
				m Fittin	ne		_	
			טווטם	iii i itali			_	
Pack			Our !-	Cimo				
Type			Grain	Size				
Amount	0.00							

Contractor	Certification

Name of Journeyman responsible for drilling/construction of well UNKNOWN NA DRILLER

Company Name PARSONS DRILLING Certification No

Copy of Well report provided to owner Date approval holder signed

Printed on 10/24/2014 1:45:00 PM Page: 1 / 2

Water Well Drilling Report

View in Imperial Export to Excel

GIC Well ID GoA Well Tag No. 395786

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

Drilling Company Well ID Date Report Received 1982/02/02

	and Location					Measurement in Metric
Owner Name PARKER, G.L.	Address P.O. BOX 1	23 COCHRANE	Town	Province	Country	Postal Code
Location 1/4 or L	SD SEC TWP 31 026	03 5	Lot Block		nal Description	
Measured from Bound	dary of m from m from	GPS Coordinate Latitude 51.2 How Location O Map		s (NAD 83) ade <u>-114.402748</u>	Elevation How Elevation Ob Not Obtained	
Additional Informati	on					Measurement in Metric
Is Artesian Flow	of Casing to Ground Level	cm		ol Installed		
Recommended Pum Recommended Pum	p Rate p Intake Depth (From TOC)	0.00 L/min 60.96 m	Pump Installed Type			m H.P.
					Model (Output F	Pating)
Did you Encounter		DS) Depth Depth Depth	m m		g Taken	
i					Cub	''' '' '' ''
Additional Comme	nts on Well WATER QUALITY AS TUR	BID	Sample Coll	lected for Potability		mitted to ESRD
		BID	Sample Col.	Taken From (Ground Level	Measurement in Metric
DRILLER REPORTS		Static Water Level 48.77 m		Taken From (Dep		
Yield Test Test Date 1981/11/19 Method of Water Re Ty Removal R	Start Time 12:00 AM	Static Water Level		Taken From (Dep	Ground Level th to water level Elapsed Time	Measurement in Metric
Yield Test Test Date 1981/11/19 Method of Water Re Ty Removal R Depth Withdrawn Fr	Start Time 12:00 AM emoval //pe Bailer ate 68.19 L/min	Static Water Level 48.77 m		Taken From (Dep	Ground Level th to water level Elapsed Time	Measurement in Metric
Yield Test Test Date 1981/11/19 Method of Water Re Ty Removal R Depth Withdrawn Fr	Start Time 12:00 AM Prove Bailer ate 68.19 L/min om 48.77 m	Static Water Level 48.77 m		Taken From (Dep	Ground Level th to water level Elapsed Time	Measurement in Metric
Yield Test Test Date 1981/11/19 Method of Water Re Ty Removal R Depth Withdrawn Fr If water removal period	Start Time 12:00 AM Prove Bailer ate 68.19 L/min om 48.77 m	Static Water Level 48.77 m		Taken From (Deproown (m)	Ground Level th to water level Elapsed Time	Measurement in Metric

Contractor Certification

Name of Journeyman responsible for drilling/construction of well ${\tt UNKNOWN\ NA\ DRILLER}$

Printed on 10/24/2014 1:45:00 PM

Company Name PARSONS DRILLING Certification No

Copy of Well report provided to owner Date approval holder signed

Page: 2 / 2

Company Name

UNKNOWN DRILLER

Water Well Drilling Report

View in Imperial Export to Excel GIC Well ID

Copy of Well report provided to owner Date approval holder signed

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

GoA Well Tag No. Drilling Company Well ID Date Report Received

395793

Well Ident	ification and L	ocation	Address			Town	n		Province	Country	Measurement in Metric Postal Code
KIRK, S.	16			1295 COC	HRANE	7000			TTOVINGE	Country	TOL OWO
Location	1/4 or LSD NE	SEC 31	<i>TWP</i> 026	<i>RGE</i> 03	W of MER 5	Lot	Block	Plan	Additional E	Description	
Measured f	rom Boundary o	m from m from			GPS Coordii Latitude 5 How Locatio Not Verified	51.267033	Long	es (NAD 83) itude <u>-114.4</u>	02748 Ele Ho	evation ow Elevation Ob ot Obtained	
Drilling Info	ormation										
Method of Unknown					Type of Wo Chemistry	rk					
Proposed Domestic	Well Use										
Formation	Log			Me	easurement in	Metric		st Summar	-		Measurement in Metric
Depth from ground leve	Water Bearing	Litholog	gy Descriptio	on			Recomm Test D		Rate ter Removal Rate		Static Water Level (m)
							Total Dep 62.48 m		Finished Well Dep	oth Start Date	Measurement in Metric End Date
							Borehole Dia	meter (cm)	Fro	om (m)	To (m)
							Surface	0.00 casing (if a		0.00 Well Casing	62.48
							Wall Th		0.000 cm 0.00 m	Wall Thickr To Bottoi	p at : 0.00 m m at : 0.00 m Hole or Slot
								Seal I from	0.00 m to	0.00 m	- At (m)
							Screen 1				
								From (m)	0.00 cm	o (m)	Slot Size (cm)
							Atta	achment		Rottom Fits	tings
							Pack				
	Certification										
	urneyman resp NA DRILLER	onsible for	drilling/cons	struction of	well			Certification	n No		

Printed on 10/24/2014 1:45:55 PM Page: 1 / 2

Water Well Drilling Report

View in Imperial Export to Excel

GIC Well ID GoA Well Tag No. Drilling Company Well ID Date Report Received

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

Well Identific	ation and L	ocation										Meas	surement in Metric
Owner Name KIRK, S.			Address P.O. BOX	1295 COCH	IRANE		Town			Province	Coul	ntry	Postal Code T0L 0W0
	1/4 or LSD NE	SEC 31	<i>TWP</i> 026	RGE 03	W of ME 5		Lot	Block	Plan		onal Description		
Measured fron		m from m from				51.2 cation C	267033	•	es (NAD 83 itude114.4	·	Elevation How Elevation Not Obtained	n Obtained	m
Additional Inf	ormation											Meas	urement in Metric
Distance Fron Is Artesian F					cm	_	Is	Flow Cor		d 			
Recommende Recommende	,	е				_/min n		_			Depth	m	
Did you End	counter Saline	e Water (>4		DS) Gas							n Completion g Taken o ESRD		
Additional (Comments or	า Well						Sample C	ollected for I	Potability	;	Submitted to E	ESRD
Yield Test									Ta	ken From (Ground Level	Meas	urement in Metric
Test Date		Start Time		Statio	: Water Lev	rel m							
	Type noval Rate		<u>L/mi</u> n				_						
Depth Withdr	rawn From		m										
If water remov	val period wa	s < 2 hours,	explain wl	hy									
Water Diverte	ed for Drillir	ng											
Water Source				Amo	ount Taken					Diversion	on Date & Time		

Contractor Certification

Name of Journeyman responsible for drilling/construction of well ${\tt UNKNOWN\ NA\ DRILLER}$

Company Name UNKNOWN DRILLER Certification No

Water Well Drilling Report

View in Imperial Export to Excel

GIC Well ID GoA Well Tag No. 494773

The driller supplies the data contained in this report. The Province disclaims responsibility for its

Drilling Company Well ID

accuracy. The information on	this report will be retained in a public database	Date	Report Received	1999/11/25
Well Identification and Location			M	easurement in Metric
Owner Name Address GOETJEN, MORRIE RR1, AIRDRIE	Town	Province	Country CANADA	Postal Code T4B 2A3
Location 1/4 or LSD SEC TWP RGE	W of MER Lot Block	Plan Additional De	scription	
NE 36 26 4	5 GPS Coordinates in Decimal Degree	oos (NAD 92)		
Measured from Boundary of	_		ration	m
m from	How Location Obtained		Elevation Obtained	
m from	Not Verified		Obtained	
Drilling Information				
Method of Drilling	Type of Work			
Rotary	New Well			
Proposed Well Use Stock				
	leasurement in Metric Yield Te	est Summary	M	easurement in Metric
		•	 37 L/min	
Depth from Water Lithology Description ground level (m) Bearing	Test			c Water Level (m)
3.05 Brown Clay	1999/:	11/16 63.65		22.25
23.16 Coarse Grained Gravel	Well Co	mpletion	M	easurement in Metric
29.26 Yes Water Bearing Gravel		pth Drilled Finished Well Deptl		End Date
30.48 Brown Shale	30.48 m		1999/11/15	1999/11/16
	Borehol	е		
	Dia		n (m)	To (m)
	Sunface		00 Well Casing/Line	30.48
	Steel	Casing (if applicable)	well Casing/Line	r
		Size OD : 13.97 cm	Size OD:	0.00 cm
	Wall TI	nickness: 0.620 cm	Wall Thickness :	0.000 cm
	В	ottom at : 28.04 m	Top at :	0.00 m
			Bottom at :	0.00 m
	Perforat	Diameter or		
		Slot	Slot	Hole or Slot
	From (m) To (m) Width(cm)	Length(cm)	Interval(cm)
	Perforate	ed by		
		Seal Driven & Bentonite		
		d from to	28.04 m	
		mount	_	
	Other Se	Type	Δ	t (m)
		Турс		c (III)
	Screen	Typo		
		Size OD: 0.00 cm		
			(m)	Slot Size (cm)
			(···/)	SIDE SIZE (CITI)
	Att	achment		
	Тор	Fittings	Bottom Fittings	
	Pack			
	Туре		Grain Size	
	Amou			

Contractor Certification

Name of Journeyman responsible for drilling/construction of well UNKNOWN NA DRILLER

Company Name

ALKÉN BASIN DRILLING LTD.

Certification No

Copy of Well report provided to owner Date approval holder signed

Printed on 10/24/2014 1:46:32 PM Page: 1 / 2

Water Well Drilling Report

GIC Well ID

View in Imperial Export to Excel

GoA Well Tag No.

494773

Drilling Company Well ID

AIDEILA	THE UTILETS	supplies the data of the information on	contained in this report. The this report will be retained	e Province disclaims re in a public database.	sponsibility for its	Drilling Company We Date Report Receive	
Well Identification	and Location						Measurement in M
<mark>Owner Name</mark> GOETJEN, MORRIE		ress , AIRDRIE		Town	Province	Country CANADA	Postal Co T4B 2A3
Location 1/4 or I	LSD SEC T 36 20	WP RGE	W of MER L 5	.ot Block	Plan Addition	onal Description	
Measured from Bour	ndary of		l .	s in Decimal Degree			
	m from	_			ude <u>-114.426119</u>	Elevation	
	m from	_	How Location Ob	tained		How Elevation Obta	ained
			Not Verified			Not Obtained	
dditional Informa	tion						Measurement in M
	of Casing to Ground L		cm				
Is Artesian Flow				Is Flow Cont	rol Installed		
Rate	L/n	<u>iin</u>			Describe		
Recommended Pun	np Rate		36.37 L/min	Pump Installed	Make	Depth	m
Recommended Pun	np Intake Depth (From		27.43 m	Туре	Make		Н.Р.
						Model (Output Ra	nting)
Did you Encounte	r Saline Water (>4000	ppm TDS)	Depth	m	Well Disinfected Upon	n Completion	
			Depth				
					Submitted :		
				Sample Co	llocted for Potability	Suhm	sitted to ESPD
Additional Comm	ents on Well			Sample Co		Subili	itted to ESRD
		OP OF CASIN	G TO GROUND LEVEL	_: 2'.			
ield Test						Ground Level oth to water level	Measurement in M
Test Date	Start Time	St	atic Water Level	Draw	·	Elapsed Time	Recovery (m)
1999/11/16	12:00 AM		22.25 m	Diawo		Minutes:Sec	Recovery (III)
						1:00	26.82
Method of Water R						2:00	24.38
	Type Air					3:00	23.16
Removal I	Rate 63.65	<u>L/mi</u> n				4:00 5:00	22.71 22.56
Depth Withdrawn F	From 30.48	m				6:00	22.40
*				_		7:00	22.25
lf water removal per	riod was < 2 hours, exp	olain why				8:00	22.25
,	, ,	-				10:00	22.25

Water Diverted for Drilling			
Water Source	Amount Taken	Diversion Date & Time	

Contractor Certification

Name of Journeyman responsible for drilling/construction of well UNKNOWN NA DRILLER

Company Name

ALKÉN BASIN DRILLING LTD.

Certification No

Water Well Drilling Report

View in Imperial Export to Excel GIC Well ID

498400

GoA Well Tag No.

Drilling Company Well ID 2001/06/22

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

			•			-				Date Report Receiv	eu 2001/00/22
Well Identif	fication and L	ocation									Measurement in Metric
Owner Name GIBBS, DAV			Address P.O. BOX	1773 SPRL	JCE VIEW	Town			Province	Country	Postal Code T0M 1V0
Location	1/4 or LSD NW	SEC 31	<i>TWP</i> 026	RGE 03	W of MER 5	Lot	Block	Plan	Additio	onal Description	
Measured fro	om Boundary o	of			GPS Coordinates in Decimal Degrees (NAD 83)						
		m from			Latitude 5	1.267033	Longi	tude <u>-114.4</u>	14280	Elevation	m
		m from			How Location	n Obtained				How Elevation Ob	tained
					Not Verified					Not Obtained	

Drilling Information Method of Drilling Type of Work Cable Tool New Well Proposed Well Use Domestic Yield Test Summary Measurement in Metric

Formation Log			Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description	
4.57		Brown Clay & Rocks	
8.23		Gray Sandstone	
13.72		Gray Shale	
19.51		Gray Sandy Shale	
22.86		Gray Shale	
24.08		Gray Sandstone	
29.87		Gray Shale	
30.78		Blue Shale	
34.14		Gray Silty Shale	
54.56		Gray Shale	
57.30		Gray Sandstone	
67.67		Gray Shale	
71.63		Gray Sandy Shale	
74.68		Gray Shale	

Recommend	ed Pump Ra	ate 9.0	09 L/mir	<u> </u>			
		Removal Rate (St	tatic Water Leve	el (m)	
2001/05/14	1	9.09			10.82		
Well Compl	etion				Measuremen	t in Metri	
Total Depth L	Drilled Fini	shed Well Deptl			End Dat		
74.68 m			2001	/05/07	2001/05	/14	
Borehole							
	er (cm)		n (m)		To (m)		
0.0 Surface Cas			00 Well Ca	asing/Li	74.68 iner		
Steel	• • • • • • • • • • • • • • • • • • • •	•	Plastic	_			
Size	OD :	13.97 cm		D: 11.43			
			Wall 7	Thicknes	ss: 0.602	cm	
Bottor	n at :	24.69 m		Тор а	at : 19.81	m	
			Bottom at : 74.6			m	
Perforations	•						
From (m) 24.69	To (m) 74.68	Diameter or Slot Width(cm) 0.635		ot h(cm)	Hole or Slot Interval(cm 20.32		
Perforated by		0.000			20.02		
Annular Sea		.00 m to	24.60) m			
		.00 III 10		9 111			
Other Seals			_				
	Type		At (m)				
C							
Screen Type Size	OD :	0.00 cm					
	n (m)		(m)		Slot Size (c	m)	
Attach	nont						
				m Eittin	70		
	irigs		Botto	ııı Hıtting	gs		
Pack							
Туре			Grain	Size			
Amount							

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name

MEDICINE VALLEY WATER WELLS

Certification No

Copy of Well report provided to owner Date approval holder signed

Page: 1 / 2 Printed on 10/24/2014 1:47:51 PM

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel 498400

GIC Well ID GoA Well Tag No.

Drilling Company Well ID 2001/06/22 Date Report Received

o Rate o Intake Depth Saline Water (TWP 026 Dund Level L/min (From TOC) >4000 ppm TDS Ga	9 5 6 6 7 7 6 6 9 6 9 6 9 6 9 6 9 6 9 6 9 6	PS Coordinatifude 51 by Location of Verified cm 9.09 L/min 1.63 m Depth Depth	.267033 Obtained	Block bimal Degree Longi s Flow Con c Installed m m	Plan Pes (NAD 83) itude -114.414 pescribe Well Disinfer Geoph Su ollected for Pote	Depute Make Months of the Make Months of the Make Invisional Log Take Abmitted to ESR	h oldel (Output Rabletion	Measurement in Me m H.P. ating)
and the state of t	026 Dund Level L/min (From TOC) >4000 ppm TDS Ga	9 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	ex Coordinatitude 51 by Location of Verified cm 9.09 L/min 1.63 m Depth Depth	Ates in Dec 1.267033 Obtained	s Flow Con o Installed m m	ves (NAD 83) itude114.414 itude114.414 itude114.414 itude114.414 itude114.414 itude114.414	280 Elev How Not Deput Make Montage Montage Make Montage M	h oldel (Output Rabletion	Measurement in Me m H.P ating)
m from m from on f Casing to Gro o Rate o Intake Depth Saline Water (L/min (From TOC) >4000 ppm TDS Ga	La Hd No No S	cm 9.09 L/min 1.63 m Depth Depth	.267033 Obtained	s Flow Con o Installed _ m m	trol Installed	Depi Make Mot Mot Mot Mot Mot Mot Mot Mo	ch Elevation Obtained Characteristics of the content of the conte	Measurement in Me m H.P ating)
m from on f Casing to Gro o Rate o Intake Depth Saline Water (L/min (From TOC) >4000 ppm TDS Ga	Ho No	ew Location of Verified cm 9.09 L/min 1.63 m Depth Depth	Obtained I. Pump Type	s Flow Con o Installed _ m m	well Disinfed Geoph Su	Depi Make Mot Mot Mot Mot Mot Mot Mot Mo	ch Elevation Obtained Characteristics of the content of the conte	Measurement in Me m H.P ating)
on f Casing to Gro Rate Intake Depth Saline Water (Ints on Well DISTANCE FE	L/min (From TOC) >4000 ppm TDS Ga	9 7/	cm 9.09 L/min 1.63 m Depth Depth	l. Pump Type	m m	Well Disinfed Geoph Su	Depi	obtained h odel (Output Repletion	Measurement in Me m H.P ating) mitted to ESRD
o Rate o Intake Depth Saline Water (L/min (From TOC) >4000 ppm TDS Ga	5) 7'	9.09 L/min 1.63 m	Ритр Туре	m m	Well Disinfed Geoph Su	Depi Make	h odel (Output Re pletion n Subn	m H.P ating) mitted to ESRD
o Rate o Intake Depth Saline Water (L/min (From TOC) >4000 ppm TDS Ga	5)ss	9.09 L/min 1.63 m Depth Depth	Ритр Туре	m m	Well Disinfed Geoph Su	Department Department	h odel (Output Ra oletion n C Subn	m H.P ating) mitted to ESRD
o Rate o Intake Depth Saline Water (L/min (From TOC) >4000 ppm TDS Ga	5)ss	9.09 L/min 1.63 m Depth Depth	Ритр Туре	m m	Well Disinfed Geoph Su	Department Department	h odel (Output Ra oletion n C Subn	m H.Pating)
o Rate o Intake Depth Saline Water (L/min (From TOC) >4000 ppm TDS Ga	5 7' (6)	9.09 L/min 1.63 m Depth Depth	Ритр Туре	m m	Well Disinfed Geoph Su	Department Department	h odel (Output Ra oletion n C Subn	m H.Pating)
o Rate o Intake Depth Saline Water (nts on Well DISTANCE FE	(From TOC) >4000 ppm TDS Ga	5 7' (6)	9.09 L/min 1.63 m Depth Depth	Ритр Туре	m m	Well Disinfed Geoph Su ollected for Pot	Make	h odel (Output Ra oletion n Subn	m H.Pating)
Saline Water (: nts on Well DISTANCE FE	>4000 ppm TDS Ga ROM TOP OF C	7′ (S) (S)	Depth Depth	Туре	m m	Well Disinfed Geoph Su ollected for Pot	Make	odel (Output Re oletion n D Subn	H.Pating)
Saline Water (nts on Well DISTANCE FR	>4000 ppm TDS Ga ROM TOP OF C	8) ss	Depth Depth		m m	Well Disinfed Geoph Su ollected for Pot	Mocted Upon Comp nysical Log Take abmitted to ESR dability	odel (Output Ri oletion n D Subn	ating)
nts on Well DISTANCE FF	Ga ROM TOP OF C		Depth		m	Geoph Su ollected for Pot	cted Upon Comp nysical Log Take ubmitted to ESR tability	oletion n D Subn	nitted to ESRD
nts on Well DISTANCE FF	Ga ROM TOP OF C		Depth		m	Geoph Su ollected for Pot	nysical Log Take ubmitted to ESR tability	n D Subn	mitted to ESRD
DISTANCE F	ROM TOP OF C					Su	ubmitted to ESR.	Subn	mitted to ESRD
DISTANCE F		ASING TO GF	ROUND LE	VEL: 1'.	Sample Co	ollected for Pot	tability	Subn	
DISTANCE F		ASING TO GE	ROUND LE	VEL: 1'.	Sample Co				
DISTANCE F		ASING TO GF	ROUND LE	VEL: 1'.					
		ASING TO GF	ROUND LE	VEL: 1'.		Takei	n From Group	d I aval	Measurement in Me
Start Tin	ne					Takei	n From Group	al I accal	Measurement in Me
Start Tin	ne								
Start Tin	ne					ranoi	Depth to w		Wododiomont in We
12:00 A		Static Wate	er Level 0.82 m		Draw	vdown (m)	Elapsed Minute	l Time	Recovery (m)
marral							1:0		54.32
									53.77 53.28
	0.00 1/:-			_					52.88
							5:0	00	52.40
om	0.00 m								52.09
									51.82
od was < 2 nou	rs, explain wny								51.58
									51.19 50.81
									50.38
									50.05
									49.50
									48.05
							25:	00	46.09
									44.84
									43.08
									41.53
									39.01
									36.32
									33.19
									30.57
									28.79 26.93
							120	.00	20.33
Drilling									
		Amount T	Taken				Diversion Date	& Time	
		Amount					Divorsion Date	, a mine	
Referen	rom	Type Bailer Rate 9.09 L/min rom 0.00 m Tipod was < 2 hours, explain why	Type Bailer Rate 9.09 L/min 0.00 m iod was < 2 hours, explain why Drilling	Type Bailer Rate 9.09 L/min Type 0.00 m siod was < 2 hours, explain why	Type Bailer Rate 9.09 L/min rom 0.00 m riod was < 2 hours, explain why Drilling Amount Taken	Type Bailer Rate 9.09 L/min rom 0.00 m iod was < 2 hours, explain why Drilling Amount Taken	Type Bailer Rate 9.09 L/min From 0.00 m From 0.00 m From 0.00 m From 0.00 m From 0.00 m From 0.00 m From 0.00 m From 0.00 m From 0.00 m From 0.00 m	State 9.09 L/min 4:0 5:0	Since Sinc

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

UNKNOWN NA DRILLER

Company Name

MEDICINE VALLEY WATER WELLS

Certification No

Copy of Well report provided to owner Date approval holder signed

Printed on 10/24/2014 1:47:51 PM Page: 2 / 2

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel GIC Well ID

1022436

GoA Well Tag No. Drilling Company Well ID Date Report Received

2014/09/24

Measurement in Metric

Well Identi	fication and L	ocation									Measurement in Me	etric
Owner NameAddressLAFARGE CANADA INC115 QUAR		RRY PARK	/ PARK BLVD CALC					Country CANADA	Postal Cod T2C 5G9	le		
Location	1/4 or LSD 9	SEC 36	<i>TWP</i> 26	RGE 4	W of MER 5	Lot	Block	Plan	Additio	nal Description		
Measured from Boundary of m from					GPS Coordin Latitude 5	nates in Dec 1.265686	•	es (NAD 83 itude114.	<i>'</i>	Elevation	m	
m from					How Location Obtained Hand held autonomous GPS 20-30m					How Elevation Ob Hand held autono	ntained mous GPS 20-30m	

Drilling Information Method of Drilling Type of Work New Well Rotary - Air Proposed Well Use Investigation Yield Test Summary

Formation Log			Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description	
0.30		Topsoil	
4.27		Brown Moist Clay	
25.30		Gravel	
28.35		Moist Gravel	
29.26		Sandstone	
30.48		Shale	

	Rate	L/111111	
Test Date Wa	ter Removal Rate (L/min)	Static Water Level (m)
Well Completion			Measurement in N
Total Depth Drilled F			
30.48 m 2	8.35 m	2014/05/01	2014/05/05
Borehole			
Diameter (cm)	From	n (m)	To (m)
20.02 15.56	0. 25	.60	25.60 30.48
Surface Casing (if a			
Steel	орпсаыс)	Wen Gasing/i	inci
Size OD:	16.81 cm	Size	OD :
Wall Thickness:	0.478 cm	Wall Thickne	ess: cm
Bottom at :	25.60 m		at: m
			at: m
Perforations			
	Diameter or	.	
From (m) To (m	Slot Width(cm)	Slot	Hole or Slot
Perforated by			
Annular Seal Ceme			
Annular Seal Ceme	0.00 m to		
Annular Seal Placed from Amount Other Seals	0.00 m to		At (m)
Annular Seal Ceme Placed from Amount Other Seals	0.00 m to		
Annular Seal Placed from Amount Other Seals	0.00 m to 150.00 Gallons		At (m)
Annular Seal Placed from Amount Other Seals Type Drive Screen Type Stainl	0.00 m to 150.00 Gallons		At (m)
Annular Seal Placed from Amount Other Seals Screen Type Stainl Size OD: From (m)	0.00 m to	(m)	At (m)
Annular Seal Placed from Amount Other Seals Screen Type Stainl Size OD: From (m) 26.21	0.00 m to	(m)	At (m) 25.60
Annular Seal Placed from Amount Other Seals Type Drive Screen Type Stainl Size OD: From (m) 26.21 Attachment Tel	0.00 m to	(m) .43	At (m) 25.60 Slot Size (cm) 0.025
Annular Seal Placed from Amount Other Seals Screen Type Stainl Size OD: From (m) 26.21	0.00 m to	(m)	At (m) 25.60 Slot Size (cm) 0.025
Annular Seal Placed from Amount Other Seals Type Drive Screen Type Stainl Size OD: From (m) 26.21 Attachment Tel	0.00 m to	(m) .43	At (m) 25.60 Slot Size (cm) 0.025
Annular Seal Placed from Amount Other Seals Type Drive Screen Type Stainl Size OD: From (m) 26.21 Attachment Tel Top Fittings Pack	0.00 m to	(m) .43	At (m) 25.60 Slot Size (cm) 0.025 ngs Tail Pipe

Contractor Certification

Name of Journeyman responsible for drilling/construction of well ${\sf CHRIS}\,$ ${\sf QUINLAN}\,$

Company Name AARON DRILLING INC. Certification No

48135A

Copy of Well report provided to owner Yes

Date approval holder signed

2014/09/24

Water Well Drilling Report

GIC Well ID

View in Imperial Export to Excel 1022436

GoA Well Tag No.

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

Drilling Company Well ID 2014/09/24 Date Report Received

Well Identification and Location	n				·	Measurement in Metric
Owner Name LAFARGE CANADA INC	Address 115 QUARRY PAR	K BLVD	Town CALGARY	Provinc ALBER	,	Postal Code T2C 5G9
Location 1/4 or LSD SEC 9 36	<i>TWP</i> RGE 26 4	5		Plan Addit	ional Description	
Measured from Boundary of m from m from		Latitude <u>51.2</u> How Location C		tude -114.424418	Elevation How Elevation Obtained Hand held autonor	ained
Additional Information						Measurement in Metric
Distance From Top of Casing to C Is Artesian Flow Rate				trol Installed		
Recommended Pump Rate Recommended Pump Intake Dep		L/min m		_	Depth	
Did you Encounter Saline Wate	r (>4000 ppm TDS) Gas		m m	Well Disinfected Upo Geophysical L Submitted	og Taken	
Additional Comments on Well PUMP TEST PERFORMED BY W	/ATERLINE RESOURC	ES	Sample Co	ollected for Potability _	Subn	nitted to ESRD
Yield Test				Taken From	Ground Level	Measurement in Metric
Test Date Start 7	Fime St	atic Water Level m				
Method of Water Removal Type			 -			
Removal Rate Depth Withdrawn From						
If water removal period was < 2 h	ours, explain why					
Water Diverted for Drilling						
Water Source CITY OF CALGARY		mount Taken 092.18 L			sion Date & Time 04/29 8:00 AM	

Contractor Certification

Name of Journeyman responsible for drilling/construction of well ${\sf CHRIS}\,$ ${\sf QUINLAN}\,$

Company Name AARON DRILLING INC. Certification No

48135A

Copy of Well report provided to owner Yes

Date approval holder signed 2014/09/24

Printed on 12/24/2014 10:48:54 AM Page: 2 / 2

of Alberta

Government Water Well Drilling Report

GIC Well ID

View in Imperial Export to Excel

GoA Well Tag No.

			racy. The info		2	Date Report Received					
Well Ident	tification and L	ocation									Measurement in Metric
Owner Name Address QUICK WAY FARMS LTD P.O. BOX 1719				Town BRO	-		Province AB	Country CA	Postal Code T1R 1C5		
Location	1/4 or LSD	SEC	TWP	RGE	W of MER	Lot	Block	Plan	Additional L	Description	

Postal Code T1R 1C5 GPS Coordinates in Decimal Degrees (NAD 83) Measured from Boundary of Elevation ____ Latitude 51.267444 Longitude -114.400639 m m from How Elevation Obtained How Location Obtained m from Hand held autonomous GPS 20-30m Not Obtained

Drilling Information Method of Drilling Type of Work New Well Rotary Proposed Well Use Domestic Yield Test Summary

Formation Log			Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description	
2.13		Clay	
21.03		Clay & Gravel	
23.16		Clay	
26.82		Gray Shale	
28.65		Gray Sandy Shale	
31.39		Gray Shale	
31.70		Sandstone	
33.53		Shale	
35.97		Sandstone	
39.62		Shale	

riela rest Sullill					easurement in Me	uiic
Recommended Pu	mp Rate	36.	37 L/min			
Test Date	Water R	emoval Rate	(L/min)	Stat	ic Water Level (m)	
2003/01/15		45.46			32.00	
Well Completion				M	easurement in Me	tric
Total Depth Drilled	Finish	ed Well Dept	h Start			
39.62 m			2003/	01/10	2003/01/14	
Borehole						
Diameter (cn	1)	Fror	n (m) .00		To (m)	
22.23	Surface Casing (if applicable)				39.62	
Steel			Well Ca Unknow			
Size OD:				cm		
Wall Thickness:		Wall 7				
Bottom at :	Bottom at : 35.9			Top at :	: <u>m</u>	
			E	Bottom at :		
Perforations						
	Diameter o			ot	Hole or Slot	
From (m) To	From (m) To (m)				Interval(cm)	
32.00 35	.97	0.318			25.40	
Perforated by	Torch					
Annular Seal Dri	iven & B	entonite				
Placed from	0.00	0 m to	31.39	9 m		
Other Seals						
Т	уре		At (m)			
Screen Type						
Size OD:		cm				
From (m)		То	(m)		Slot Size (cm)	
Attachment _						
Top Fittings				m Fittings		
Pack						
Type Unknown			Grain	Size		
Amount	U	nknown				

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

WILLIAM PENROD

Company Name

M&M DRILLING CO. LTD.

Certification No

A000187

Water Well Drilling Report

View in Imperial Export to Excel GIC Well ID

1475698

GoA Well Tag No. Drilling Company Well ID Date Report Received

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

Well Identification and Location				Measurement in Metric
Owner Name Address QUICK WAY FARMS LTD P.O. BOX 1		Town BROOKS	Province Cou. AB CA	ntry Postal Code T1R 1C5
Location 1/4 or LSD SEC TWP 16 31 026	03 5		Additional Description	
Measured from Boundary of		in Decimal Degrees (NAD 83)		
m from		444 Longitude -114.40		
m from	How Location Obta	ained	How Elevation	n Obtained
	Hand held autonon	nous GPS 20-30m	Not Obtained	
Additional Information				Measurement in Metric
Distance From Top of Casing to Ground Level	60.96 cm			
Is Artesian Flow		Is Flow Control Installed		
Rate L/min				
Recommended Pump Rate	36.37 L/min	Pump Installed	Depth	m
Recommended Pump Intake Depth (From TOC)		Туре	Make	Н.Р.
			Model (Outp	out Rating)
Did you Encounter Saline Water (>4000 ppm TE	(S) Denth	m Well Disint		
			physical Log Taken	
	as		Submitted to ESRD	
		Sample Collected for P	otability	Submitted to ESRD
Additional Comments on Well				
FIELD TEST HARD WATER TDS 250, GPS # 51.	2671333, N-51-16.0-2.8, W-11	14-24-2.3, -114.40038333, B	OREHOLE DIAMETER 8.7	5" TO 103' & 6.25" TO 130'
Yield Test		Tak	en From Ground Level	Measurement in Metric
		Tan	Depth to water level	
Test Date Start Time 2003/01/15 12:00 AM	Static Water Level 32.00 m	Drawdown (m)	Elapsed Time Minutes:Sec	Recovery (m)
		32.39	1:00	32.81
Method of Water Removal		32.59	2:00	32.69
Type Pump		32.69	3:00	32.65
Removal Rate 45.46 L/min		32.75 32.83	4:00 5:00	32.61 32.60
Depth Withdrawn From 35.05 m		32.85	6:00	32.56
		32.89	7:00	32.51
If water removal period was < 2 hours, explain why	/	32.90	8:00	32.49
		32.92	9:00	32.47
		32.94	10:00	32.45
		32.99 33.02	12:00 14:00	32.40 32.37
		33.05	16:00	32.34
		33.08	20:00	32.32
		33.13	25:00	32.28
		33.06	30:00	32.26
		33.19	35:00	32.23
		33.24	40:00	32.21
		33.27	50:00	32.20
		33.28	60:00	32.16
		33.31	75:00	32.12
		33.32 33.34	90:00 105:00	32.10 32.09
		33.35	120:00	32.06
		33.33	120.00	32.00
Water Diverted for Drilling				
Water Source	Amount Taken		Diversion Date & Time	

Contractor Certification

Name of Journeyman responsible for drilling/construction of well WILLIAM $\,$ PENROD $\,$

Company Name M&M DRILLING CO. LTD. Certification No

A000187

Water Well Drilling Report

GIC Well ID GoA Well Tag No.

View in Imperial Export to Excel

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

Drilling Company Well ID Date Report Received

1475699

Well Identi	fication and L	ocation									Measurement	in Metric
Owner Nam QUICK WAY	ne Y FARMS LTD		Address P.O. BOX	1719		Town BROC	OKS		Province AB	Country CA	Posta T1R 1	l Code C5
Location	1/4 or LSD 15	SEC 31	<i>TWP</i> 026	RGE 03	W of MER 5	Lot	Block	Plan		onal Description K WELL		
Measured fi		m from m from			GPS Coordir Latitude 5 How Location Hand held au	1.267556 n Obtained	Long	itude <u>-114.</u> 4	·	Elevation How Elevation Ob Not Obtained	m otained	
•												

Drilling Information Method of Drilling Type of Work New Well Rotary Proposed Well Use Domestic

Formation Log		Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description
2.44		Clay & Rocks
27.43		Lost Circulation Gravel
28.96		Shattered Shale
32.92		Brown Sandstone
34.75		Gray Sandstone
45.72		Shale & Sandstone Ledges
47.24	Yes	Water Bearing Sandstone
50.29	Yes	Water Bearing Shale
50.90	Yes	Water Bearing Sandstone
53.95		Shale

riela rest Sun	•				neasurement in w	Cuic	
Recommended F	Pump Rat	e <u>27</u>	.28 L/min				
Test Date	Water R	emoval Rate	(L/min)	Sta	tic Water Level (m)		
2003/01/20		24.55			32.64		
Well Completic	n			٨	Measurement in M	etric	
Total Depth Drille	ed Finish	ed Well Dep	th Start	Date	End Date		
53.95 m			2003	/01/15	2003/01/17		
Borehole							
Diameter (cm)	Fro	m (m)		To (m)		
22.23			0.00		53.95		
Surface Casing Steel		•	Well Ca Plastic	asing/Lin	er		
Size OD	:1	4.13 cm		Size OD	: 11.43 cm		
			Wall 7	Thickness	: 0.544 cm		
Bottom at	:3	0.18 m		Top at	: 23.47 m		
			L	Bottom at	: 53.95 m		
Perforations							
		Diameter or Slot		ot	Hole or Slot		
From (m) T	o (m)				Interval(cm)		
43.28		0.635			25.40		
Perforated by	Saw						
Annular Seal	Oriven & E	entonite					
Placed from _	0.0	0 m to	30.18	3 m			
Amount _			_				
Other Seals							
	Type			,	At (m)		
Screen Type							
Size OD	:	cm					
From (m	1)	To	o (m)		Slot Size (cm)		
Top Fittings			Botto	m Fittings		_	
Pack							
Type Unknow	vn		Grain	Size			
Amount	ι	Inknown					

Contractor	Certification
Contractor	Certification

Name of Journeyman responsible for drilling/construction of well WILLIAM PENROD

Company Name

M&M DRILLING CO. LTD.

Certification No

A000187

Well Identification and Location

Address

Water Well Drilling Report

View in Imperial Export to Excel

1475699

Measurement in Metric

Postal Code

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

GIC Well ID GoA Well Tag No. Drilling Company Well ID Date Report Received

Owner Name QUICK WAY FARMS LTD							wn Provi			Country CA	Postal Co T1R 1C5
Location	1/4 or LSD 15	SEC 31	<i>TWP</i> 026	RGE 03	W of MER Lot Blo					nal Description K WELL	
Manaumadi			020		GPS Coordir	nates in De	ecimal Degre	es (NAD 83)		VVLLL	
vieasurea i	from Boundary	m from			Latitude 5					Elevation	m
	-				How Location					How Elevation O	
	-	m from			Hand held a			n		Not Obtained	
Additional	Information										Measurement in N
	From Top of Cas	sina to Gro	und Level		60.96 cm						
Is Artesia			_				Is Flow Con	trol Installed			
	Rate		L/min					Describe			
Recomme	nded Pump Ra				27.28 L/mir	n Pun	np Installed	<u>'</u>		Depth	m
			From TOC		42.67 m	Tyr	ne _		Make		H.P.
rtocommo	naca r amp inte	ane Depart	110111100)		42.07 111	_ ''y			Wake	Model (Output l	Rating)
Did you	Encounter Salir	no Wator (>	4000 nnm 7	TDS)	Donth			Woll Disinf	incted Upon	Completion	
שום אטע ווים	LINGUINEI SAIII	ie vvalei (>	τουυ μμππ					VVEII DISIIII			
				Gas	Depth		m			g Taken	
									Submitted to	o ESRD	
ield Test								Tak		Ground Level	Measurement in I
Test Date		Start Tim	е	Sta	tic Water Level		_			th to water level	
2003/01/20	0	12:00 AM	1		32.64 m		Draw	down (m)		Elapsed Time Minutes:Sec	Recovery (m)
								35.07		1:00	36.99
Method of	f Water Remov	/al						35.73		2:00	36.20
	Туре	Pump						35.83		3:00	36.12
F	Removal Rate	2	24.55 L/min					36.01		4:00	36.02
Denth Wit	thdrawn From		53 34 m					36.22		5:00	35.91
Dopar vvii	_		50.0+ 111					36.37 36.49		6:00 7:00	35.79 35.72
If water re	moval period wa	as < 2 hour	s exnlain w	hv				36.62		8:00	35.61
n water rei	movar pomoa w	ao < 2 mour	o, oxpiaii v	, , y				31.24		9:00	35.45
								36.86		10:00	35.41
								36.96		12:00	35.29
								37.11		14:00	35.16
								36.91		16:00	35.05
								37.40		20:00	34.88
								37.58		25:00	34.75
								37.76		30:00	34.59
								37.90		35:00	34.50
								38.01		40:00	34.40
								38.28		50:00	34.27
								38.43		60:00	34.14
								38.71		75:00	34.03
								38.91		90:00	33.91
								39.09		105:00	33.83

Contractor	Certification
Contiductor	Continuation

Water Diverted for Drilling

Water Source

Name of Journeyman responsible for drilling/construction of well

WILLIAM PENROD

Company Name M&M DRILLING CO. LTD. Amount Taken

Diversion Date & Time

120:00

Certification No A000187

39.24

Copy of Well report provided to owner

Date approval holder signed

33.74

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel GIC Well ID

1556533

GoA Well Tag No. Drilling Company Well ID

2014/06/04

		Date Report Received	d 2014/06/04								
Well Ident	ification and L	ocation									Measurement in Metric
Owner Nan SOUTH RC			Address P.O. BOX	460		Town MEDI	CINE HAT		Province ALBERTA		Postal Code T1A 7G2
Location	1/4 or LSD 4	SEC 32	<i>TWP</i> 26	RGE 3	W of MER 5	Lot	Block	Plan		nal Description RVATION HOLE #5	
Measured f		m from m from			GPS Coordir Latitude 5 How Location Differential co	1.258118 n Obtained	Longi	tude <u>-114.3</u>	·	How Elevation Obtain	270.00 m ined I handheld GPS 5-10m

Drilling Information Method of Drilling Type of Work Rotary - Mud Other Proposed Well Use Monitoring

Formation Log		Measurement in Metric	
Depth from ground level (m)	Water Bearing	Lithology Description	
0.30		Black Topsoil	
6.40		Brown Clay	
11.89		Gray Gravel	
13.72		Gray Shale	

Yield Test Summary			Measurement in Metric				
Recommended Pump F	Rate	L/min_					
Test Date Wate			tatic Water Level (m)				
Well Completion			Measurement in Metric				
Total Depth Drilled Fire			End Date				
13.72 m 13.	.72 m	2014/05/08	2014/05/08				
Borehole							
Diameter (cm) 14.29	From 0.0		To (m) 13.72				
Surface Casing (if app		Well Casing/L					
1 1 3 · //		Plastic					
Size OD :	cm	Size O	D: 6.35 cm				
Wall Thickness :	cm	Wall Thicknes					
Bottom at :	m		at : -0.91 m				
B. G. office		Bottom	at: 13.72 m				
Perforations	Diameter or						
	Slot	Slot	Hole or Slot				
From (m) To (m)	Width(cm)	Length(cm)	Interval(cm)				
Perforated by Annular Seal Bentoni Placed from Amount	•						
Other Seals		_					
Туре		At (m)					
Screen Type Slotted Size OD:							
From (m)		m)	Slot Size (cm)				
10.67	13.		0.254				
Attachment Attac							
Top Fittings Riser	Pipe	Bottom Fitting	gs Plug				
Pack							
Type Sand		Grain Size 1	0-20				
Amount 200.00	Pounds						

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

CHAD NIEMANS

Company Name

NIEMANS DRILLING (1980) LTD.

Certification No

46340A

Copy of Well report provided to owner

Date approval holder signed 2014/06/04

Printed on 1/13/2015 2:18:43 PM Page: 1 / 2

Well Identification and Location

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel

GIC Well ID GoA Well Tag No.

1556533

Drilling Company Well ID Date Report Received

2014/06/04

Measurement in Metric

	Owner Name Address SOUTH ROCK LTD P.O. BC			460				Province ALBERTA	Count CANA	,	Postal Code T1A 7G2	
Location	1/4 or LSD 4	SEC 32	<i>TWP</i> 26	RGE 3	W of MER 5	Lot		Plan	OBSER	nal Description VATION HOLE #	‡ 5	
Measured t	from Boundary	of m from m from			GPS Coordii Latitude 5 How Locatio Differential c	51.258118 on Obtained	Longi	itude <u>-114.3</u>		Elevation How Elevation Differential corr	Obtained	
Additional	Information										Measur	ement in Metric
	rom Top of Cas n Flow Rate				_	J.	s Flow Con					
	nded Pump Ra nded Pump Inta				L/mii m					Depth Model (Outpu		
Addition	Encounter Salir	on Well	(I)	Gas		h h	m Sample Co	Geo	physical Log	Completion <u>Yes</u> Taken ESRDSI		RD
Yield Test				-	W			Tak	en From G	round Level	Measur	ement in Metric
Test Date		Start Tim	10	Sta	tic Water Level m							
F Depth Wit	f Water Remov Type Removal Rate thdrawn From moval period w		L/min m			_						
ii water re	movai penod wa	3S < 2 HOUI	rs, explain wi	riy								
Water Div	erted for Drilli	ng										
Water Soul	rce OKOTOKS				nount Taken 18.44 L	_				n Date & Time 08 7:00 AM		

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

CHAD NIEMANS

Company Name

NIEMANS DRILLING (1980) LTD.

Certification No

46340A

Copy of Well report provided to owner

Date approval holder signed

2014/06/04 Yes

Page: 2 / 2 Printed on 1/13/2015 2:18:43 PM

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel GIC Well ID

1556534

GoA Well Tag No. Drilling Company Well ID

2014/06/04

Well Identification and Location Owner Name SOUTH ROCK LTD P.O. BOX 460 MEDICINE HAT Address P.O. BOX 460 MEDICINE HAT ALBERTA CANADA T1A 7G2 Location 1/4 or LSD SEC TWP RGE 4 32 26 3 5 Measured from Boundary of m from m from Measured from Boundary of Differential corrected handheld GPS 5-10m Measured from Boundary of Differential corrected handheld GPS 5-10m Measured from Boundary of Differential corrected handheld GPS 5-10m			accu	Date Report Recei	ved 2014/	06/04							
SOUTH ROCK LTD P.O. BOX 460 MEDICINE HAT ALBERTA CANADA T1A 7G2 Location 1/4 or LSD SEC TWP RGE W of MER Lot Block Plan Additional Description OBSERVATION WELL #6 Measured from Boundary of m from m from CPS Coordinates in Decimal Degrees (NAD 83) Latitude 51.257155 Longitude -114.394328 Elevation 1277.00 m How Location Obtained How Elevation Obtained How Elevation Obtained	Well Identi	fication and L	ocation									Measurer	ment in Metric
4 32 26 3 5 OBSERVATION WELL #6 Measured from Boundary of m from GPS Coordinates in Decimal Degrees (NAD 83) Latitude 51.257155 Longitude -114.394328 Elevation 1277.00 m Mow Location Obtained How Elevation Obtained											,		
m from Latitude 51.257155 Longitude -114.394328 Elevation 1277.00 m How Location Obtained How Elevation Obtained	Location	1/4 or LSD 4			RGE 3	W of MER 5	Lot	Block	Plan		,		
	m from					Latitude 51.257155 Longitude -114.394328 How Location Obtained					How Elevation Ob	btained	

Drilling Information Method of Drilling Type of Work Rotary - Mud Other Proposed Well Use Monitoring

Formation Log		Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description
5.79		Brown Sandy Clay & Rocks
8.84		Gray Gravel
10.97		Gray Shale

Yield Test Summary	•										
Recommended Pump Ra	ite	L/min_									
Test Date Water	Removal Rate (l	_/min)	Static Water Level (m)								
Well Completion			Measurement in Metric								
Total Depth Drilled Finis											
10.97 m 10.9	7 m	2014/05/1	2 2014/05/12								
Borehole											
Diameter (cm) 14.29	From 0.0		To (m) 10.97								
Surface Casing (if applicable) Well Casing/Liner Plastic											
Size OD :	cm	Size	OD: 6.35 cm								
Wall Thickness :	cm	Wall Thick	ness: 0.518 cm								
Bottom at :	m	To	op at : -0.91 m								
		Botto	m at : 10.97 m								
Perforations											
	Diameter or Slot	Slot	Hole or Slot								
From (m) To (m)	Width(cm)	Length(cm									
Perforated by											
Annular Seal Bentonite	Chips/Tablets										
Placed from 0.	•	7.01 m									
Amount			_								
Other Seals		_									
Туре			At (m)								
Screen Type Slotted P	VC										
Size OD :	6.35 cm										
From (m)	To (m)	Slot Size (cm)								
A	IT 0 :										
Attachment Attach		5 " 5									
Top Fittings Riser F	ripe	Bottom Fit	ttings Plug								
Pack											
Type Sand		Grain Size 10-20									
Amount 200.00	Pounds										

Contractor Certification

Name of Journeyman responsible for drilling/construction of well CHAD NIEMANS

Company Name

NIEMANS DRILLING (1980) LTD.

Certification No

46340A

Copy of Well report provided to owner

Date approval holder signed 2014/06/04

Printed on 1/13/2015 2:20:48 PM Page: 1 / 2

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel GIC Well ID

1556534

GoA Well Tag No.

Drilling Company Well ID Date Report Received 2014/06/04

Well Identification a	and Location									ſ	Measurement in Meti
Owner Name SOUTH ROCK LTD		Address P.O. BOX	460			Town MEDICINE HA	ΑT	Province ALBERTA		ountry ANADA	Postal Code T1A 7G2
Location 1/4 or L 4	SD SEC 32	<i>TWP</i> 26	RGE 3	W of ME 5		Lot Bloci		OBSER	nal Description		
Measured from Boun	dary of m from m from			Latitude How Loc	<u>51.2</u> ation 0	es in Decimal De 257155 Lo Obtained ected handheld G	ngitude <u>-1</u>	· ·	Elevation How Eleva Differential	tion Obtain	
Additional Informat	ion									ľ	Measurement in Metr
Distance From Top of Is Artesian FlowRate				91.44 cm	_			alled			
Recommended Pum	p Rate			L	_/min	Pump Installe	ed		Depth		m
Recommended Pum	p Intake Depth	(From TOC)		r	n	Туре		Make	Model (O	H.	P
Did you Encounter Additional Comme	ents on Well	\I\	Gas	Ā	epth	Sample		Disinfected Upon Geophysical Log Submitted to	Taken		od to ESRD
Yield Test				_				Taken From G	Ground Leve	el N	Measurement in Metr
Test Date	Start Ti	me	Stat	<i>tic Water Lev</i> r	e/ n						
Method of Water Ro	emoval ype										
	ate										
Depth Withdrawn Fr	rom	m									
If water removal peri	od was < 2 ho	urs, explain wi	hy								
Water Diverted for	Drilling										
Water Source TOWN OF OKOTOK	S			nount Taken 27.66	L				n Date & Tin /12 7:00 AM	пе	

Contractor Certification

Name of Journeyman responsible for drilling/construction of well ${\sf CHAD\ NIEMANS}$

Company Name

NIEMANS DRILLING (1980) LTD.

Certification No

46340A

Copy of Well report provided to owner Yes

Date approval holder signed 2014/06/04

Printed on 1/13/2015 2:20:48 PM Page: 2 / 2

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel

1556535

GIC Well ID GoA Well Tag No.

Drilling Company Well ID
Date Report Received 2

2014/06/04

Well Ident	tification and L	_ocation										Measure	ment in Metric
Owner Name SOUTH ROCK LTD		Address P.O. BOX	460	<i>Town</i> MEDICINE HAT			Province ALBER1		Country CANADA		Postal Code T1A 7G2		
Location	1/4 or LSD 4	SEC 32	TWP 26	RGE 3	W of MER 5	Lot	Block	Plan		onal Descript			
Measured	Measured from Boundary of				GPS Coordinates in Decimal Degrees (NAD 83)								
		m from			Latitude 51.255906 Longitude -114.392635			392635	Elevation 1273.00 m				
		m from			How Location Obtained				How Elevation Obtained				
					Differential corrected handheld GPS 5-10m				Differential corrected handheld GPS 5-10m				

Drilling Information

Method of Drilling
Rotary - Mud
Other

Proposed Well Use
Monitoring

Formation Log
Measurement in Metric
Vield Test Summary
Measurement in Metric

Formation Log			Measurement in Metric
Depth from ground level (m)	Water Bearing	Lithology Description	
3.66		Brown Clay & Rocks	
11.28		Gray Gravel	
12.19		Gray Shale	

Yield Test St	ummary		Measurement in Metric						
Recommende	d Pump Ra	nte	L/min						
Test Date	Water	Removal Rate (I	_/min)	Static Water Level (m)					
Well Comple	tion			Measurement in Metri					
•		shed Well Depth	Start Date						
12.19 m	12.1	,		2014/05/13					
Borehole									
Diamete	r (cm)	From	(m)	To (m)					
2.0	. (6.11)		(,						
Surface Casin	ng (if appli	icable)		Liner					
	. /\		Plastic						
	DD :			OD: 6.35 cm					
Wall Thickne				ess: 0.518 cm					
Bottom	at:	m		at: -0.91 m					
			Bottom	nat: 12.19 m					
Perforations									
		Diameter or Slot	Slot	Hole or Slot					
From (m)	To (m)		Length(cm)						
Placed from	n <u> </u>	e Chips/Tablets 91 m to 250.00 Pounds							
Other Seals			-						
	Туре			At (m)					
	,,-			,					
Screen Type	Plastic								
Screen Type Size (6.35 cm							
Size (DD :	6.35 cm	m)	Slot Size (cm)					
Size (OD : (m)			Slot Size (cm) 0.000					
Size (From 9.1	OD : (m) 4	To (19						
Size (From 9.1	OD: (m) 4 ent_Attache	To (19						
Size (From 9.1: Attachme Top Fittir	OD: (m) 4 ent_Attache	To (12. ed To Casing	19	0.000					
Size (From 9.1-	OD: (m) 4 ent_Attach	To (12. ed To Casing	19	0.000 ngs <u>Plug</u>					

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

CHAD NIEMANS

Company Name

NIEMANS DRILLING (1980) LTD.

Certification No

46340A

Copy of Well report provided to owner

Date approval holder signed 2014/06/04

Printed on 1/13/2015 4:52:27 PM Page: 1 / 2

Water Well Drilling Report

GIC Well ID GoA Well Tag No.

View in Imperial Export to Excel

1556535

Drilling Company Well ID

The driller supplies the data contained in this report. The Province disclaims responsibility for its

		accu	nacy. The inioi		Date Report Rec	eived	2014/06/04					
Well Identi	ification and L	ocation.									Mea	surement in Metric
		Address P.O. BOX	460	Town MEDICINE HAT			Province ALBERT		,	Postal Code T1A 7G2		
Location	1/4 or LSD 4	SEC 32	<i>TWP</i> 26	RGE 3	W of MER 5	Lot	Block	Plan		onal Description RVATION WELL#	7	
Measured f	rom Boundary o	GPS Coordir Latitude 5 How Location Differential co	51.255906 n Obtained	Longii	tude <u>-114.3</u>		Elevation How Elevation (0 m dheld GPS 5-10m			
	Information										Mea	surement in Metric
Distance F	rom Ton of Cas	ing to Gro	uind Laval		01 // cm							

	m from	How Location C			How Elevation Obtained			
		Differential corr	ected handheld GPS	S 5-10m Differen	tial corrected handheld GPS 5-10m			
Additional Informa	ation				Measurement in Metric			
Distance From Top Is Artesian Flow	o of Casing to Ground Level	91.44 cm	Is Flow Cor	ntrol Installed				
Rate _	L/min			Describe				
Recommended Pu	mp Rate	L/min	Pump Installed	Depth	m			
Recommended Pu	mp Intake Depth (From TOC)	m	Туре	Make	Н.Р.			
				Model	(Output Rating)			
Did you Encount	er Saline Water (>4000 ppm TDS	Depth	m	Well Disinfected Upon Completi	on Yes			
	Ga	s Depth	m	Geophysical Log Taken _				
	11.00	7 8 1		Submitted to ESRD				
			Sample C	ollected for Potability	Submitted to ESRD			
Additional Comm	ments on Well			1/4				
INSTALLED LOCK	ABLE PROTECTOR CASING AN	ND CONCRETED INTO TH	HE GROUND.					
Viold Toot				Taken From Cround I	Accurament in Matric			
Yield Test				Taken From Ground L	evel Measurement in Metric			
Test Date	Start Time	Static Water Level m						
Method of Water	Removal							

Method of Water Removal	
Type	
Removal Rate	L/min
Depth Withdrawn From	<u>m</u>
If water removal period was < 2 I	hours, explain why
Material Con Dell's a	

Water Diverted for Drilling Amount Taken Diversion Date & Time Water Source TOWN OF OKOTOKS 1818.44 2014/05/12 7:00 AM

Contractor Certification

Name of Journeyman responsible for drilling/construction of well

CHAD NIEMANS

Company Name

NIEMANS DRILLING (1980) LTD.

Certification No

46340A

Copy of Well report provided to owner

Date approval holder signed

2014/06/04 Yes

Printed on 1/13/2015 4:52:27 PM Page: 2 / 2

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel GIC Well ID 2095665

GoA Well Tag No.

Drilling Company Well ID 2014/12/04 Date Report Received

Well Identification and Location				M	leasurement in Metric
Owner Name Address CIRCLE J RANCHES LTD RR 2	Town COCH	IRANE	Province ALBERTA	Country CANADA	Postal Code T0L 0W0
Location 1/4 or LSD SEC TWP RGE SW 6 27 3	W of MER Lot 5	Block Plan	Additional Des M. GILES	scription	
Measured from Boundary of m from m from	GPS Coordinates in Dec Latitude 51.274608 How Location Obtained Not Verified	imal Degrees (NAD 83) Longitude -114.4	17737 Eleva How	ation Elevation Obtaine Obtained	
Drilling Information Method of Drilling Unknown Proposed Well Use	Type of Work Well Inventory				
Domestic & Stock					
Formation Log M	leasurement in Metric	Yield Test Summar	У		easurement in Metric
Depth from ground level (m) Water Lithology Description Bearing		Recommended Pump Test Date Wa	Rate ter Removal Rate (I	L/min Stat	ic Water Level (m)
25.60 Old Well					
		Well Completion Total Depth Drilled F 25.60 m	Finished Well Depth		easurement in Metric End Date
		Borehole Diameter (cm)	From	(m)	To (m)
		Surface Casing (if a	pplicable)	Well Casing/Line	er
		Size OD :	cm	Sizo OD	cm
		Wall Thickness :		Wall Thickness :	
		Bottom at :			m
				Bottom at :	m
		Perforations	Diamatanan		
		From (m) To (m)	Diameter or Slot) Width(cm)	Slot Length(cm)	Hole or Slot Interval(cm)
		Perforated by			
		Annular Seal			
		Placed from		m	
		Other Seals		_	
		Туре	е	Α	t (m)
		Screen Type			
		Size OD :			
		From (m)	To ((m)	Slot Size (cm)
		Attachment			
		Top Fittings		Bottom Fittings	
		Pack			
		Туре		Grain Size	
	L	Amount			
Contractor Certification					

Printed on 10/24/2014 1:50:56 PM Page: 1 / 2

Certification No

Copy of Well report provided to owner Date approval holder signed

Name of Journeyman responsible for drilling/construction of well

UNKNOWN DRILLER11 Company Name

UNKNOWNDRILLINGCOMP11

Water Well Drilling Report

The driller supplies the data contained in this report. The Province disclaims responsibility for its accuracy. The information on this report will be retained in a public database.

View in Imperial Export to Excel 2095665

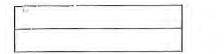
GIC Well ID GoA Well Tag No.

Drilling Company Well ID 2014/12/04 Date Report Received

Well Identification and Location					Mea	surement in Metric
Owner Name Add	dress 2	Town COCH	IRANE	Province ALBERTA	Country CANADA	Postal Code T0L 0W0
	TWP RGE W of 1 27 3 5		Block Plan	Additional Desc M. GILES	cription	
Measured from Boundary of m from m from	Latitud	de <u>51.274608</u> Location Obtained	imal Degrees (NAD 83) Longitude <u>-114.4</u>	17737 Elevat	tion Elevation Obtained btained	<u>m</u>
Additional Information					Mea	surement in Metric
Distance From Top of Casing to Ground L Is Artesian Flow Rate Lfr	nin	cm	s Flow Control Installed Describe			
Recommended Pump Rate		L/min Pump	Installed			
Recommended Pump Intake Depth (Fron	n TOC)		9	Make		
				Mode	el (Output Rating)	
Did you Encounter Saline Water (>4000	9 ppm TDS) Gas	Depth	m Geo	fected Upon Comple physical Log Taken Submitted to ESRD		
Additional Comments on Well			Sample Collected for F	Potability	Submitted to	ESRD
ORIGINAL WELL REPORT NOT IN GIC. APPLICATION RECEIVED ON DECEMB WERE GETTING 1 GPM CONSISTENTL DEEP. ALREADY DRILLED ANOTHER V	ER 04, 1984. OWNER REP Y. OWNER REPORTS TH	ORTS THIS WELL	. WAS BAILED OUT TO	4 FEET OF WATER	R, TOOK 1 DAY TO	RECOVER,
Yield Test			Tak	en From Ground	Level Mea	surement in Metric
Test Date Start Time	Static Water L	evel m				
Method of Water Removal Type						
Removal Rate	L/min					
Depth Withdrawn From	<u>m</u>					
If water removal period was < 2 hours, ex	plain why					
Water Diverted for Drilling						
Water Source	Amount Take	en I		Diversion Date &	ß. Time	

Contractor Certification

Name of Journeyman responsible for drilling/construction of well UNKNOWN DRILLER11


Company Name UNKNOWNDRILLINGCOMP11

Certification No

Copy of Well report provided to owner Date approval holder signed

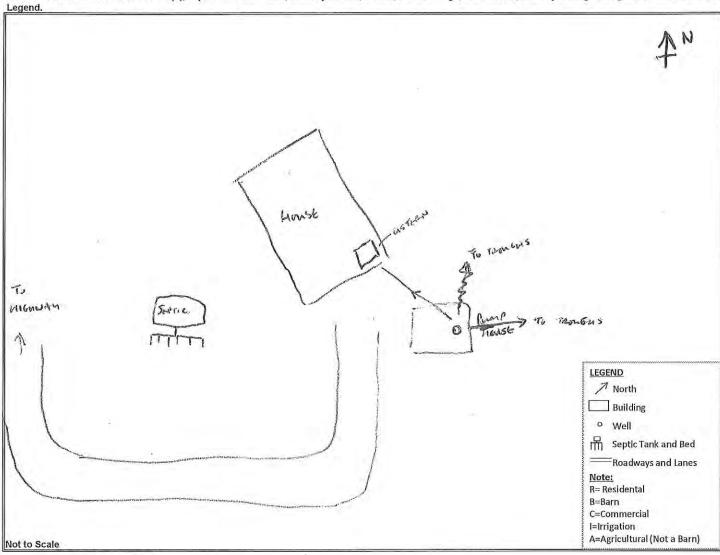
APPENDIX D Residential Well Assessment Questionnaires

Hydrogeological Assessment Report
Mountain Ash Limited Partnership Aggregate Operation
NW and SW Section 31, Twp 26, Rge 3 W5M
Rocky View County, Alberta
SLR Project No. 212.06650.00003

Water Well Reconnaissance Survey

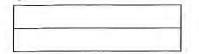
	SITE RECONNAISSANCE CHECKLIST	
Project Name:	WATERMAN AGGREGATE RESONACE	
Project Number:	203-50065.00001 SLR Staff: R. Tim	
Street Address:	35-13 - MW31-26-3 WSM - 35,81 BIG HILL SPRING	5 FOAD
Property Type:	Private Residence Commerical/Industrial Other	
Person/Resident Interviewed:	There THORESON, BRUCE WATERMAN	
Date of Visit:	29 BET 2014 Time: 10:15	
1. Well Owner Information		
Name:	BREICE WATERMAN	-
Street Address:		
Contact Number:	Home: Business: Cell:	
Email Address:		
2. Well User/Occupant of t	ne Residence Using the Well	
	Same as Well Owner	,
if different from well owner ple	ease fill out details below:	
Name:	JULIE THORESON	
Street Address:		
Contact Number:	Home: Business: Cell: *	
Email Address:		THE STATE OF THE S
3. Well Details		
Well Location	Lot: Nw31-26-3 WSM Concession: Township:	
3A. Well Use		
Water Use: NO DRINKING	Domestic: No. of people using water from the well:	
uses bottled water	Livestock: No. of livestock using water from the well: 7 hims	ies 4 sheep 4
	Lawn Watering: Acres/area covered: Approximate Amount:	

3A. Well Use Continued					
Additional Equipment:	Pool: Other:	Jacuzzi/Hot Tu	ıb;	Landscape water	feature/fountain:
Private waste and water disp	osal:	Type (ex. Spe	otic tank): Se	OTIC TANK	-
System description:	1006 GAL	TANK			44
Distance to Well	75=ft	Dir	ection from well	(N, S, E, or W)	٥
Well is	Uphill		ownhill	Same Grade	as the waste water system
3B. Well Construction Det	tails				
Construction/Installation Date	: Lukwon	· PRE-1960	Contracto	or:	
Type of Installation:	Drilled	Dug 🗌	Othe	er:	
Diameter:	6/8 mcm		Well Depth (n	n): \$ ~ 400A	
Screen? WKNOWN	YES 🗆	NO 🗆	area return to	V	Record Number:
Screen? Wakie				IVIOE	Record Number.
	Screen length (m)				
	Depth to top of sci	reen (m)			
ls the well accesible for samp	oling?	YES	NO V	Confi	med Inferred
If no provide details:	WELL HEAD	APPROX. MAT	54 篇 2	a BEON GROW	OD LEVEZ IN A PIT
Location of measurement (top					
		iiu suriace)		•	
SLR staff member collecting t	the measurement:	•			
Date of <u>original</u> measurement	:		Original/initial wat	ter level depth (m)	
Subsequent water level meas	urements				
	Date				
	Depth (m)				
	Staff				
3C. Pumping Equipment				1	
Pump Type;	Suction-lift			Pumping Capacity	į
	Positive-submerge	ence		Age	
Anna de companya da anti-	1 outilive summer ge			A.g.	d
low is the pump lubricated?	-			20 20.	CENTO
Depth of intake setting:	Original (m)		Present (m)	100+ ft Pump	ing Rate (L/s)
Storage Tank:	Type:	CISTER	N	Capacity: IC	OO GAL
Additional Features:	Chlorinator	□ w	ater softener	Water filter	Filter type:
e see dig general y control <u>a m</u>		REATME		= water a man	Charles A. Contraction



4. Well History	
How long have you owned, operated or lived on Have you ever experienced any <u>previous</u> problem of so, when?	
What was the cause of the previous problem:	Drought Pump Failure Plugging Increased usage Interference Contamination
SAND IN CISTERN, PIPE	wality changes were apparent? (Note any differences in taste, odour, colour or clarity) S ETC n? んいいん トナ これいれい みてんり
What were the effects of this action? Did you ever have your well? If so why?	CLEARED PROBLEM BUT PROBLEM CAME BACK deepend, YES NO SHOCKED or a new well YES NO NO NO NO NO NO NO NO NO NO NO NO NO
Outline briefly any previous repairs or changes i 5. Sample Details — TAKEN From K. Date: 29/10/14	
Sample Name/Number: WW I Field Analysis Harnes	Number of Bottles: Z ss Iron Conductivity oH Temperature Other
6. Contact Details	
Permission for future monitoring? Well Aware Booklet: Perferred contact time/method: Contact by: preferred contact	res NO Call/contact ahead site visit call/contact ahead site visit

7. Well Location Sketch


Notes: shown location of water well(s), septic tanks and beds, laneways/roads, fences, site buildings, north arrow, and any distinguishing site features. Include Legend

Well GPS

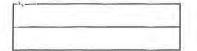
8.	Site	Pho	togra	ph	Log

Numbe	r of Photos Taken:	
Photograph Number/Name	<u>Description</u>	
	-	
	•	

Water Well Reconnaissance Survey

	SI	TE RECON	NAISSANCE CH	IECKLIST			
Project Name:	WATERMAN	AGGR	EGATE RE	SOURCE			
Project Number:	203.50065	10000	SLR Staff:	R.Ti			
Street Address:	SE 31-26-	3 WS.	M				
Property Type:	Private Residence	e 🗸	Commerical/Indu	strial Oth	er		
Person/Resident Interviewed:	MRS PARV	CER					-
Date of Visit:	PHONE CALL	10 DEL 2014	Time:	16:30		٥.	
1. Well Owner Information							
Name:	MRS PAR	VER					
Street Address:	Box 123	5	56 31 26	3 W5	19		
Contact Number:	Home;	, a _	Business:		Cell:		
Email Address:	·						
2. Well User/Occupant of t	he Residence Us	ing the Wel	I				
If different from well owner plants Name: Street Address:	Same as Well Ow						
Contact Number:	Home:		Business:		Cell:		
Email Address:			Duoiniou.				
3. Well Details							
Well Location	Lot: IN House	5	Concession:	WSM	Township:		
3A. Well Use	weres)						
Water Use:	Domestic:		No. of people us	ing water from	the well:	2	
	Livestock:	1	No. of livestock	using water fro	m the well:	(00 HEAD)	CATTLE
	Lawn Watering:		Acres/area cove	red:	Approxima	ite Amount:	
	Irrigation:		Acres/area cove	red:	Approxima	te Amount:	
3	ARTESIAN	WELLS	5				

3A. Well Use Continued							
Additional Equipment:	Pool: Other:	Jacuzzi/Hot 1	Tub:	Landsca	ape water fea	ture/fountain:	
Private waste and water dispo	osal:	Type (ex. Spe	ectic tank): 52	PTIC TI	ank		
System description:	_						
Distance to Well	100 ft	- 0	irection from we	ıll (N, S, E, or	· W)	DEPENDS	on werl
Well is	Uphill 🗹		Downhill 🗌	Same G	irade	as the waste w	ater system
3B. Well Construction Det	ails						
Construction/Installation Date:	192015		Contra	ctor: Ow.	NER		
Type of Installation:	Drilled	Dug 🖊		ther:			
Diameter:	6" 012 8"		Well Depth	(m): 20 -			
Screen?	YES 🗸	NO 🗌			MOE Rec	ord Number:	
	Screen length (m)						
	Depth to top of sc	reen (m)					
ls the well accesible for sampl	ling?	YES	NO 🗸		Confirme	d Inferi	red
If no provide details:	IN THE	E hons	6				
Location of measurement (top	of pipe (TOP), grou	nd surface):				540	
SLR staff member collecting t							
Date of <u>original</u> measurement:			Original/initial v	vater level de	 pth (m) -3	ARTESIAN	1 - 10ft 1
Subsequent water level measu						n	Granes
	Date						
	Depth (m)	1				-	
	Staff	4				1	
3C. Pumping Equipment							
Pump Type:	Suction-lift Positive-submerge	Submen;	SiBLE	Pumping Age	g Capacity		
How is the pump lubricated?							
Depth of intake setting:	Original (m)		Present (m)	7.2	Pumping	Rate (L/s)	
Storage Tank: $\lambda 0$	Type:			Capacit	ty:		
Additional Features: NO	Chlorinator		Nater softener	Water fil		Filter type:	
	CONTY				35-74	- 0.00 Mes	-



How long have you owned, operated or lived of	on this property?	1955		
Have you ever experienced any <u>previous</u> prob	lems with your well?	_NO		
If so, when?				
What was the cause of the previous problem:	Drought	* The state of the	_ Pump Failure	
	Plugging		Increased usage	
	Interference	· ·	Contamination	
If the problem was contamination, what water	quality changes were a	apparent? (Note	e any differences in	taste, odour, colour or clarity)
What action was taken to overcome this proble	em?			
What were the effects of this action?				
Did you ever have your well?	deepend, YES		NO 🗹	
	cleaned, YES		NO 🗹	
	or a new well YES		NO 🖃	
If so why?	-			
Outline briefly any previous repairs or changes	in pumping equipmen	t, and dates	1966/67 8	nnl 5
Outline briefly any previous repairs or changes 5. Sample Details				nne s
Outline briefly any previous repairs or changes 5. Sample Details Date:	Sam	ple Collected?	YES NO [nne s
Outline briefly any previous repairs or changes 5. Sample Details Date: Sample Name/Number:	Sam	iple Collected? iber of Bottles:	YES NO [
Outline briefly any previous repairs or changes 5. Sample Details Date: Sample Name/Number: Field Analysis Harne	Sam Num	iple Collected? iber of Bottles: Iron	YES NO [Conductivity
Outline briefly any previous repairs or changes 5. Sample Details Date: Sample Name/Number: Field Analysis Harne	Sam	iple Collected? iber of Bottles:	YES NO [
Outline briefly any previous repairs or changes 5. Sample Details Date: Sample Name/Number: Field Analysis Harne	Sam Num	iple Collected? iber of Bottles: Iron	YES NO [Conductivity
Outline briefly any previous repairs or changes 5. Sample Details Date: Sample Name/Number: Field Analysis Harne 6. Contact Details	Sam Num	iple Collected? iber of Bottles: Iron	YES NO [ConductivityOther
Outline briefly any previous repairs or changes 5. Sample Details Date: Sample Name/Number: Field Analysis Harne	Sam Num ess pH	ple Collected? ber of Bottles: Iron Temperature	YES NO [ConductivityOther
Outline briefly any previous repairs or changes 5. Sample Details Date: Sample Name/Number: Field Analysis Harne 6. Contact Details Permission for future monitoring?	Sam Num ess pH	ple Collected? ber of Bottles: Iron Temperature	YES NO [ConductivityOther
Outline briefly any previous repairs or changes 5. Sample Details Date: Sample Name/Number: Field Analysis Harne 6. Contact Details Permission for future monitoring? Well Aware Booklet:	Sam Num ess pH	iple Collected? iber of Bottles: from Temperature	YES NO [ConductivityOtherAFTER XMAS

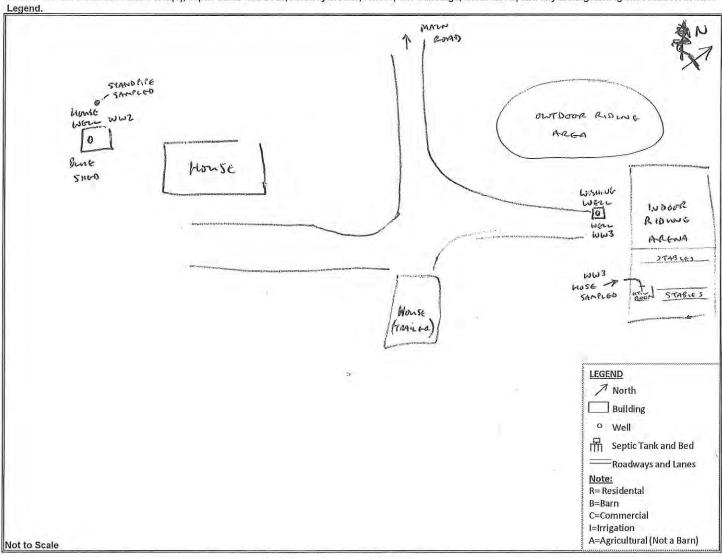
7. Well Location Sketch	
Notes: shown location of water well(s), septic tanks and beds, laneways/roads, fences, site buil Legend.	dings, north arrow, and any distinguishing site features. Includ
	<u>LEGEND</u>
	North □ Building
	o Well
	Septic Tank and Bed
	Roadways and Lanes Note:
	R= Residental B=Barn
	C=Commercial I=Irrigation
Not to Scale	A=Agricultural (Not a Barn)
Well GPS	1
3. Site Photograph Log	
5. Site Photograph Log	
Number of Photos Taken:	
Photograph Number/Name Description	

Page 4 of 4

Water Well Reconnaissance Survey

	SITE RECOIN	NAISSANCE CHECKI	.151		
Project Name:	WATGEMAN &	AGGLEGATE	resonace		
Project Number:	203.50065-00001	_ SLR Staff:	R. Tice		
Street Address:	NE 31 - 26-3 . W)5M			-
Property Type:	Private Residence	Commerical/Industrial	Other		
Person/Resident Interviewed:	CANUN &	RAWN.			
Date of Visit:	29 OCT 2014	Time:	12:00		
1. Well Owner Information	1				
Name:	CALVIN RAWN				
Street Address:	As above				
Contact Number:	Home:	Business:	Cell: /		
Email Address:					
2. Well User/Occupant of	the Residence Using the Well				
	Same as Well Owner				
lf different from well owner pl	ease fill out details below:				
Name:	V				
Street Address:					
Contact Number:	Home:	Business:	Cell:		
Email Address:					
3. Well Details					
Well Location	Lot: NE 31-26-3 WSM	Concession:	Township:		
3A. Well Use - 2	wens				
Water Use:	Domestic:	No. of people using wa	ater from the well:	* 5	(ww 2
	Livestock:	No. of livestock using	water from the well:	40 HURSES	(ww3
	Lawn Watering:	Acres/area covered: _	Approxima	ite Amount:	
	Irrigation:	Acres/area covered:	Approxima	to Amount	

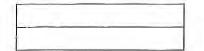
3A. Well Use Continued	ĺ.							
Additional Equipment:	Pool: Other:	Jacuzzi/H	lot Tub:		Landscape	water fe	ature/fountain:	
Private waste and water di	sposal:	Type (ex.	Spectic tan	k): Se	PTIC TA	NK		
System description:	-	_						
Distance to Well	2-300 ft		Direction	from well	(N, S, E, or W	E	458	
Well is	Uphill		Downhil	ı□	Same Grad	ie 🗸	as the waste	water system
3B. Well Construction D	Details							
Construction/Installation Da	ate:			Contracto	or:			
Type of Installation:	Drilled 📝	Dug 🗌		Othe				
Diameter:	6 wen		We	ell Depth (n	1): 177 +	135	A	
Screen?	YES	№ □				MOE Re	cord Number:	1
	Screen length (n	n)						
	Depth to top of	screen (m)						
Is the well accesible for sar			(ww2)	NO V (w	1w3)	Confirme	ed Infe	erred
If no provide details:	ww3 BL				_			
Location of measurement (A STATE OF THE							
SLR staff member collectin								
Date of <u>original</u> measureme					er level denth	(m) 7 °	1.65 m 6 Top	(wwz)
Subsequent water level me					or to ver doptin	()		
	Da							
	Depth (r	n)						
	Sta	ıff .	1					
3C. Pumping Equipmen	t							
Pump Type:	Suction-lift	SUBI	MERSIBI	LE	Pumping C	apacity	and a	
	Positive-submer	gence			Age		to yes +	5425
How is the pump lubricated	1?						Y	
Depth of intake setting:	Original (m)	2	Pre	sent (m)	160ft + 1256		Rate (L/s)	
Storage Tank:	Type:	C1576			Capacity:	WW		WW3 PSO GAL
Additional Features:	Chlorinate		Water so	ftener V	Water filter		2000 July 2000	MARTICULATE
A STATE OF THE STA	4.000 4.000 50.00			nse	house		Sec. 12. 24.47.51	



4. Well History	
How long have you owned, operated or lived or Have you ever experienced any <u>previous</u> proble If so, when?	
What was the cause of the previous problem:	Drought Pump Failure Plugging Increased usage Interference Contamination
If the problem was contamination, what water q 이 / A	quality changes were apparent? (Note any differences in taste, odour, colour or clarity)
What action was taken to overcome this problem	n?_ N/A
What were the effects of this action?	N/A
Did you ever have your well?	deepend, YES NO Cleaned, YES NO NO VIOLENTE NO VIOLENT
If so why? Outline briefly any previous repairs or changes i	in pumping equipment, and dates REPLACED House Pump
	BACK OF PUMP HOUSE, WW3 - HOSE IN STABLES (NO TREATMENT)
Date: 29 oct 2514 Sample Name/Number: WW2 + WW3 Field Analysis Harnes	Sample Collected? YES NO Number of Bottles: 2 EACH
6. Contact Details	
Permission for future monitoring? Well Aware Booklet:	YES NO
Perferred contact time/method:	call/contact ahead site visit perferred contact number:
preferred contac	t time (evening, weekday, morning, etc.): During 544 - Any Reason Ad Non R

7. Well Location Sketch

Notes: shown location of water well(s), septic tanks and beds, laneways/roads, fences, site buildings, north arrow, and any distinguishing site features. Include



8. Site Photograph Log

Number of Photos Taken:

Well GPS WW2 - 0680992 m , 5682772 m WW3 - 0681169 m

Number	of Photos Taken:		
Photograph Number/Name	<u>Description</u>		
			
		**	

Water Well Reconnaissance Survey

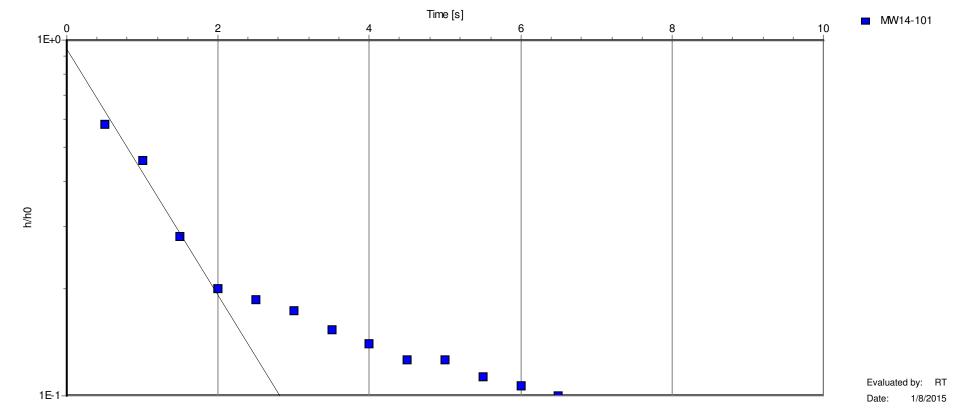
	SHE RECO	NNAISSANGE CHECKLIST	
Project Name:	WATERMAN AGE	REGATE RESOURCE	
Project Number:	203.50065.000	OI SLR Staff: R.TIL	
Street Address:	SW 31-26-03	SWSM	
Property Type:	Private Residence	Commerical/Industrial Other_	
Person/Resident Interviewed;	JOHN NUIGTE	R	
Date of Visit:	30 OCTOBER 2016	E Time: 11:20	
1. Well Owner Information	h l		
Name:	JOHN NUCTER		
Street Address:	AS Above		X
Contact Number:	Home:	Business: C	rell:
Email Address:			
2. Well User/Occupant of t	he Residence Using the We	ell .	
	Same as Well Owner		
If different from well owner pla	ease fill out details below:		
Name:			
Street Address:			
Contact Number:	Home:	Business: C	ell:
Email Address:			
3. Well Details			
Well Location	Lot: SW-31-26-03 W51	Concession: To	ownship:
3A. Well Use			-
Water Use:	Domestic:	No. of people using water from the	well: 3
	Livestock:	No. of livestock using water from th	ne well: 25 CATTLE, 5 HOUSES
	Lawn Watering:	Acres/area covered:A	pproximate Amount:
	Irrigation:	Acres/area covered:A	pproximate Amount:

3A. Well Use Continued								
Additional Equipment:	Pool: Other:	Jacuzzi/Ho	t Tub:		Landscap	e water fea	ture/fountain:	
Private waste and water dispo	osal:	Type (ex. S	pectic tank):	Ser	TIC TAN	IKS (2	(TANKS	
System description:	1 TANK	GOR HI	onse +	. 16	THE REN	rter	house	
Distance to Well		_	Direction fro	m well (N, S, E, or W	J)		
Well is	Uphill		Downhill		Same Gra	ide 🔲	as the waste	water system
3B. Well Construction Det	ails							
Construction/Installation Date	:_ 1990		_ с	ontracto	r: Lou's	WATER	wou DR	ILLUN G
Type of Installation:	Drilled 🕡	Dug 🗌		Othe	r:			
Diameter:		_	Well I	Depth 🗐	115 A	_		
Screen?	YES 🗸	NO 🗌				MOE Rec	ord Number:	
	Screen length (m)		_		- 3	356	194	
	Depth to top of so	creen (m)						
Is the well accesible for sample	ling?	YES 🗹	NO	0		Confirme	d Infe	erred
If no provide details:								
Location of measurement (top	of pipe (TOP), grou	und surface):	3	TOP				
SLR staff member collecting t	he measurement:	Robber	T TILL					
Date of <u>original</u> measurement:	30 OCTOBER	2014	Original/in	itial wate	er level dept	h (m) /\.~	734 m6 Toc	
Subsequent water level measu								
	Date							
	Depth (m)							
	Staf	f	1 1		1			
3C. Pumping Equipment								
Pump Type:	Suction-lift Positive-submerg	ence	Subriges	18LE	Pumping (Capacity	30 GAZ/A	100
How is the pump lubricated?								
Depth of intake setting:	Original (m)		Presen	it (m)	100ft ?	Pumping	Rate (L/s)	
Storage Tank:	Туре:	N/A			_ Capacity:			
Additional Features:	Chlorinator	A 36	Water softe		Water filte	r 🗌	Filter type:	

ious problems with your well?
Problem: Drought Pump Failure Plugging Increased usage Interference Contamination
this problem?
deepend, YES NO Cleaned, YES NO NO Or a new well YES NO Why?
or changes in pumping equipment, and dates
Sample Collected? YES NO NO Number of Bottles: 2 Harness Iron Conductivity 606 MS/cm pH 5.44? Temperature 5.1°C Other
*
YES NO Call/contact ahead site visit perferred contact number:

7. Well Location Sketch		
Notes: shown location of water well(s), septic tanks and egend.	beds, laneways/roads, fences, site buildings, no	orth arrow, and any distinguishing site features. Includ
Legend. Ron HIGHWAM	6-64EGATE 5	LEGEND North Building Well
ot to Scale		Septic Tank and Bed —Roadways and Lanes Note: R= Residental B=Barn C=Commercial I=Irrigation A=Agricultural (Not a Barn)
Well GPS 0680258	, 5682090	1
. Site Photograph Log		
Number of Photo:	s Taken	
Photograph Number/Name	Description	
		. Total

.

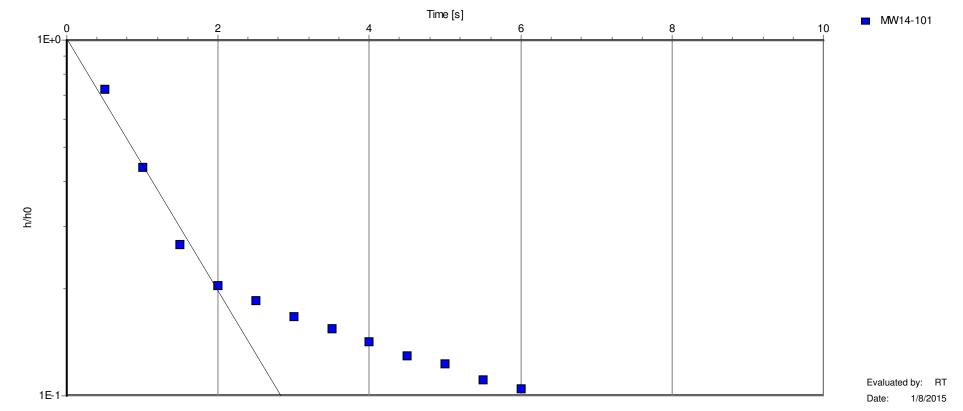

APPENDIX E Hydraulic Conductivity Test Analysis

Hydrogeological Assessment Report
Mountain Ash Limited Partnership Aggregate Operation
NW and SW Section 31, Twp 26, Rge 3 W5M
Rocky View County, Alberta
SLR Project No. 212.06650.00003

Analysis Report	Slug Test: MW14-101 Rising Head Test 1
Project: Summit Aggregate Resource	Analysis Method: Bouwer & Rice
Number: 203.50065.00001	Comments:
Client: Summit Aggregates	Saturated screen length = 4.5 [m] Max. Head Change = 0.45 [m] R (eff) not used in analysis

MW14-101 Rising Head Test 1 [Bouw er & Rice]

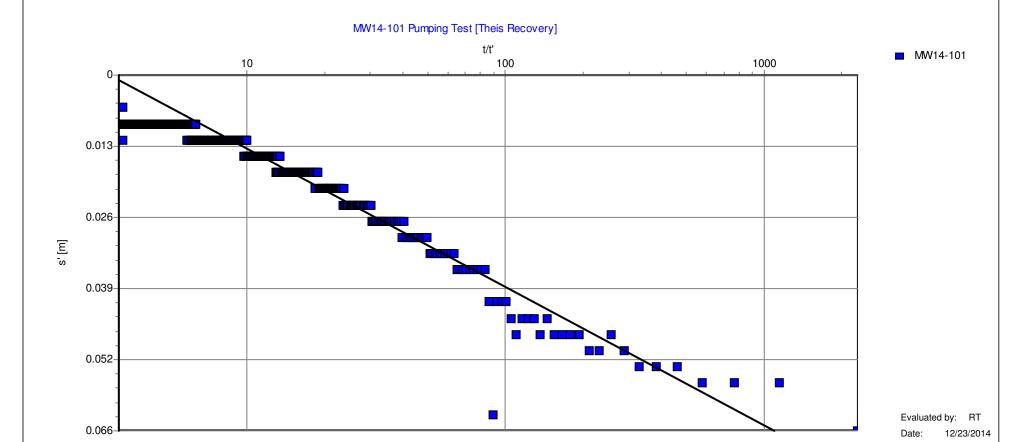
Analysis results: Conductivity: 1.85E-4 [m/s]


Test parameters: Test Well: MW14-101 r(eff): 0.044 [m]

Screen radius: 0.0254 [m] Aquifer thickness: 5.325 [m]

Analysis Report	Slug Test: MW14-101 Rising Head Test 2
Project: Summit Aggregate Resource	Analysis Method: Bouwer & Rice
Number: 203.50065.00001	Comments:
Client: Summit Aggregates	Saturated screen length = 4.5 [m] Max. Head Change = 0.49 [m] R (eff) not used in analysis

MW14-101 Rising Head Test 2 [Bouw er & Rice]


Analysis results: Conductivity: 1.91E-4 [m/s]

Test parameters: Test Well: MW14-101 r(eff): 0.044 [m]

Screen radius: 0.0254 [m] Aquifer thickness: 5.325 [m]

Analysis Report	Pumping Test: MW14-101 Yield Test
Project: Summit Aggregate Resource	Analysis Method: Theis Recovery
Number: 203.50065.00001	Comments:
Client: Summit Aggregates	Saturated screen length = 4.50 [m] Max. Head Change = 0.09 [m] R (eff) not used in analysis

Analysis results:	Transmissivity:	5.75E-4 [m ² /s]	Conductivity:	1.08E-4 [m/s]
Test parameters:	Pumping Well:	MW14-101	Pumping Time	1148 [s]
	Screen radius:	0.0254 [m]	Aquifer thickness:	5.325 [m]
	Screen length:	4.5 [m]	Boring radius:	0.0762 [m]
			Discharge Rate:	8E-5 [m³/s]

Analysis Report	Slug Test: MW14-103 Rising Head Test 1
Project: Summit Aggregate Resource	Analysis Method: Bouwer & Rice
Number: 203.50065.00001	Comments:
Client: Summit Aggregates	Saturated screen length = 4.36 [m] Max. Head Change = 0.58 [m] R (eff) not used in analysis

MW14-103 Rising Head Test 1 [Bouw er & Rice]

Analysis results: Conductivity: 3.28E-4 [m/s]

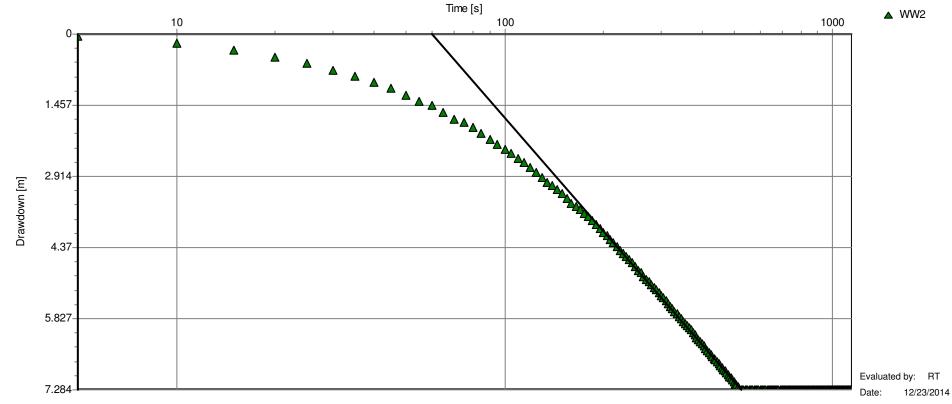
Test parameters: Test Well: MW14-103 r(eff): 0.044 [m]

Screen radius: 0.0254 [m] Aquifer thickness: 4.357 [m]

Analysis Report	Slug Test: MW14-103 Rising Head Test 2
Project: Summit Aggregate Resource	Analysis Method: Bouwer & Rice
Number: 203.50065.00001	Comments:
Client: Summit Aggregates	Saturated screen length = 4.36 [m] Max. Head Change = 0.65 [m] R (eff) not used in analysis

MW14-103 Rising Head Test 2 [Bouw er & Rice]

Analysis results: Conductivity: 2.79E-4 [m/s]


Test parameters: Test Well: MW14-103 r(eff): 0.044 [m]

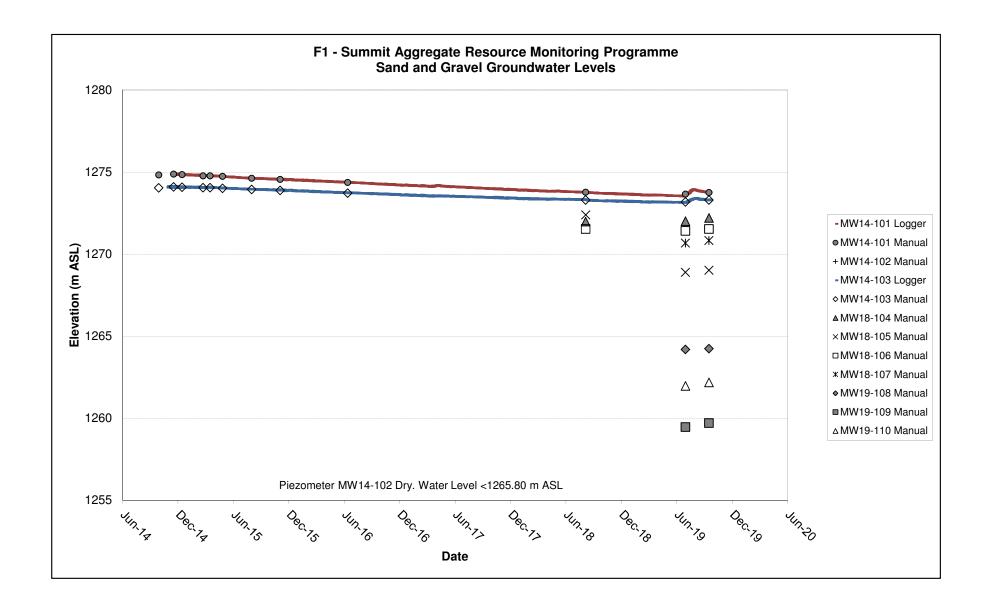
Screen radius: 0.0254 [m] Aquifer thickness: 4.357 [m]

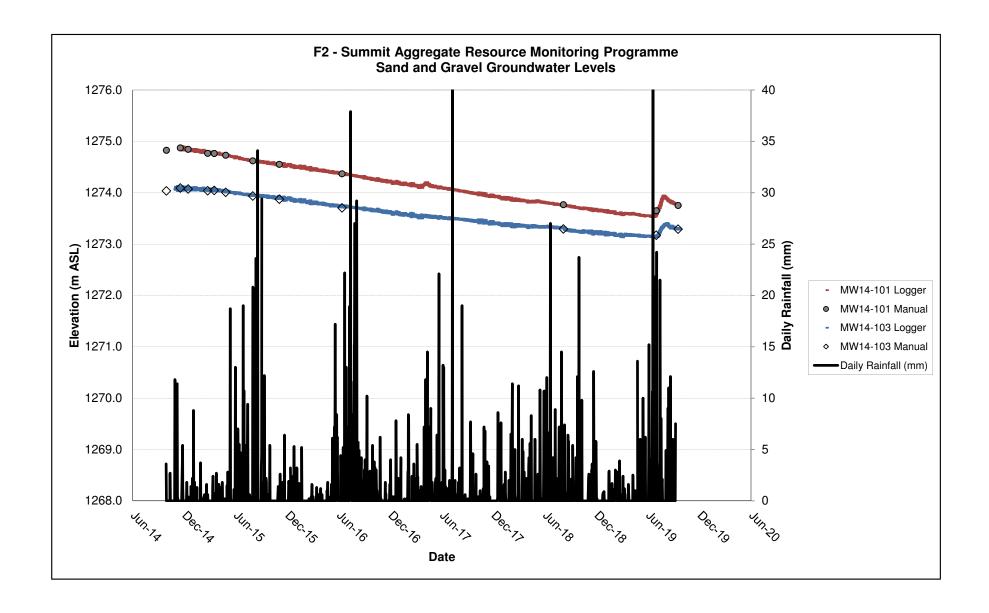
Analysis Report	Pumping Test: WW2 Yield Test
Project: Summit Aggregate Resource	Analysis Method: Cooper-Jacob Time-Drawdown
Number: 203.50065.00001	Comments:
Client: Summit Aggregates	Saturated screen length = 7.62 [m] Max. Head Change = >7 [m] R (eff) not used in analysis

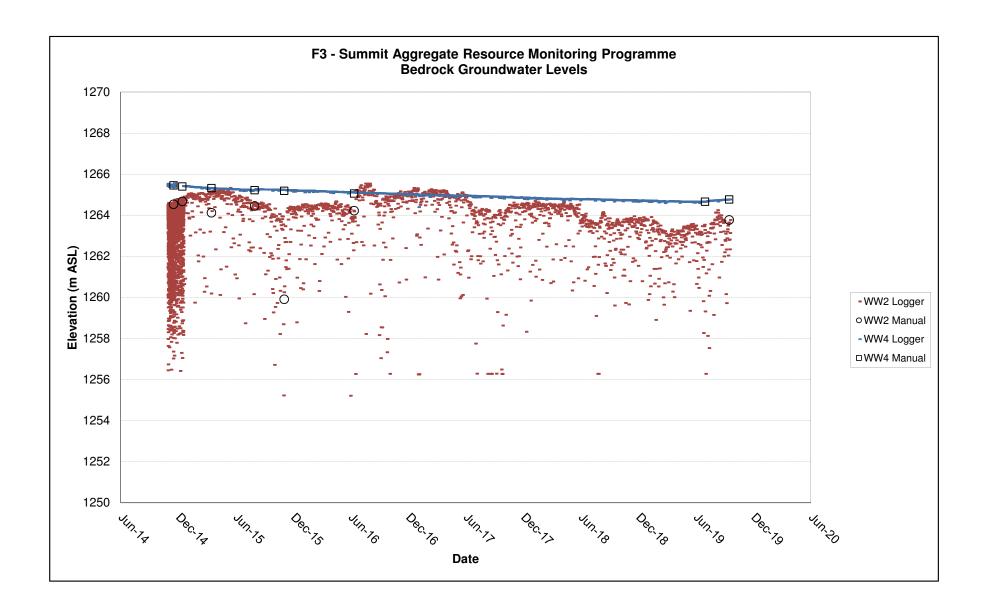
WW2 Yield Test [Cooper-Jacob Time-Draw dow n]

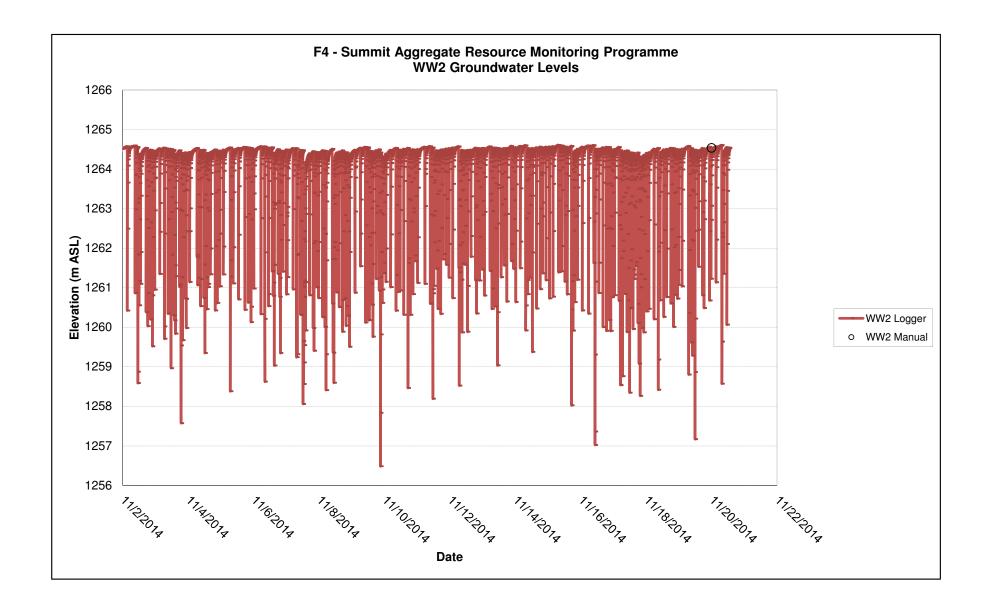
Analysis results: Transmissivity: 4.63E-6 [m²/s] Conductivity: 2.18E-7 [m/s]

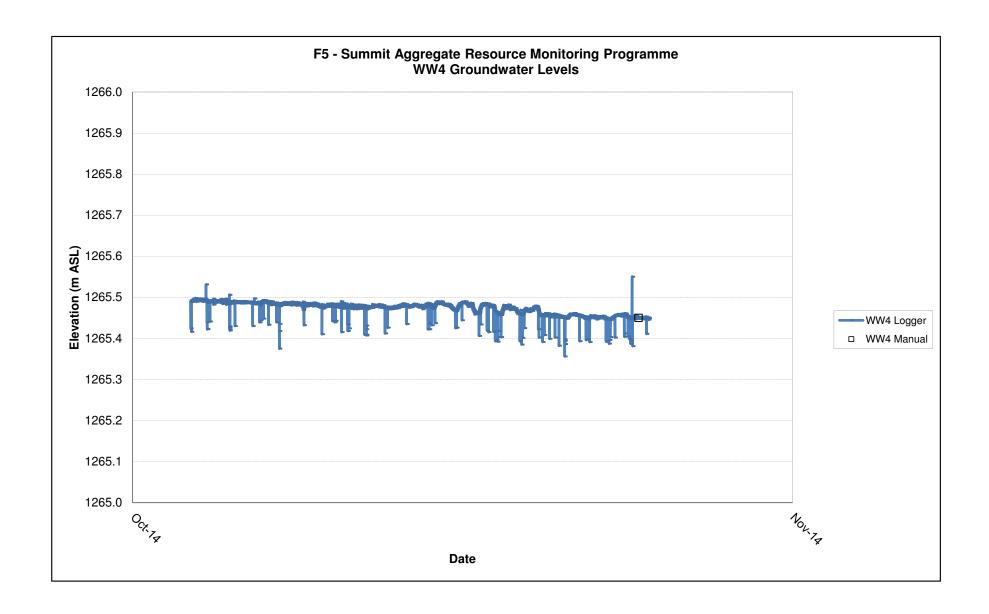
Test parameters: Pumping Well: WW2


 Screen radius:
 0.051 [m]
 Aquifer thickness:
 21.25 [m]


 Screen length:
 7.62 [m]
 Boring radius:
 0.111 [m]


 Discharge Rate:
 0.000196 [m³/s]


APPENDIX F Groundwater Elevation Data


Hydrogeological Assessment Report
Mountain Ash Limited Partnership Aggregate Operation
NW and SW Section 31, Twp 26, Rge 3 W5M
Rocky View County, Alberta
SLR Project No. 212.06650.00003

APPENDIX G Laboratory Analytical Reports

Hydrogeological Assessment Report
Mountain Ash Limited Partnership Aggregate Operation
NW and SW Section 31, Twp 26, Rge 3 W5M
Rocky View County, Alberta
SLR Project No. 212.06650.00003

ANALYTICAL REPORT

Client: SLR Consulting (Canada) Ltd.

6940 Roper Rd NW Edmonton, AB T6B 3H9

Attention: Robert Till

KaizenLAB JOB #:	167115
DATE RECEIVED:	30-Oct-2014
DATE REPORTED:	05-Nov-2014
PROJECT ID:	203.50065.00001
LOCATION:	Summit Aggregates

KaizenLAB Sample # 167115_001 Sample ID: WW1

Date Sampled 29-Oct-2014

meter Description	Units	Result	Guideline Limits*	Comment
ne Water Potability Analysis (Potability pk	g #2)			
Electrical Conductivity (EC)	uS/cm	552		
pH		8.1	6.5-8.5 (AO)	Acceptable
Total Dissolved Solids (calculated)	mg/L	318	500 (AO)	Acceptable
True Colour	TCU	<3	15 (AO)	Acceptable
Turbidity	NTU	0.2	0.1/0.3/1.0 see notes	See notes
Dissolved Metals in Water by ICP-MS				
Dissolved Iron	mg/L	<0.0040	0.3000 (AO)	Acceptable
Dissolved Manganese	mg/L	<0.00040	0.0500 (AO)	Acceptable
Alkalinity parameters of water				
Alkalinity (phenolphthalein, as CaCO3)	mg/L	<2.0		
Alkalinity (total, as CaCO3)	mg/L	300.7		
Bicarbonate (as HCO3)	mg/L	366.6		
Carbonate (as CO3)	mg/L	<1.5		
Hydroxide (as OH)	mg/L	<0.5		
Cations in Water				
Dissolved Calcium	mg/L	70.3		
Dissolved Magnesium	mg/L	35.1		
Dissolved Potassium	mg/L	3.3		
Dissolved Sodium	mg/L	7.2	200.00 (AO)	Acceptable
Hardness (calculated, as CaCO3)	mg/L	320.3		
Anions in Water				
Chloride	mg/L	4.29	250.00 (AO)	Acceptable
Fluoride	mg/L	0.12	1.50 (MAC)	Pass
Nitrate-N	mg/L	1.67	10.00 (MAC)	Pass
Nitrite-N	mg/L	<0.05	1.00 (AO)	Acceptable
Nitrite-N + Nitrate-N	mg/L	1.67		

^{*}CDWQG = Canadian Drinking Water Quality Guidelines, Health Canada 2008: MAC = Maximum Acceptable Concentration (affects health), AO = Aesthetic Objective (does not affect health but affects color, taste, etc.), OG = Operational Guidance

KaizenLAB Sample # 1

167115_001 **Sample ID**: WW1

Date Sampled 29-Oct-2014

Parameter Description	Units	Result	Guideline Limits*	Comment
Phosphate	mg/L	<0.10		
Sulphate	mg/L	6.95	500.00 (AO)	Acceptable
Total Metals including Mercury				
Total Mercury	mg/L	<0.00010		
Total Metals in Water by ICP-MS				
Total Aluminum	mg/L	0.0068	0.10 (OG) see notes	Acceptable
Total Antimony	mg/L	0.00088	0.0060 (MAC)	Pass
Total Arsenic	mg/L	0.000126	0.0100 (MAC)	Pass
Total Barium	mg/L	0.282	1.0000 (MAC)	Pass
Total Beryllium	mg/L	<0.0010		
Total Boron	mg/L	0.022	5.00 (MAC)	Pass
Total Cadmium	mg/L	0.000013	0.0050 (MAC)	Pass
Total Chromium	mg/L	<0.0010	0.050 (MAC)	Pass
Total Cobalt	mg/L	<0.00020		
Total Copper	mg/L	0.0317	1.0000 (AO)	Acceptable
Total Iron	mg/L	0.015	0.30 (AO)	Acceptable
Total Lead	mg/L	0.00127	0.0100 (MAC)	Pass
Total Manganese	mg/L	<0.0010	0.0500 (AO)	Acceptable
Total Molybdenum	mg/L	0.00148		
Total Nickel	mg/L	<0.00050		
Total Selenium	mg/L	0.00084	0.0100 (MAC)	Pass
Total Silver	mg/L	<0.000070		
Total Strontium	mg/L	0.433		
Total Thallium	mg/L	<0.00020		
Total Tin	mg/L	<0.0070		
Total Titanium	mg/L	0.106		
Total Uranium	mg/L	0.001299	0.020000 (MAC)	Pass
Total Vanadium	mg/L	<0.00060		
Total Zinc	mg/L	<0.020	5.000 (AO)	Acceptable

⁻ Aluminum: This Operational Guideline applies only to drinking water treatment plants using aluminum-based coagulants: conventional systems - 0.1 mg/L, other systems - 0.2 mg/L

⁻ Turbidity: Based on slow sand or diatomaceous earth filtration (0.1 NTU) / membrane filtration (0.3 NTU) / conventional treatment (1.0 NTU). No limits apply for well water not under the influence of surface water. For further details and additional guidance restriction, see Guidelines for Canadian Drinking Water Quality (GCDWQ 2008).

KaizenLAB Sample # 167115_002 Sample ID: WW2

Date Sampled 29-Oct-2014

meter Description	Units	Result	Guideline Limits*	Comment
tine Water Potability Analysis (Potability pkg	ງ #2)			
Electrical Conductivity (EC)	uS/cm	566		
pH		8.0	6.5-8.5 (AO)	Acceptable
Total Dissolved Solids (calculated)	mg/L	328	500 (AO)	Acceptable
True Colour	TCU	<3	15 (AO)	Acceptable
Turbidity	NTU	0.2	0.1/0.3/1.0 see notes	See notes
Dissolved Metals in Water by ICP-MS				
Dissolved Iron	mg/L	<0.0040	0.3000 (AO)	Acceptable
Dissolved Manganese	mg/L	0.00300	0.0500 (AO)	Acceptable
Alkalinity parameters of water				
Alkalinity (phenolphthalein, as CaCO3)	mg/L	<2.0		
Alkalinity (total, as CaCO3)	mg/L	312.2		
Bicarbonate (as HCO3)	mg/L	380.6		
Carbonate (as CO3)	mg/L	<1.5		
Hydroxide (as OH)	mg/L	<0.5		
Cations in Water				
Dissolved Calcium	mg/L	63.6		
Dissolved Magnesium	mg/L	37.3		
Dissolved Potassium	mg/L	2.8		
Dissolved Sodium	mg/L	13.8	200.00 (AO)	Acceptable
Hardness (calculated, as CaCO3)	mg/L	312.2		
Anions in Water				
Chloride	mg/L	1.38	250.00 (AO)	Acceptable
Fluoride	mg/L	0.14	1.50 (MAC)	Pass
Nitrate-N	mg/L	0.78	10.00 (MAC)	Pass
Nitrite-N	mg/L	<0.05	1.00 (AO)	Acceptable
Nitrite-N + Nitrate-N	mg/L	0.78		
Phosphate	mg/L	<0.10		
Sulphate	mg/L	15.82	500.00 (AO)	Acceptable

KaizenLAB Sample # 167115_002 Sample ID: WW2

Date Sampled 29-Oct-2014

ameter Description	Units	Result	Guideline Limits*	Comment
al Metals including Mercury				
Total Mercury	mg/L	<0.00010		
Total Metals in Water by ICP-MS				
Total Aluminum	mg/L	<0.0050	0.10 (OG) see notes	Acceptable
Total Antimony	mg/L	0.00059	0.0060 (MAC)	Pass
Total Arsenic	mg/L	0.000165	0.0100 (MAC)	Pass
Total Barium	mg/L	0.128	1.0000 (MAC)	Pass
Total Beryllium	mg/L	<0.0010		
Total Boron	mg/L	0.032	5.00 (MAC)	Pass
Total Cadmium	mg/L	0.000016	0.0050 (MAC)	Pass
Total Chromium	mg/L	<0.0010	0.050 (MAC)	Pass
Total Cobalt	mg/L	<0.00020		
Total Copper	mg/L	0.0022	1.0000 (AO)	Acceptable
Total Iron	mg/L	0.018	0.30 (AO)	Acceptable
Total Lead	mg/L	<0.00030	0.0100 (MAC)	Pass
Total Manganese	mg/L	0.0040	0.0500 (AO)	Acceptable
Total Molybdenum	mg/L	0.00222		
Total Nickel	mg/L	<0.00050		
Total Selenium	mg/L	0.00112	0.0100 (MAC)	Pass
Total Silver	mg/L	<0.000070		
Total Strontium	mg/L	0.488		
Total Thallium	mg/L	<0.00020		
Total Tin	mg/L	<0.0070		
Total Titanium	mg/L	0.0971		
Total Uranium	mg/L	0.001023	0.020000 (MAC)	Pass
Total Vanadium	mg/L	<0.00060		
Total Zinc	mg/L	0.024	5.000 (AO)	Acceptable

⁻ Aluminum: This Operational Guideline applies only to drinking water treatment plants using aluminum-based coagulants: conventional systems - 0.1 mg/L, other systems - 0.2 mg/L

⁻ Turbidity: Based on slow sand or diatomaceous earth filtration (0.1 NTU) / membrane filtration (0.3 NTU) / conventional treatment (1.0 NTU). No limits apply for well water not under the influence of surface water. For further details and additional guidance restriction, see Guidelines for Canadian Drinking Water Quality (GCDWQ 2008).

KaizenLAB Sample # 167115_003 Sample ID: WW3

Date Sampled 29-Oct-2014

meter Description	Units	Result	Guideline Limits*	Comment
tine Water Potability Analysis (Potability pkg	ງ #2)			
Electrical Conductivity (EC)	uS/cm	607		
pH		7.9	6.5-8.5 (AO)	Acceptable
Total Dissolved Solids (calculated)	mg/L	349	500 (AO)	Acceptable
True Colour	TCU	<3	15 (AO)	Acceptable
Turbidity	NTU	0.2	0.1/0.3/1.0 see notes	See notes
Dissolved Metals in Water by ICP-MS				
Dissolved Iron	mg/L	<0.0040	0.3000 (AO)	Acceptable
Dissolved Manganese	mg/L	<0.00040	0.0500 (AO)	Acceptable
Alkalinity parameters of water				
Alkalinity (phenolphthalein, as CaCO3)	mg/L	<2.0		
Alkalinity (total, as CaCO3)	mg/L	321.2		
Bicarbonate (as HCO3)	mg/L	391.6		
Carbonate (as CO3)	mg/L	<1.5		
Hydroxide (as OH)	mg/L	<0.5		
Cations in Water				
Dissolved Calcium	mg/L	73.2		
Dissolved Magnesium	mg/L	39.9		
Dissolved Potassium	mg/L	3.1		
Dissolved Sodium	mg/L	7.8	200.00 (AO)	Acceptable
Hardness (calculated, as CaCO3)	mg/L	346.9		
Anions in Water				
Chloride	mg/L	10.31	250.00 (AO)	Acceptable
Fluoride	mg/L	0.14	1.50 (MAC)	Pass
Nitrate-N	mg/L	1.87	10.00 (MAC)	Pass
Nitrite-N	mg/L	<0.05	1.00 (AO)	Acceptable
Nitrite-N + Nitrate-N	mg/L	1.87		
Phosphate	mg/L	<0.10		
Sulphate	mg/L	10.33	500.00 (AO)	Acceptable

KaizenLAB Sample # 167115_003 Sample ID: WW3

Date Sampled 29-Oct-2014

ameter Description	Units	Result	Guideline Limits*	Comment
al Metals including Mercury				
Total Mercury	mg/L	<0.00010		
Total Metals in Water by ICP-MS				
Total Aluminum	mg/L	0.0061	0.10 (OG) see notes	Acceptable
Total Antimony	mg/L	<0.00050	0.0060 (MAC)	Pass
Total Arsenic	mg/L	0.000143	0.0100 (MAC)	Pass
Total Barium	mg/L	0.221	1.0000 (MAC)	Pass
Total Beryllium	mg/L	<0.0010		
Total Boron	mg/L	<0.020	5.00 (MAC)	Pass
Total Cadmium	mg/L	0.000040	0.0050 (MAC)	Pass
Total Chromium	mg/L	<0.0010	0.050 (MAC)	Pass
Total Cobalt	mg/L	<0.00020		
Total Copper	mg/L	0.125	1.0000 (AO)	Acceptable
Total Iron	mg/L	<0.010	0.30 (AO)	Acceptable
Total Lead	mg/L	0.00302	0.0100 (MAC)	Pass
Total Manganese	mg/L	0.0014	0.0500 (AO)	Acceptable
Total Molybdenum	mg/L	0.00113		
Total Nickel	mg/L	0.00174		
Total Selenium	mg/L	0.00070	0.0100 (MAC)	Pass
Total Silver	mg/L	<0.000070		
Total Strontium	mg/L	0.421		
Total Thallium	mg/L	<0.00020		
Total Tin	mg/L	<0.0070		
Total Titanium	mg/L	0.109		
Total Uranium	mg/L	0.001744	0.020000 (MAC)	Pass
Total Vanadium	mg/L	<0.00060		
Total Zinc	mg/L	0.205	5.000 (AO)	Acceptable

⁻ Aluminum: This Operational Guideline applies only to drinking water treatment plants using aluminum-based coagulants: conventional systems - 0.1 mg/L, other systems - 0.2 mg/L

⁻ Turbidity: Based on slow sand or diatomaceous earth filtration (0.1 NTU) / membrane filtration (0.3 NTU) / conventional treatment (1.0 NTU). No limits apply for well water not under the influence of surface water. For further details and additional guidance restriction, see Guidelines for Canadian Drinking Water Quality (GCDWQ 2008).

KaizenLAB Sample # 167115_004 Sample ID: WW4

Date Sampled 30-Oct-2014

meter Description	Units	Result	Guideline Limits*	Comment
tine Water Potability Analysis (Potability pkg	ງ #2)			
Electrical Conductivity (EC)	uS/cm	596		
pH		8.0	6.5-8.5 (AO)	Acceptable
Total Dissolved Solids (calculated)	mg/L	339	500 (AO)	Acceptable
True Colour	TCU	<3	15 (AO)	Acceptable
Turbidity	NTU	0.6	0.1/0.3/1.0 see notes	See notes
Dissolved Metals in Water by ICP-MS				
Dissolved Iron	mg/L	<0.0040	0.3000 (AO)	Acceptable
Dissolved Manganese	mg/L	<0.00040	0.0500 (AO)	Acceptable
Alkalinity parameters of water				
Alkalinity (phenolphthalein, as CaCO3)	mg/L	<2.0		
Alkalinity (total, as CaCO3)	mg/L	304.9		
Bicarbonate (as HCO3)	mg/L	371.8		
Carbonate (as CO3)	mg/L	<1.5		
Hydroxide (as OH)	mg/L	<0.5		
Cations in Water				
Dissolved Calcium	mg/L	75.3		
Dissolved Magnesium	mg/L	35.2		
Dissolved Potassium	mg/L	3.1		
Dissolved Sodium	mg/L	7.1	200.00 (AO)	Acceptable
Hardness (calculated, as CaCO3)	mg/L	333.1		
Anions in Water				
Chloride	mg/L	10.86	250.00 (AO)	Acceptable
Fluoride	mg/L	0.15	1.50 (MAC)	Pass
Nitrate-N	mg/L	3.02	10.00 (MAC)	Pass
Nitrite-N	mg/L	<0.05	1.00 (AO)	Acceptable
Nitrite-N + Nitrate-N	mg/L	3.02		
Phosphate	mg/L	<0.10		
Sulphate	mg/L	7.66	500.00 (AO)	Acceptable

KaizenLAB Sample # 167

Date Sampled 30-Oct-2014

rameter Description	Units	Result	Guideline Limits*	Comment
tal Metals including Mercury				
Total Mercury	mg/L	<0.00010		
Total Metals in Water by ICP-MS				
Total Aluminum	mg/L	<0.0050	0.10 (OG) see notes	Acceptable
Total Antimony	mg/L	<0.00050	0.0060 (MAC)	Pass
Total Arsenic	mg/L	0.000192	0.0100 (MAC)	Pass
Total Barium	mg/L	0.385	1.0000 (MAC)	Pass
Total Beryllium	mg/L	<0.0010		
Total Boron	mg/L	<0.020	5.00 (MAC)	Pass
Total Cadmium	mg/L	0.00008	0.0050 (MAC)	Pass
Total Chromium	mg/L	<0.0010	0.050 (MAC)	Pass
Total Cobalt	mg/L	<0.00020		
Total Copper	mg/L	0.0017	1.0000 (AO)	Acceptable
Total Iron	mg/L	0.017	0.30 (AO)	Acceptable
Total Lead	mg/L	<0.00030	0.0100 (MAC)	Pass
Total Manganese	mg/L	<0.0010	0.0500 (AO)	Acceptable
Total Molybdenum	mg/L	0.00076		
Total Nickel	mg/L	<0.00050		
Total Selenium	mg/L	0.00180	0.0100 (MAC)	Pass
Total Silver	mg/L	<0.000070		
Total Strontium	mg/L	0.425		
Total Thallium	mg/L	<0.00020		
Total Tin	mg/L	<0.0070		
Total Titanium	mg/L	0.114		
Total Uranium	mg/L	0.001785	0.020000 (MAC)	Pass
Total Vanadium	mg/L	<0.00060		
Total Zinc	mg/L	0.029	5.000 (AO)	Acceptable

⁻ Aluminum: This Operational Guideline applies only to drinking water treatment plants using aluminum-based coagulants: conventional systems - 0.1 mg/L, other systems - 0.2 mg/L

⁻ Turbidity: Based on slow sand or diatomaceous earth filtration (0.1 NTU) / membrane filtration (0.3 NTU) / conventional treatment (1.0 NTU). No limits apply for well water not under the influence of surface water. For further details and additional guidance restriction, see Guidelines for Canadian Drinking Water Quality (GCDWQ 2008).

KaizenLAB Sample # 167115_005 Sample ID: BHS1

Date Sampled 30-Oct-2014

meter Description	Units	Result	Guideline Limits*	Comment
tine Water Potability Analysis (Potability pkg	ງ #2)			
Electrical Conductivity (EC)	uS/cm	588		
рН		8.2	6.5-8.5 (AO)	Acceptable
Total Dissolved Solids (calculated)	mg/L	342	500 (AO)	Acceptable
True Colour	TCU	<3	15 (AO)	Acceptable
Turbidity	NTU	0.8	0.1/0.3/1.0 see notes	See notes
Dissolved Metals in Water by ICP-MS				
Dissolved Iron	mg/L	<0.0040	0.3000 (AO)	Acceptable
Dissolved Manganese	mg/L	<0.00040	0.0500 (AO)	Acceptable
Alkalinity parameters of water				
Alkalinity (phenolphthalein, as CaCO3)	mg/L	<2.0		
Alkalinity (total, as CaCO3)	mg/L	308.5		
Bicarbonate (as HCO3)	mg/L	376.1		
Carbonate (as CO3)	mg/L	<1.5		
Hydroxide (as OH)	mg/L	<0.5		
Cations in Water				
Dissolved Calcium	mg/L	74.1		
Dissolved Magnesium	mg/L	36.7		
Dissolved Potassium	mg/L	3.4		
Dissolved Sodium	mg/L	7.8	200.00 (AO)	Acceptable
Hardness (calculated, as CaCO3)	mg/L	336.0		
Anions in Water				
Chloride	mg/L	9.60	250.00 (AO)	Acceptable
Fluoride	mg/L	0.14	1.50 (MAC)	Pass
Nitrate-N	mg/L	2.83	10.00 (MAC)	Pass
Nitrite-N	mg/L	<0.05	1.00 (AO)	Acceptable
Nitrite-N + Nitrate-N	mg/L	2.83		
Phosphate	mg/L	<0.10		
Sulphate	mg/L	9.36	500.00 (AO)	Acceptable

KaizenLAB Sample # 167115_005 Sample ID: BHS1

Date Sampled 30-Oct-2014

ameter Description	Units	Result	Guideline Limits*	Comment
al Metals including Mercury				
Total Mercury	mg/L	<0.00010		
Total Metals in Water by ICP-MS				
Total Aluminum	mg/L	0.0182	0.10 (OG) see notes	Acceptable
Total Antimony	mg/L	<0.00050	0.0060 (MAC)	Pass
Total Arsenic	mg/L	0.000153	0.0100 (MAC)	Pass
Total Barium	mg/L	0.304	1.0000 (MAC)	Pass
Total Beryllium	mg/L	<0.0010		
Total Boron	mg/L	0.024	5.00 (MAC)	Pass
Total Cadmium	mg/L	0.000032	0.0050 (MAC)	Pass
Total Chromium	mg/L	<0.0010	0.050 (MAC)	Pass
Total Cobalt	mg/L	<0.00020		
Total Copper	mg/L	<0.0010	1.0000 (AO)	Acceptable
Total Iron	mg/L	0.027	0.30 (AO)	Acceptable
Total Lead	mg/L	<0.00030	0.0100 (MAC)	Pass
Total Manganese	mg/L	0.0019	0.0500 (AO)	Acceptable
Total Molybdenum	mg/L	0.00141		
Total Nickel	mg/L	<0.00050		
Total Selenium	mg/L	0.00218	0.0100 (MAC)	Pass
Total Silver	mg/L	<0.000070		
Total Strontium	mg/L	0.443		
Total Thallium	mg/L	<0.00020		
Total Tin	mg/L	0.0083		
Total Titanium	mg/L	0.115		
Total Uranium	mg/L	0.001953	0.020000 (MAC)	Pass
Total Vanadium	mg/L	<0.00060		
Total Zinc	mg/L	<0.020	5.000 (AO)	Acceptable

⁻ Aluminum: This Operational Guideline applies only to drinking water treatment plants using aluminum-based coagulants: conventional systems - 0.1 mg/L, other systems - 0.2 mg/L

⁻ Turbidity: Based on slow sand or diatomaceous earth filtration (0.1 NTU) / membrane filtration (0.3 NTU) / conventional treatment (1.0 NTU). No limits apply for well water not under the influence of surface water. For further details and additional guidance restriction, see Guidelines for Canadian Drinking Water Quality (GCDWQ 2008).

Test Methodologies

Alkalinity in Water: Modified from APHA 2320B Anions in Water: Modified from APHA 4110B

Cations in Water: Modified from APHA 3030B and APHA 3120B

Dissolved Metals in Water: Modified from APHA 3030B and APHA 3125B

Electrical Conductivity in Water: Modified from APHA 2510B

pH in Water: Modified from APHA 4500-H+ B

Total Dissolved Solids (calculated): Modified from APHA 1030E Total Mercury in Water: Modified from EPA 200.2 and EPA 1631 Total Metals in Water: Modified from EPA 200.2 and APHA 3125B

True Colour in Water: Modified from APHA 2120C Turbidity in Water: Modified from APHA 2130B

Final Review by:

Natalia Klink

Client Service Representative / Project Coordinator

ANALYTICAL REPORT

Client: SLR Consulting (Canada) Ltd.

6940 Roper Rd NW Edmonton, AB T6B 3H9

Attention: Robert Till

KaizenLAB JOB #:	167823
DATE RECEIVED:	21-Nov-2014
DATE REPORTED:	27-Nov-2014
PROJECT ID:	203,50065,00001
LOCATION:	Summit Aggregates

KaizenLAB Sample # 167823_001 Sample ID: MW 14-101

Date Sampled 20-Nov-2014

meter Description	Units	Result	Guideline Limits*	Comment
ine Water Potability Analysis (Potability pk	g #2)			
Electrical Conductivity (EC)	uS/cm	596		
pH		7.9	6.5-8.5 (AO)	Acceptable
Total Dissolved Solids (calculated)	mg/L	337	500 (AO)	Acceptable
True Colour	TCU	<3	15 (AO)	Acceptable
Turbidity	NTU	9.6	0.1/0.3/1.0 see notes	See notes
Dissolved Metals in Water by ICP-MS				
Dissolved Iron	mg/L	<0.0400	0.3000 (AO)	Acceptable
Dissolved Manganese	mg/L	<0.00400	0.0500 (AO)	Acceptable
Alkalinity parameters of water				
Alkalinity (phenolphthalein, as CaCO3)	mg/L	<2.0		
Alkalinity (total, as CaCO3)	mg/L	313.6		
Bicarbonate (as HCO3)	mg/L	382.3		
Carbonate (as CO3)	mg/L	<1.5		
Hydroxide (as OH)	mg/L	<0.5		
Cations in Water				
Dissolved Calcium	mg/L	76.1		
Dissolved Magnesium	mg/L	33.7		
Dissolved Potassium	mg/L	4.8		
Dissolved Sodium	mg/L	6.0	200.00 (AO)	Acceptable
Hardness (calculated, as CaCO3)	mg/L	328.6		
Anions in Water				
Chloride	mg/L	10.54	250.00 (AO)	Acceptable
Fluoride	mg/L	0.13	1.50 (MAC)	Pass
Nitrate-N	mg/L	1.19	10.00 (MAC)	Pass
Nitrite-N	mg/L	<0.05	1.00 (AO)	Acceptable
Nitrite-N + Nitrate-N	mg/L	1.19		

^{*}CDWQG = Canadian Drinking Water Quality Guidelines, Health Canada 2008: MAC = Maximum Acceptable Concentration (affects health), AO = Aesthetic Objective (does not affect health but affects color, taste, etc.), OG = Operational Guidance

KaizenLAB Sample # 167823_001 Sample ID: MW 14-101

Date Sampled 20-Nov-2014

rameter Description	Units	Result	Guideline Limits*	Comment
Phosphate	mg/L	<0.10		
Sulphate	mg/L	8.88	500.00 (AO)	Acceptable
tal Metals including Mercury				
Total Mercury	mg/L	<0.00010		
Total Metals in Water by ICP-MS				
Total Aluminum	mg/L	0.164	0.10 (OG) see notes	Unacceptable
Total Antimony	mg/L	<0.00050	0.0060 (MAC)	Pass
Total Arsenic	mg/L	0.000350	0.0100 (MAC)	Pass
Total Barium	mg/L	0.424	1.0000 (MAC)	Pass
Total Beryllium	mg/L	<0.0010		
Total Boron	mg/L	<0.020	5.00 (MAC)	Pass
Total Cadmium	mg/L	0.000016	0.0050 (MAC)	Pass
Total Chromium	mg/L	<0.0010	0.050 (MAC)	Pass
Total Cobalt	mg/L	<0.00020		
Total Copper	mg/L	<0.0010	1.0000 (AO)	Acceptable
Total Iron	mg/L	0.28	0.30 (AO)	Acceptable
Total Lead	mg/L	0.00031	0.0100 (MAC)	Pass
Total Manganese	mg/L	0.0164	0.0500 (AO)	Acceptable
Total Molybdenum	mg/L	0.00080		
Total Nickel	mg/L	<0.00050		
Total Selenium	mg/L	<0.00060	0.0100 (MAC)	Pass
Total Silver	mg/L	<0.000070		
Total Strontium	mg/L	0.384		
Total Thallium	mg/L	<0.00020		
Total Tin	mg/L	0.0182		
Total Titanium	mg/L	0.122		
Total Uranium	mg/L	0.001697	0.020000 (MAC)	Pass
Total Vanadium	mg/L	<0.00060		
Total Zinc	mg/L	<0.020	5.000 (AO)	Acceptable

⁻ Aluminum: This Operational Guideline applies only to drinking water treatment plants using aluminum-based coagulants: conventional systems - 0.1 mg/L, other systems - 0.2 mg/L

⁻ Turbidity: Based on slow sand or diatomaceous earth filtration (0.1 NTU) / membrane filtration (0.3 NTU) / conventional treatment (1.0 NTU). No limits apply for well water not under the influence of surface water. For further details and additional guidance restriction, see Guidelines for Canadian Drinking Water Quality (GCDWQ 2008).

KaizenLAB Sample # 167823_002 **Sample ID:** MW 14-103

Date Sampled 20-Nov-2014

meter Description	Units	Result	Guideline Limits*	Comment
tine Water Potability Analysis (Potability pkg	j #2)			
Electrical Conductivity (EC)	uS/cm	610		
рН		7.8	6.5-8.5 (AO)	Acceptable
Total Dissolved Solids (calculated)	mg/L	354	500 (AO)	Acceptable
True Colour	TCU	<3	15 (AO)	Acceptable
Turbidity	NTU	680	0.1/0.3/1.0 see notes	See notes
Dissolved Metals in Water by ICP-MS				
Dissolved Iron	mg/L	<0.0400	0.3000 (AO)	Acceptable
Dissolved Manganese	mg/L	<0.00400	0.0500 (AO)	Acceptable
Alkalinity parameters of water				
Alkalinity (phenolphthalein, as CaCO3)	mg/L	<2.0		
Alkalinity (total, as CaCO3)	mg/L	311.5		
Bicarbonate (as HCO3)	mg/L	379.8		
Carbonate (as CO3)	mg/L	<1.5		
Hydroxide (as OH)	mg/L	<0.5		
Cations in Water				
Dissolved Calcium	mg/L	74.7		
Dissolved Magnesium	mg/L	33.4		
Dissolved Potassium	mg/L	4.3		
Dissolved Sodium	mg/L	8.8	200.00 (AO)	Acceptable
Hardness (calculated, as CaCO3)	mg/L	324.1		
Anions in Water				
Chloride	mg/L	7.83	250.00 (AO)	Acceptable
Fluoride	mg/L	0.13	1.50 (MAC)	Pass
Nitrate-N	mg/L	5.22	10.00 (MAC)	Pass
Nitrite-N	mg/L	<0.05	1.00 (AO)	Acceptable
Nitrite-N + Nitrate-N	mg/L	5.22		
Phosphate	mg/L	<0.10		
Sulphate	mg/L	11.90	500.00 (AO)	Acceptable

KaizenLAB Sample # 167823_002 Sample ID: MW 14-103

Date Sampled 20-Nov-2014

ameter Description	Units	Result	Guideline Limits*	Comment
al Metals including Mercury				
Total Mercury	mg/L	<0.00010		
Total Metals in Water by ICP-MS				
Total Aluminum	mg/L	5.57	0.10 (OG) see notes	Unacceptable
Total Antimony	mg/L	<0.00050	0.0060 (MAC)	Pass
Total Arsenic	mg/L	0.007858	0.0100 (MAC)	Pass
Total Barium	mg/L	0.700	1.0000 (MAC)	Pass
Total Beryllium	mg/L	<0.0010		
Total Boron	mg/L	<0.020	5.00 (MAC)	Pass
Total Cadmium	mg/L	0.000290	0.0050 (MAC)	Pass
Total Chromium	mg/L	0.0076	0.050 (MAC)	Pass
Total Cobalt	mg/L	0.00445		
Total Copper	mg/L	0.0093	1.0000 (AO)	Acceptable
Total Iron	mg/L	12	0.30 (AO)	Unacceptable
Total Lead	mg/L	0.00464	0.0100 (MAC)	Pass
Total Manganese	mg/L	0.928	0.0500 (AO)	Unacceptable
Total Molybdenum	mg/L	0.00184		
Total Nickel	mg/L	0.01196		
Total Selenium	mg/L	0.00112	0.0100 (MAC)	Pass
Total Silver	mg/L	<0.000070		
Total Strontium	mg/L	0.423		
Total Thallium	mg/L	<0.00020		
Total Tin	mg/L	<0.0070		
Total Titanium	mg/L	0.236		
Total Uranium	mg/L	0.002014	0.020000 (MAC)	Pass
Total Vanadium	mg/L	0.01145		
Total Zinc	mg/L	0.033	5.000 (AO)	Acceptable

⁻ Aluminum: This Operational Guideline applies only to drinking water treatment plants using aluminum-based coagulants: conventional systems - 0.1 mg/L, other systems - 0.2 mg/L

⁻ Turbidity: Based on slow sand or diatomaceous earth filtration (0.1 NTU) / membrane filtration (0.3 NTU) / conventional treatment (1.0 NTU). No limits apply for well water not under the influence of surface water. For further details and additional guidance restriction, see Guidelines for Canadian Drinking Water Quality (GCDWQ 2008).

Test Methodologies

Alkalinity in Water: Modified from APHA 2320B Anions in Water: Modified from APHA 4110B

Cations in Water: Modified from APHA 3030B and APHA 3120B

Dissolved Metals in Water: Modified from APHA 3030B and APHA 3125B

Electrical Conductivity in Water: Modified from APHA 2510B

pH in Water: Modified from APHA 4500-H+ B

Total Dissolved Solids (calculated): Modified from APHA 1030E Total Mercury in Water: Modified from EPA 200.2 and EPA 1631 Total Metals in Water: Modified from EPA 200.2 and APHA 3125B

True Colour in Water: Modified from APHA 2120C Turbidity in Water: Modified from APHA 2130B

Note: The results in this report relate only to the items tested. Information is available for any items in 5.10.2 of ISO/IEC 17025 that cannot be put on a test report.

ANALYTICAL REPORT

Client: SLR Consulting (Canada) Ltd.

6940 Roper Rd NW Edmonton, AB T6B 3H9

Attention: Robert Till

KaizenLAB JOB #:	173114
DATE RECEIVED:	04-Aug-2015
DATE REPORTED:	06-Aug-2015
PROJECT ID:	203-50065-00003
LOCATION:	Summit

KaizenLAB Sample # 173114_001 Sample ID: MW14-103

Date Sampled 4-Aug-2015

rameter Description	Units	Result	Guideline Limits*	Comment
utine Water Potability Analysis (Potability pk	g #2)			
Electrical Conductivity (EC)	uS/cm	611		
рН			6.5-8.5 (AO)	Acceptable
Total Dissolved Solids (calculated)	mg/L	333	500 (AO)	Acceptable
True Colour			15 (AO)	
Turbidity	NTU	8.00	0.1/0.3/1.0 see notes	See notes
Dissolved Metals in Water by ICP-MS				
Dissolved Iron	mg/L	<0.0040	0.3000 (AO)	Acceptable
Dissolved Manganese	mg/L	0.00069	0.0500 (AO)	Acceptable
Alkalinity parameters of water				
Alkalinity (phenolphthalein, as CaCO3)	mg/L	<2.0		
Alkalinity (total, as CaCO3)	mg/L	307.7		
Bicarbonate (as HCO3)	mg/L	375.1		
Carbonate (as CO3)	mg/L	<1.5		
Hydroxide (as OH)	mg/L	<0.5		
Cations in Water				
Dissolved Calcium	mg/L	73.3		
Dissolved Magnesium	mg/L	32.6		
Dissolved Potassium	mg/L	3.9		
Dissolved Sodium	mg/L	7.9	200.00 (AO)	Acceptable
Hardness (calculated, as CaCO3)	mg/L	317.0		
Anions in Water				
Chloride	mg/L	8.81	250.00 (AO)	Acceptable
Fluoride	mg/L	0.14	1.50 (MAC)	Pass
Nitrate-N	mg/L	1.801	10.00 (MAC)	Pass
Nitrite-N	mg/L	<0.005	1.00 (MAC)	Pass
Nitrite-N + Nitrate-N	mg/L	1.801		

^{*}CDWQG = Canadian Drinking Water Quality Guidelines, Health Canada 2008: MAC = Maximum Acceptable Concentration (affects health), AO = Aesthetic Objective (does not affect health but affects color, taste, etc.), OG = Operational Guidance

KaizenLAB Sample # 173114_001 Sample ID: MW14-103

Date Sampled 4-Aug-2015

meter Description	Units	Result	Guideline Limits*	Comment
Phosphate	mg/L	<0.10		
Sulphate	mg/L	10.56	500.00 (AO)	Acceptable
Metals including Mercury				
Total Mercury	mg/L	<0.00020		
Total Metals in Water by ICP-MS				
Total Aluminum	mg/L	0.109	0.10 (OG) see notes	Unacceptable
Total Antimony	mg/L	<0.00050	0.0060 (MAC)	Pass
Total Arsenic	mg/L	0.000336	0.0100 (MAC)	Pass
Total Barium	mg/L	0.332	1.0000 (MAC)	Pass
Total Beryllium	mg/L	<0.0010		
Total Boron	mg/L	<0.020	5.00 (MAC)	Pass
Total Cadmium	mg/L	<0.000005	0.0050 (MAC)	Pass
Total Chromium	mg/L	0.0016	0.050 (MAC)	Pass
Total Cobalt	mg/L	<0.00020		
Total Copper	mg/L	0.0013	1.0000 (AO)	Acceptable
Total Iron	mg/L	0.22	0.30 (AO)	Acceptable
Total Lead	mg/L	<0.00030	0.0100 (MAC)	Pass
Total Manganese	mg/L	0.0144	0.0500 (AO)	Acceptable
Total Molybdenum	mg/L	0.00086		
Total Nickel	mg/L	0.00051		
Total Selenium	mg/L	0.00087	0.0100 (MAC)	Pass
Total Silver	mg/L	<0.000070		
Total Strontium	mg/L	0.377		
Total Thallium	mg/L	<0.00020		
Total Tin	mg/L	<0.0070		
Total Titanium	mg/L	0.118		
Total Uranium	mg/L	0.001563	0.020000 (MAC)	Pass
Total Vanadium	mg/L	<0.00060		
Total Zinc	mg/L	<0.020	5.000 (AO)	Acceptable
Coliforms and E. coli				
E. Coli	MPN/100mL	<1	0 (MAC)	Pass
Total Coliforms	MPN/100mL	<1	0 (MAC)	Pass

- Aluminum: This Operational Guideline applies only to drinking water treatment plants using aluminum-based coagulants: conventional systems 0.1 mg/L, other systems 0.2 mg/L
- Turbidity: Based on slow sand or diatomaceous earth filtration (0.1 NTU) / membrane filtration (0.3 NTU) / conventional treatment (1.0 NTU). No limits apply for well water not under the influence of surface water. For further details and additional guidance restriction, see Guidelines for Canadian Drinking Water Quality (GCDWQ 2008).

KaizenLAB Sample # 173114_002 Sample ID: WW1

Date Sampled 4-Aug-2015

meter Description	Units	Result	Guideline Limits*	Comment
tine Water Potability Analysis (Potability pko	g #2)			
Electrical Conductivity (EC)	uS/cm	570		
рН		8.0	6.5-8.5 (AO)	Acceptable
Total Dissolved Solids (calculated)	mg/L	310	500 (AO)	Acceptable
True Colour	TCU	<3	15 (AO)	Acceptable
Turbidity	NTU	0.31	0.1/0.3/1.0 see notes	See notes
Dissolved Metals in Water by ICP-MS				
Dissolved Iron	mg/L	<0.0040	0.3000 (AO)	Acceptable
Dissolved Manganese	mg/L	<0.00040	0.0500 (AO)	Acceptable
Alkalinity parameters of water				
Alkalinity (phenolphthalein, as CaCO3)	mg/L	<2.0		
Alkalinity (total, as CaCO3)	mg/L	294.9		
Bicarbonate (as HCO3)	mg/L	359.6		
Carbonate (as CO3)	mg/L	<1.5		
Hydroxide (as OH)	mg/L	<0.5		
Cations in Water				
Dissolved Calcium	mg/L	68.2		
Dissolved Magnesium	mg/L	31.8		
Dissolved Potassium	mg/L	3.2		
Dissolved Sodium	mg/L	7.0	200.00 (AO)	Acceptable
Hardness (calculated, as CaCO3)	mg/L	301.4		
Anions in Water				
Chloride	mg/L	4.49	250.00 (AO)	Acceptable
Fluoride	mg/L	0.14	1.50 (MAC)	Pass
Nitrate-N	mg/L	1.658	10.00 (MAC)	Pass
Nitrite-N	mg/L	<0.005	1.00 (MAC)	Pass
Nitrite-N + Nitrate-N	mg/L	1.658		
Phosphate	mg/L	<0.10		
Sulphate	mg/L	7.51	500.00 (AO)	Acceptable

KaizenLAB Sample #

173114_002 Sample ID: WW1

Date Sampled

ameter Description	Units	Result	Guideline Limits*	Comment
al Metals including Mercury				
Total Mercury	mg/L	<0.00020		
Total Metals in Water by ICP-MS				
Total Aluminum	mg/L	0.0110	0.10 (OG) see notes	Acceptable
Total Antimony	mg/L	<0.00050	0.0060 (MAC)	Pass
Total Arsenic	mg/L	0.000132	0.0100 (MAC)	Pass
Total Barium	mg/L	0.284	1.0000 (MAC)	Pass
Total Beryllium	mg/L	<0.0010		
Total Boron	mg/L	<0.020	5.00 (MAC)	Pass
Total Cadmium	mg/L	<0.000005	0.0050 (MAC)	Pass
Total Chromium	mg/L	<0.0010	0.050 (MAC)	Pass
Total Cobalt	mg/L	<0.00020		
Total Copper	mg/L	0.0130	1.0000 (AO)	Acceptable
Total Iron	mg/L	0.014	0.30 (AO)	Acceptable
Total Lead	mg/L	0.00048	0.0100 (MAC)	Pass
Total Manganese	mg/L	<0.0010	0.0500 (AO)	Acceptable
Total Molybdenum	mg/L	0.00147		
Total Nickel	mg/L	<0.00050		
Total Selenium	mg/L	<0.00060	0.0100 (MAC)	Pass
Total Silver	mg/L	<0.000070		
Total Strontium	mg/L	0.450		
Total Thallium	mg/L	<0.00020		
Total Tin	mg/L	<0.0070		
Total Titanium	mg/L	0.105		
Total Uranium	mg/L	0.001241	0.020000 (MAC)	Pass
Total Vanadium	mg/L	<0.00060		
Total Zinc	mg/L	<0.020	5.000 (AO)	Acceptable
al Coliforms and E. coli				
E. Coli	MPN/100mL	<1	0 (MAC)	Pass
Total Coliforms	MPN/100mL	<1	0 (MAC)	Pass

⁻ Aluminum: This Operational Guideline applies only to drinking water treatment plants using aluminum-based coagulants: conventional systems - 0.1 mg/L,

⁻ Turbidity: Based on slow sand or diatomaceous earth filtration (0.1 NTU) / membrane filtration (0.3 NTU) / conventional treatment (1.0 NTU). No limits apply for well water not under the influence of surface water. For further details and additional guidance restriction, see Guidelines for Canadian Drinking Water Quality (GCDWQ 2008).

KaizenLAB Sample # 173114_003 Sample ID: WW2

Date Sampled 4-Aug-2015

meter Description	Units	Result	Guideline Limits*	Comment
tine Water Potability Analysis (Potability pkg	g #2)			
Electrical Conductivity (EC)	uS/cm	585		
рН		8.1	6.5-8.5 (AO)	Acceptable
Total Dissolved Solids (calculated)	mg/L	317	500 (AO)	Acceptable
True Colour	TCU	<3	15 (AO)	Acceptable
Turbidity	NTU	1.23	0.1/0.3/1.0 see notes	See notes
Dissolved Metals in Water by ICP-MS				
Dissolved Iron	mg/L	<0.0040	0.3000 (AO)	Acceptable
Dissolved Manganese	mg/L	0.00275	0.0500 (AO)	Acceptable
Alkalinity parameters of water				
Alkalinity (phenolphthalein, as CaCO3)	mg/L	<2.0		
Alkalinity (total, as CaCO3)	mg/L	307.6		
Bicarbonate (as HCO3)	mg/L	375.1		
Carbonate (as CO3)	mg/L	<1.5		
Hydroxide (as OH)	mg/L	<0.5		
Cations in Water				
Dissolved Calcium	mg/L	63.4		
Dissolved Magnesium	mg/L	35.0		
Dissolved Potassium	mg/L	2.6		
Dissolved Sodium	mg/L	9.3	200.00 (AO)	Acceptable
Hardness (calculated, as CaCO3)	mg/L	302.4		
Anions in Water				
Chloride	mg/L	1.93	250.00 (AO)	Acceptable
Fluoride	mg/L	0.15	1.50 (MAC)	Pass
Nitrate-N	mg/L	1.054	10.00 (MAC)	Pass
Nitrite-N	mg/L	<0.005	1.00 (MAC)	Pass
Nitrite-N + Nitrate-N	mg/L	1.054		
Phosphate	mg/L	<0.10		
Sulphate	mg/L	12.85	500.00 (AO)	Acceptable

KaizenLAB Sample # 17

173114_003

Sample ID: WW2

Date Sampled 4-Aug-2015

Parameter Description	Units	Result	Guideline Limits*	Comment
Total Metals including Mercury				
Total Mercury	mg/L	<0.00020		
Total Metals in Water by ICP-MS				
Total Aluminum	mg/L	<0.0050	0.10 (OG) see notes	Acceptable
Total Antimony	mg/L	<0.00050	0.0060 (MAC)	Pass
Total Arsenic	mg/L	0.000205	0.0100 (MAC)	Pass
Total Barium	mg/L	0.142	1.0000 (MAC)	Pass
Total Beryllium	mg/L	<0.0010		
Total Boron	mg/L	<0.020	5.00 (MAC)	Pass
Total Cadmium	mg/L	0.000024	0.0050 (MAC)	Pass
Total Chromium	mg/L	<0.0010	0.050 (MAC)	Pass
Total Cobalt	mg/L	<0.00020		
Total Copper	mg/L	0.0016	1.0000 (AO)	Acceptable
Total Iron	mg/L	0.040	0.30 (AO)	Acceptable
Total Lead	mg/L	<0.00030	0.0100 (MAC)	Pass
Total Manganese	mg/L	0.0042	0.0500 (AO)	Acceptable
Total Molybdenum	mg/L	0.00193		
Total Nickel	mg/L	<0.00050		
Total Selenium	mg/L	0.00105	0.0100 (MAC)	Pass
Total Silver	mg/L	<0.000070		
Total Strontium	mg/L	0.454		
Total Thallium	mg/L	<0.00020		
Total Tin	mg/L	<0.0070		
Total Titanium	mg/L	0.103		
Total Uranium	mg/L	0.001214	0.020000 (MAC)	Pass
Total Vanadium	mg/L	<0.00060		
Total Zinc	mg/L	<0.020	5.000 (AO)	Acceptable
otal Coliforms and E. coli				
E. Coli	MPN/100mL	<1	0 (MAC)	Pass
Total Coliforms	MPN/100mL	<1	0 (MAC)	Pass

⁻ Aluminum: This Operational Guideline applies only to drinking water treatment plants using aluminum-based coagulants: conventional systems - 0.1 mg/L, other systems - 0.2 mg/L

⁻ Turbidity: Based on slow sand or diatomaceous earth filtration (0.1 NTU) / membrane filtration (0.3 NTU) / conventional treatment (1.0 NTU). No limits apply for well water not under the influence of surface water. For further details and additional guidance restriction, see Guidelines for Canadian Drinking Water Quality (GCDWQ 2008).

KaizenLAB Sample # 173114_004 Sample ID: WW3

Date Sampled 4-Aug-2015

meter Description	Units	Result	Guideline Limits*	Comment
tine Water Potability Analysis (Potability pko	g #2)			
Electrical Conductivity (EC)	uS/cm	604		
рН		8.0	6.5-8.5 (AO)	Acceptable
Total Dissolved Solids (calculated)	mg/L	330	500 (AO)	Acceptable
True Colour	TCU	<3	15 (AO)	Acceptable
Turbidity	NTU	0.25	0.1/0.3/1.0 see notes	See notes
Dissolved Metals in Water by ICP-MS				
Dissolved Iron	mg/L	<0.0040	0.3000 (AO)	Acceptable
Dissolved Manganese	mg/L	<0.00040	0.0500 (AO)	Acceptable
Alkalinity parameters of water				
Alkalinity (phenolphthalein, as CaCO3)	mg/L	<2.0		
Alkalinity (total, as CaCO3)	mg/L	309.8		
Bicarbonate (as HCO3)	mg/L	377.7		
Carbonate (as CO3)	mg/L	<1.5		
Hydroxide (as OH)	mg/L	<0.5		
Cations in Water				
Dissolved Calcium	mg/L	69.7		
Dissolved Magnesium	mg/L	35.5		
Dissolved Potassium	mg/L	3.0		
Dissolved Sodium	mg/L	7.6	200.00 (AO)	Acceptable
Hardness (calculated, as CaCO3)	mg/L	320.4		
Anions in Water				
Chloride	mg/L	5.88	250.00 (AO)	Acceptable
Fluoride	mg/L	0.14	1.50 (MAC)	Pass
Nitrate-N	mg/L	1.889	10.00 (MAC)	Pass
Nitrite-N	mg/L	<0.005	1.00 (MAC)	Pass
Nitrite-N + Nitrate-N	mg/L	1.889		
Phosphate	mg/L	<0.10		
Sulphate	mg/L	11.09	500.00 (AO)	Acceptable

KaizenLAB Sample # 173114_004 Sample ID: WW3

Date Sampled 4-Aug-2015

ameter Description	Units	Result	Guideline Limits*	Comment
al Metals including Mercury				
Total Mercury	mg/L	<0.00020		
Total Metals in Water by ICP-MS				
Total Aluminum	mg/L	<0.0050	0.10 (OG) see notes	Acceptable
Total Antimony	mg/L	<0.00050	0.0060 (MAC)	Pass
Total Arsenic	mg/L	0.000121	0.0100 (MAC)	Pass
Total Barium	mg/L	0.225	1.0000 (MAC)	Pass
Total Beryllium	mg/L	<0.0010		
Total Boron	mg/L	<0.020	5.00 (MAC)	Pass
Total Cadmium	mg/L	0.000024	0.0050 (MAC)	Pass
Total Chromium	mg/L	<0.0010	0.050 (MAC)	Pass
Total Cobalt	mg/L	<0.00020		
Total Copper	mg/L	0.0057	1.0000 (AO)	Acceptable
Total Iron	mg/L	<0.010	0.30 (AO)	Acceptable
Total Lead	mg/L	<0.00030	0.0100 (MAC)	Pass
Total Manganese	mg/L	<0.0010	0.0500 (AO)	Acceptable
Total Molybdenum	mg/L	0.00104		
Total Nickel	mg/L	<0.00050		
Total Selenium	mg/L	0.00085	0.0100 (MAC)	Pass
Total Silver	mg/L	<0.000070		
Total Strontium	mg/L	0.418		
Total Thallium	mg/L	<0.00020		
Total Tin	mg/L	<0.0070		
Total Titanium	mg/L	0.111		
Total Uranium	mg/L	0.001688	0.020000 (MAC)	Pass
Total Vanadium	mg/L	<0.00060		
Total Zinc	mg/L	<0.020	5.000 (AO)	Acceptable
al Coliforms and E. coli				
E. Coli	MPN/100mL	<1	0 (MAC)	Pass
Total Coliforms	MPN/100mL	<1	0 (MAC)	Pass

- Aluminum: This Operational Guideline applies only to drinking water treatment plants using aluminum-based coagulants: conventional systems 0.1 mg/L, other systems 0.2 mg/L
- Turbidity: Based on slow sand or diatomaceous earth filtration (0.1 NTU) / membrane filtration (0.3 NTU) / conventional treatment (1.0 NTU). No limits apply for well water not under the influence of surface water. For further details and additional guidance restriction, see Guidelines for Canadian Drinking Water Quality (GCDWQ 2008).

KaizenLAB Sample # 173114_005 Sample ID: WW4

Date Sampled 4-Aug-2015

meter Description	Units	Result	Guideline Limits*	Comment
tine Water Potability Analysis (Potability pko	g #2)			
Electrical Conductivity (EC)	uS/cm	608		
рН		8.0	6.5-8.5 (AO)	Acceptable
Total Dissolved Solids (calculated)	mg/L	328	500 (AO)	Acceptable
True Colour	TCU	<3	15 (AO)	Acceptable
Turbidity	NTU	0.23	0.1/0.3/1.0 see notes	See notes
Dissolved Metals in Water by ICP-MS				
Dissolved Iron	mg/L	<0.0040	0.3000 (AO)	Acceptable
Dissolved Manganese	mg/L	<0.00040	0.0500 (AO)	Acceptable
Alkalinity parameters of water				
Alkalinity (phenolphthalein, as CaCO3)	mg/L	<2.0		
Alkalinity (total, as CaCO3)	mg/L	299.6		
Bicarbonate (as HCO3)	mg/L	365.2		
Carbonate (as CO3)	mg/L	<1.5		
Hydroxide (as OH)	mg/L	<0.5		
Cations in Water				
Dissolved Calcium	mg/L	72.0		
Dissolved Magnesium	mg/L	31.5		
Dissolved Potassium	mg/L	2.9		
Dissolved Sodium	mg/L	6.5	200.00 (AO)	Acceptable
Hardness (calculated, as CaCO3)	mg/L	309.4		
Anions in Water				
Chloride	mg/L	10.95	250.00 (AO)	Acceptable
Fluoride	mg/L	0.14	1.50 (MAC)	Pass
Nitrate-N	mg/L	3.314	10.00 (MAC)	Pass
Nitrite-N	mg/L	<0.005	1.00 (MAC)	Pass
Nitrite-N + Nitrate-N	mg/L	3.314		
Phosphate	mg/L	<0.10		
Sulphate	mg/L	6.77	500.00 (AO)	Acceptable

KaizenLAB Sample # 173114_005 Sample ID: WW4

Date Sampled 4-Aug-2015

ameter Description	Units	Result	Guideline Limits*	Comment
al Metals including Mercury				
Total Mercury	mg/L	<0.00020		
Total Metals in Water by ICP-MS				
Total Aluminum	mg/L	<0.0050	0.10 (OG) see notes	Acceptable
Total Antimony	mg/L	<0.00050	0.0060 (MAC)	Pass
Total Arsenic	mg/L	0.000194	0.0100 (MAC)	Pass
Total Barium	mg/L	0.391	1.0000 (MAC)	Pass
Total Beryllium	mg/L	<0.0010		
Total Boron	mg/L	<0.020	5.00 (MAC)	Pass
Total Cadmium	mg/L	<0.000005	0.0050 (MAC)	Pass
Total Chromium	mg/L	<0.0010	0.050 (MAC)	Pass
Total Cobalt	mg/L	<0.00020		
Total Copper	mg/L	0.0018	1.0000 (AO)	Acceptable
Total Iron	mg/L	0.044	0.30 (AO)	Acceptable
Total Lead	mg/L	<0.00030	0.0100 (MAC)	Pass
Total Manganese	mg/L	<0.0010	0.0500 (AO)	Acceptable
Total Molybdenum	mg/L	0.00066		
Total Nickel	mg/L	<0.00050		
Total Selenium	mg/L	0.00096	0.0100 (MAC)	Pass
Total Silver	mg/L	<0.000070		
Total Strontium	mg/L	0.421		
Total Thallium	mg/L	<0.00020		
Total Tin	mg/L	<0.0070		
Total Titanium	mg/L	0.114		
Total Uranium	mg/L	0.001672	0.020000 (MAC)	Pass
Total Vanadium	mg/L	<0.00060		
Total Zinc	mg/L	0.031	5.000 (AO)	Acceptable
al Coliforms and E. coli				
E. Coli	MPN/100mL	<1	0 (MAC)	Pass
Total Coliforms	MPN/100mL	<1	0 (MAC)	Pass

- Aluminum: This Operational Guideline applies only to drinking water treatment plants using aluminum-based coagulants: conventional systems 0.1 mg/L, other systems 0.2 mg/L
- Turbidity: Based on slow sand or diatomaceous earth filtration (0.1 NTU) / membrane filtration (0.3 NTU) / conventional treatment (1.0 NTU). No limits apply for well water not under the influence of surface water. For further details and additional guidance restriction, see Guidelines for Canadian Drinking Water Quality (GCDWQ 2008).

KaizenLAB Sample # 173114_006 Sample ID: BHS1

Date Sampled 4-Aug-2015

meter Description	Units	Result	Guideline Limits*	Comment
tine Water Potability Analysis (Potability pko	j #2)			
Electrical Conductivity (EC)	uS/cm	606		
рН		8.2	6.5-8.5 (AO)	Acceptable
Total Dissolved Solids (calculated)	mg/L	334	500 (AO)	Acceptable
True Colour	TCU	3	15 (AO)	Acceptable
Turbidity	NTU	1.07	0.1/0.3/1.0 see notes	See notes
Dissolved Metals in Water by ICP-MS				
Dissolved Iron	mg/L	<0.0040	0.3000 (AO)	Acceptable
Dissolved Manganese	mg/L	0.00069	0.0500 (AO)	Acceptable
Alkalinity parameters of water				
Alkalinity (phenolphthalein, as CaCO3)	mg/L	<2.0		
Alkalinity (total, as CaCO3)	mg/L	304.3		
Bicarbonate (as HCO3)	mg/L	371.0		
Carbonate (as CO3)	mg/L	<1.5		
Hydroxide (as OH)	mg/L	<0.5		
Cations in Water				
Dissolved Calcium	mg/L	72.0		
Dissolved Magnesium	mg/L	33.3		
Dissolved Potassium	mg/L	3.3		
Dissolved Sodium	mg/L	7.5	200.00 (AO)	Acceptable
Hardness (calculated, as CaCO3)	mg/L	317.0		
Anions in Water				
Chloride	mg/L	10.12	250.00 (AO)	Acceptable
Fluoride	mg/L	0.15	1.50 (MAC)	Pass
Nitrate-N	mg/L	3.037	10.00 (MAC)	Pass
Nitrite-N	mg/L	<0.005	1.00 (MAC)	Pass
Nitrite-N + Nitrate-N	mg/L	3.037		
Phosphate	mg/L	<0.10		
Sulphate	mg/L	8.36	500.00 (AO)	Acceptable

KaizenLAB Sample # 173

173114_006 **Sample ID**: BHS1

Date Sampled 4-Aug-2015

rameter Description	Units	Units Result		Comment	
tal Metals including Mercury					
Total Mercury	mg/L	<0.00020			
Total Metals in Water by ICP-MS					
Total Aluminum	mg/L	0.0144	0.10 (OG) see notes	Acceptable	
Total Antimony	mg/L	<0.00050	0.0060 (MAC)	Pass	
Total Arsenic	mg/L	0.000146	0.0100 (MAC)	Pass	
Total Barium	mg/L	0.313	1.0000 (MAC)	Pass	
Total Beryllium	mg/L	<0.0010			
Total Boron	mg/L	<0.020	5.00 (MAC)	Pass	
Total Cadmium	mg/L	0.00008	0.0050 (MAC)	Pass	
Total Chromium	mg/L	<0.0010	0.050 (MAC)	Pass	
Total Cobalt	mg/L	<0.00020			
Total Copper	mg/L	0.0010	1.0000 (AO)	Acceptable	
Total Iron	mg/L	0.019	0.30 (AO)	Acceptable	
Total Lead	mg/L	<0.00030	0.0100 (MAC)	Pass	
Total Manganese	mg/L	0.0012	0.0500 (AO)	Acceptable	
Total Molybdenum	mg/L	0.00089			
Total Nickel	mg/L	<0.00050			
Total Selenium	mg/L	0.00130	0.0100 (MAC)	Pass	
Total Silver	mg/L	<0.000070			
Total Strontium	mg/L	0.450			
Total Thallium	mg/L	<0.00020			
Total Tin	mg/L	<0.0070			
Total Titanium	mg/L	0.117			
Total Uranium	mg/L	0.001875	0.020000 (MAC)	Pass	
Total Vanadium	mg/L	<0.00060			
Total Zinc	mg/L	<0.020	5.000 (AO)	Acceptable	
tal Coliforms and E. coli					
E. Coli	MPN/100mL	1733	0 (MAC)	Fail	
Total Coliforms	MPN/100mL	2420	0 (MAC)	Fail	

⁻ Aluminum: This Operational Guideline applies only to drinking water treatment plants using aluminum-based coagulants: conventional systems - 0.1 mg/L, other systems - 0.2 mg/L

⁻ Turbidity: Based on slow sand or diatomaceous earth filtration (0.1 NTU) / membrane filtration (0.3 NTU) / conventional treatment (1.0 NTU). No limits apply for well water not under the influence of surface water. For further details and additional guidance restriction, see Guidelines for Canadian Drinking Water Quality (GCDWQ 2008).

Test Methodologies

Alkalinity in Water: Modified from APHA 2320B Anions in Water: Modified from APHA 4110B

Cations in Water: Modified from APHA 3030B and APHA 3120B

Dissolved Metals in Water: Modified from APHA 3030B and APHA 3125B

E. coli in Water: Modified from Method 9223 B. Enzyme Substrate Test. Standard Methods for the Examination of Water and Wastewater, 22nd ed. 2012

Electrical Conductivity in Water: Modified from APHA 2510B

pH of Water: Modified from APHA 4500-H+ B

Total Coliforms in Water: Modified from Method 9223 B. Enzyme Substrate Test. Standard Methods for the Examination of Water and Wastewater, 22nd

Total Dissolved Solids (calculated): Modified from APHA 1030E

Total Mercury in Water: Modified from EPA 200.2 and EPA 1631

Total Metals in Water: Modified from EPA 200.2 and APHA 3125B

True Colour in Water: Modified from APHA 2120C Turbidity in Water: Modified from APHA 2130B

Final Review by:

Enyo Sewordor

Engan Ducker

Client Service Representative / Project Coordinator

Note: The results in this report relate only to the items tested. Information is available for any items in 5.10.2 of ISO/IEC 17025 that cannot be put on a test report.

Your P.O. #: EDM4886

Your Project #: 212.06550.00003 Site Location: MOUNTAIN ASH

Your C.O.C. #: M083946

Attention: ROBERT TILL

SLR CONSULTING (CANADA) LTD 6940 ROPER ROAD EDMONTON, AB CANADA T6B 3H9

> Report Date: 2019/07/25 Report #: R2757540

Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BV LABS JOB #: B953759 Received: 2019/07/05, 07:00

Sample Matrix: Water # Samples Received: 5

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity @25C (pp, total), CO3,HCO3,OH	4	N/A	2019/07/08	AB SOP-00005	SM 23 2320 B m
Alkalinity @25C (pp, total), CO3,HCO3,OH	1	N/A	2019/07/10	AB SOP-00005	SM 23 2320 B m
Cadmium - low level CCME - Dissolved	5	N/A	2019/07/24		Auto Calc
Cadmium - low level CCME (Total)	5	N/A	2019/07/11		Auto Calc
Chloride by Automated Colourimetry	5	N/A	2019/07/10	AB SOP-00020	SM 23-4500-Cl-E m
Total Coliforms and E.Coli	5	2019/07/05	2019/07/06	AB SOP-00089	SM 23 9223 A,B m
Conductivity @25C	4	N/A	2019/07/08	AB SOP-00005	SM 23 2510 B m
Conductivity @25C	1	N/A	2019/07/10	AB SOP-00005	SM 23 2510 B m
Hardness	5	N/A	2019/07/10		Auto Calc
Mercury - Low Level (Total)	1	2019/07/11	2019/07/11	CAL SOP-00007	EPA 1631 RE 20460 m
Mercury - Low Level (Total)	4	2019/07/11	2019/07/12	CAL SOP-00007	EPA 1631 RE 20460 m
Elements by ICP-Dissolved-Lab Filtered (1)	5	N/A	2019/07/09	AB SOP-00042	EPA 6010d R5 m
Elements by ICP - Total	5	2019/07/10	2019/07/10	AB SOP-00014 / AB SOP- 00042	EPA 6010d R4 m
Elements by ICPMS-Dissolved-Lab Filtered (2)	3	N/A	2019/07/23	AB SOP-00043	EPA 6020b R2 m
Elements by ICPMS-Dissolved-Lab Filtered (2)	2	N/A	2019/07/24	AB SOP-00043	EPA 6020b R2 m
Elements by ICPMS - Total	4	2019/07/10	2019/07/10	AB SOP-00014 / AB SOP- 00043	EPA 6020b R2 m
Elements by ICPMS - Total	1	2019/07/10	2019/07/11	AB SOP-00014 / AB SOP- 00043	EPA 6020b R2 m
Ion Balance	5	N/A	2019/07/06		Auto Calc
Sum of cations, anions	5	N/A	2019/07/10		Auto Calc
Nitrate and Nitrite	5	N/A	2019/07/11		Auto Calc
Nitrate + Nitrite-N (calculated)	5	N/A	2019/07/11		Auto Calc
Nitrogen (Nitrite - Nitrate) by IC	5	N/A	2019/07/07	AB SOP-00023	SM 23 4110 B m
pH @25°C (3)	4	N/A	2019/07/08	AB SOP-00005	SM 23 4500-H+B m
pH @25°C (3)	1	N/A	2019/07/10	AB SOP-00005	SM 23 4500-H+B m
Sulphate by Automated Colourimetry	5	N/A	2019/07/10	AB SOP-00018	SM 23 4500-SO4 E m
Total Dissolved Solids (Calculated)	5	N/A	2019/07/10		Auto Calc
Turbidity	5	N/A	2019/07/06	CAL SOP-00081	SM 23 2130 B m

Remarks:

Your P.O. #: EDM4886

Your Project #: 212.06550.00003 Site Location: MOUNTAIN ASH

Your C.O.C. #: M083946

Attention: ROBERT TILL

SLR CONSULTING (CANADA) LTD 6940 ROPER ROAD EDMONTON, AB CANADA T6B 3H9

Report Date: 2019/07/25

Report #: R2757540 Version: 2 - Revision

CERTIFICATE OF ANALYSIS – REVISED REPORT

BV LABS JOB #: B953759 Received: 2019/07/05, 07:00

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Dissolved > Total Imbalance: When applicable, Dissolved and Total results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (2) Samples were filtered and preserved at the lab. Values may not reflect concentrations at the time of sampling. Dissolved > Total Imbalance: When applicable, Dissolved and Total results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (3) The CCME method requires pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the CCME holding time. Bureau Veritas Laboratories endeavours to analyze samples as soon as possible after receipt.

Encryption Key

25 Jul 2019 16:32:26

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Jenelle Feller, Key Account Specialist

Email: JFeller@bvlabs.com Phone# (403)735-2264

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Report Date: 2019/07/25

SLR CONSULTING (CANADA) LTD Client Project #: 212.06550.00003 Site Location: MOUNTAIN ASH

Your P.O. #: EDM4886

Sampler Initials: NY

ROUTINE WATER -LAB FILTERED (WATER)

BV Labs ID		WA5520		WA5521		WA5522		WA5523		
Compliant Bata		2019/07/04		2019/07/04		2019/07/04		2019/07/04		
Sampling Date		09:55		10:55		11:55		13:55		
COC Number		M083946		M083946		M083946		M083946		
	UNITS	MW18-105	QC Batch	MW19-108	RDL	MW18-104	RDL	MW18-106	RDL	QC Batch
Calculated Parameters										
Anion Sum	meq/L	5.9	9493590	7.3	N/A	6.2	N/A	6.6	N/A	9493590
Cation Sum	meq/L	6.4	9493590	7.0	N/A	6.3	N/A	6.7	N/A	9493590
Hardness (CaCO3)	mg/L	300	9493521	320	0.50	280	0.50	310	0.50	9493521
Ion Balance (% Difference)	%	4.0	9493527	2.3	N/A	0.59	N/A	0.98	N/A	9493527
Dissolved Nitrate (NO3)	mg/L	12	9493534	11	0.044	4.3	0.044	10	0.044	9493534
Nitrate plus Nitrite (N)	mg/L	2.6	9493540	2.5	0.014	1.1	0.014	2.3	0.014	9493540
Dissolved Nitrite (NO2)	mg/L	<0.033	9493534	0.16	0.033	0.32	0.033	<0.033	0.033	9493534
Calculated Total Dissolved Solids	mg/L	300	9493550	350	1.0	310	1.7	320	1.0	9493550
Misc. Inorganics										
Conductivity	uS/cm	560	9498908	610	2.0	570	2.0	590	2.0	9497188
рН	рН	8.05	9498906	7.91	N/A	7.91	N/A	7.87	N/A	9497187
Anions										
Alkalinity (PP as CaCO3)	mg/L	<1.0	9498897	<1.0	1.0	<1.0	1.0	<1.0	1.0	9497185
Alkalinity (Total as CaCO3)	mg/L	260	9498897	320	1.0	260	1.0	300	1.0	9497185
Bicarbonate (HCO3)	mg/L	320	9498897	390	1.0	310	1.0	360	1.0	9497185
Carbonate (CO3)	mg/L	<1.0	9498897	<1.0	1.0	<1.0	1.0	<1.0	1.0	9497185
Hydroxide (OH)	mg/L	<1.0	9498897	<1.0	1.0	<1.0	1.0	<1.0	1.0	9497185
Dissolved Sulphate (SO4)	mg/L	5.8	9501390	17	1.0	9.2	1.0	7.6	1.0	9501390
Dissolved Chloride (CI)	mg/L	13	9501388	14	1.0	29	1.0	9.3	1.0	9501388
Nutrients										
Dissolved Nitrite (N)	mg/L	< 0.010	9495539	0.048	0.010	0.098	0.010	<0.010	0.010	9495539
Dissolved Nitrate (N)	mg/L	2.6	9495539	2.4	0.010	0.97	0.010	2.3	0.010	9495539
Lab Filtered Elements										
Dissolved Aluminum (Al)	mg/L	<0.040	9497648	<0.040	0.040	<0.040	0.040	<0.040	0.040	9497648
Dissolved Barium (Ba)	mg/L	0.34	9497648	0.24	0.010	0.45	0.010	0.32	0.010	9497648
Dissolved Boron (B)	mg/L	<0.020	9497648	<0.020	0.020	0.031	0.020	<0.020	0.020	9497648
Dissolved Calcium (Ca)	mg/L	69	9497648	74	0.30	63	0.30	73	0.30	9497648
Dissolved Chromium (Cr)	mg/L	<0.010	9497648	<0.010	0.010	<0.010	0.010	<0.010	0.010	9497648
Dissolved Iron (Fe)	mg/L	0.16	9497648	0.16	0.060	0.18	0.060	0.16	0.060	9497648
Dissolved Lithium (Li)	mg/L	<0.020	9497648	<0.020	0.020	<0.020	0.020	<0.020	0.020	9497648
RDL = Reportable Detection Limit			·							•

N/A = Not Applicable

SLR CONSULTING (CANADA) LTD Client Project #: 212.06550.00003 Site Location: MOUNTAIN ASH

Your P.O. #: EDM4886 Sampler Initials: NY

ROUTINE WATER -LAB FILTERED (WATER)

BV Labs ID		WA5520		WA5521		WA5522		WA5523		
Sampling Date		2019/07/04 09:55		2019/07/04 10:55		2019/07/04 11:55		2019/07/04 13:55		
COC Number		M083946		M083946		M083946		M083946		
	UNITS	MW18-105	QC Batch	MW19-108	RDL	MW18-104	RDL	MW18-106	RDL	QC Batch
Dissolved Magnesium (Mg)	mg/L	32	9497648	32	0.20	30	0.20	31	0.20	9497648
Dissolved Manganese (Mn)	mg/L	<0.0040	9497648	0.064	0.0040	0.40	0.0040	0.018	0.0040	9497648
Dissolved Phosphorus (P)	mg/L	<0.10	9497648	<0.10	0.10	0.21	0.10	<0.10	0.10	9497648
Dissolved Potassium (K)	mg/L	2.9	9497648	3.4	0.30	4.1	0.30	3.3	0.30	9497648
Dissolved Silicon (Si)	mg/L	4.7	9497648	4.8	0.10	3.8	0.10	4.6	0.10	9497648
Dissolved Sodium (Na)	mg/L	5.7	9497648	12	0.50	13	0.50	9.0	0.50	9497648
Dissolved Strontium (Sr)	mg/L	0.44	9497648	0.46	0.020	0.41	0.020	0.44	0.020	9497648
Dissolved Sulphur (S)	mg/L	1.6	9497648	4.5	0.20	2.6	0.20	2.1	0.20	9497648
RDL = Reportable Detection Limit			-							

SLR CONSULTING (CANADA) LTD Client Project #: 212.06550.00003 Site Location: MOUNTAIN ASH

Your P.O. #: EDM4886 Sampler Initials: NY

ROUTINE WATER -LAB FILTERED (WATER)

Sampling Date							
amping butc		2019/07/04					
		14:55					
COC Number		M083946					
	UNITS	MW18-107	RDL	QC Batch			
Calculated Parameters							
Anion Sum	meq/L	6.6	N/A	9493590			
Cation Sum	meq/L	6.5	N/A	9493590			
Hardness (CaCO3)	mg/L	310	0.50	9493521			
on Balance (% Difference)	%	0.68	N/A	9493527			
Dissolved Nitrate (NO3)	mg/L	8.9	0.044	9493534			
Nitrate plus Nitrite (N)	mg/L	2.1	0.014	9493540			
Dissolved Nitrite (NO2)	mg/L	0.11	0.033	9493534			
Calculated Total Dissolved Solids	mg/L	320	1.0	9493550			
Misc. Inorganics							
Conductivity	uS/cm	580	2.0	9497188			
Н	рН	7.80	N/A	9497187			
Anions							
Alkalinity (PP as CaCO3)	mg/L	<1.0	1.0	9497185			
Alkalinity (Total as CaCO3)	mg/L	300	1.0	9497185			
Bicarbonate (HCO3)	mg/L	370	1.0	9497185			
Carbonate (CO3)	mg/L	<1.0	1.0	9497185			
Hydroxide (OH)	mg/L	<1.0	1.0	9497185			
Dissolved Sulphate (SO4)	mg/L	6.6	1.0	9501390			
Dissolved Chloride (Cl)	mg/L	10	1.0	9501388			
Nutrients							
Dissolved Nitrite (N)	mg/L	0.034	0.010	9495539			
Dissolved Nitrate (N)	mg/L	2.0	0.010	9495539			
ab Filtered Elements							
Dissolved Aluminum (AI)	mg/L	<0.040	0.040	9497648			
Dissolved Barium (Ba)	mg/L	0.34	0.010	9497648			
Dissolved Boron (B)	mg/L	0.029	0.020	9497648			
Dissolved Calcium (Ca)	mg/L	71	0.30	9497648			
Dissolved Chromium (Cr)	mg/L	<0.010	0.010	9497648			
Dissolved Iron (Fe)	mg/L	0.15	0.060	9497648			
	mg/L	<0.020	0.020	9497648			

SLR CONSULTING (CANADA) LTD Client Project #: 212.06550.00003 Site Location: MOUNTAIN ASH

Your P.O. #: EDM4886 Sampler Initials: NY

ROUTINE WATER -LAB FILTERED (WATER)

BV Labs ID		WA5524		
Sampling Date		2019/07/04		
		14:55		
COC Number		M083946		
	UNITS	MW18-107	RDL	QC Batch
Dissolved Magnesium (Mg)	mg/L	32	0.20	9497648
Dissolved Manganese (Mn)	mg/L	0.039	0.0040	9497648
Dissolved Phosphorus (P)	mg/L	<0.10	0.10	9497648
Dissolved Potassium (K)	mg/L	3.0	0.30	9497648
Dissolved Silicon (Si)	mg/L	4.8	0.10	9497648
Dissolved Sodium (Na)	mg/L	6.6	0.50	9497648
Dissolved Strontium (Sr)	mg/L	0.46	0.020	9497648
Dissolved Sulphur (S)	mg/L	2.0	0.20	9497648
RDL = Reportable Detection Lim	nit		•	

Your P.O. #: EDM4886 Sampler Initials: NY

REG. METALS (CCME/AT1) - DISS. LAB FILT.

			1						
BV Labs ID		WA5520	WA5521	WA5522	WA5523		WA5524		
Sampling Date		2019/07/04	2019/07/04	2019/07/04	2019/07/04		2019/07/04		
		09:55	10:55	11:55	13:55		14:55		
COC Number		M083946	M083946	M083946	M083946		M083946		
	UNITS	MW18-105	MW19-108	MW18-104	MW18-106	QC Batch	MW18-107	RDL	QC Batch
Low Level Elements									
Dissolved Cadmium (Cd)	ug/L	<0.020	<0.020	0.039	<0.020	9512961	<0.020	0.020	9513604
Lab Filtered Elements									
Dissolved Aluminum (AI)	mg/L	<0.0030	0.0051	0.0051	0.0034	9519537	0.0033	0.0030	9519537
Dissolved Antimony (Sb)	mg/L	<0.00060	<0.00060	0.0013	<0.00060	9519537	<0.00060	0.00060	9519537
Dissolved Arsenic (As)	mg/L	<0.00020	0.00022	0.00080	<0.00020	9519537	0.00023	0.00020	9519537
Dissolved Beryllium (Be)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	9519537	<0.0010	0.0010	9519537
Dissolved Chromium (Cr)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	9519537	<0.0010	0.0010	9519537
Dissolved Cobalt (Co)	mg/L	<0.00030	0.00039	0.0012	<0.00030	9519537	<0.00030	0.00030	9519537
Dissolved Copper (Cu)	mg/L	0.00030	<0.00020	0.0025	0.00072	9519537	<0.00020	0.00020	9519537
Dissolved Lead (Pb)	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	9519537	<0.00020	0.00020	9519537
Dissolved Molybdenum (Mo)	mg/L	0.00096	0.0029	0.012	0.0012	9519537	0.00095	0.00020	9519537
Dissolved Nickel (Ni)	mg/L	<0.00050	0.0023	0.0024	<0.00050	9519537	<0.00050	0.00050	9519537
Dissolved Selenium (Se)	mg/L	0.00043	0.00074	0.00024	0.00067	9519537	0.00081	0.00020	9519537
Dissolved Silver (Ag)	mg/L	<0.00010	<0.00010	<0.00010	<0.00010	9519537	<0.00010	0.00010	9519537
Dissolved Thallium (TI)	mg/L	<0.00020	<0.00020	<0.00020	<0.00020	9519537	<0.00020	0.00020	9519537
Dissolved Tin (Sn)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	9519537	0.0012	0.0010	9519537
Dissolved Titanium (Ti)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	9519537	<0.0010	0.0010	9519537
Dissolved Uranium (U)	mg/L	0.0018	0.0027	0.0015	0.0020	9519537	0.0017	0.00010	9519537
Dissolved Vanadium (V)	mg/L	<0.0010	<0.0010	<0.0010	<0.0010	9519537	<0.0010	0.0010	9519537
Dissolved Zinc (Zn)	mg/L	<0.0030	<0.0030	<0.0030	<0.0030	9519537	<0.0030	0.0030	9519537
RDL = Reportable Detection Lin	nit							•	

Your P.O. #: EDM4886 Sampler Initials: NY

REG. METALS (CCME/AT1) - DISS. LAB FILT.

BV Labs ID		WA5524		
Sampling Date		2019/07/04		
Jamping Date		14:55		
COC Number		M083946		
	UNITS	MW18-107 Lab-Dup	RDL	QC Batch
Lab Filtered Elements		200 200		
Dissolved Aluminum (AI)	mg/L	0.0036	0.0030	9519537
Dissolved Antimony (Sb)	mg/L	<0.00060	0.00060	9519537
Dissolved Arsenic (As)	mg/L	<0.00020	0.00020	9519537
Dissolved Beryllium (Be)	mg/L	<0.0010	0.0010	9519537
Dissolved Chromium (Cr)	mg/L	<0.0010	0.0010	9519537
Dissolved Cobalt (Co)	mg/L	<0.00030	0.00030	9519537
Dissolved Copper (Cu)	mg/L	<0.00020	0.00020	9519537
Dissolved Lead (Pb)	mg/L	<0.00020	0.00020	9519537
Dissolved Molybdenum (Mo)	mg/L	0.00090	0.00020	9519537
Dissolved Nickel (Ni)	mg/L	<0.00050	0.00050	9519537
Dissolved Selenium (Se)	mg/L	0.00079	0.00020	9519537
Dissolved Silver (Ag)	mg/L	<0.00010	0.00010	9519537
Dissolved Thallium (TI)	mg/L	<0.00020	0.00020	9519537
Dissolved Tin (Sn)	mg/L	<0.0010	0.0010	9519537
Dissolved Titanium (Ti)	mg/L	<0.0010	0.0010	9519537
Dissolved Uranium (U)	mg/L	0.0018	0.00010	9519537
Dissolved Vanadium (V)	mg/L	<0.0010	0.0010	9519537
Dissolved Zinc (Zn)	mg/L	<0.0030	0.0030	9519537
RDL = Reportable Detection Li	mit		-	
Lab-Dup = Laboratory Initiated	l Duplica	ite		

Your P.O. #: EDM4886

Sampler Initials: NY

REGULATED METALS (CCME/AT1) - TOTAL

BV Labs ID		WA5520		WA5521	WA5522	WA5523	WA5524		
Sampling Date		2019/07/04		2019/07/04	2019/07/04	2019/07/04	2019/07/04		
Sampling Date		09:55		10:55	11:55	13:55	14:55		
COC Number		M083946		M083946	M083946	M083946	M083946		
	UNITS	MW18-105	RDL	MW19-108	MW18-104	MW18-106	MW18-107	RDL	QC Batch
Low Level Elements									
Total Cadmium (Cd)	ug/L	5.5	0.020	0.95	0.36	0.95	0.33	0.020	9493589
Elements									
Total Aluminum (Al)	mg/L	5.4	0.0030	15	3.7	13	7.0	0.0030	9500624
Total Antimony (Sb)	mg/L	0.0060	0.00060	0.0022	0.0049	0.0048	0.00079	0.00060	9500624
Total Arsenic (As)	mg/L	0.0056	0.00020	0.0086	0.0044	0.017	0.0076	0.00020	9500624
Total Barium (Ba)	mg/L	2.8	0.010	1.1	0.61	1.1	0.79	0.010	9500611
Total Beryllium (Be)	mg/L	0.0014	0.0010	0.0012	<0.0010	<0.0010	<0.0010	0.0010	9500624
Total Boron (B)	mg/L	0.021	0.020	0.029	0.025	<0.020	<0.020	0.020	9500611
Total Calcium (Ca)	mg/L	720 (1)	1.5	170	90	350	170	0.30	9500611
Total Chromium (Cr)	mg/L	0.0046	0.0010	0.038	0.018	0.081	0.025	0.0010	9500624
Total Cobalt (Co)	mg/L	0.035	0.00030	0.011	0.0071	0.015	0.0051	0.00030	9500624
Total Copper (Cu)	mg/L	0.11	0.00020	0.038	0.064	0.11	0.018	0.00020	9500624
Total Iron (Fe)	mg/L	49	0.060	29	7.6	37	17	0.060	9500611
Total Lead (Pb)	mg/L	0.025	0.00020	0.024	0.0049	0.019	0.0075	0.00020	9500624
Total Lithium (Li)	mg/L	0.033	0.020	0.025	<0.020	0.021	<0.020	0.020	9500611
Total Magnesium (Mg)	mg/L	77	0.20	50	35	78	58	0.20	9500611
Total Manganese (Mn)	mg/L	2.9	0.0040	0.74	0.62	1.9	0.60	0.0040	9500611
Total Molybdenum (Mo)	mg/L	0.0014	0.00020	0.0065	0.015	0.0050	0.0021	0.00020	9500624
Total Nickel (Ni)	mg/L	0.015	0.00050	0.047	0.020	0.036	0.014	0.00050	9500624
Total Phosphorus (P)	mg/L	1.6	0.10	1.0	0.76	1.2	0.61	0.10	9500611
Total Potassium (K)	mg/L	6.6	0.30	5.6	4.6	5.0	3.6	0.30	9500611
Total Selenium (Se)	mg/L	0.00093	0.00020	0.0013	0.00049	0.0011	0.00094	0.00020	9500624
Total Silicon (Si)	mg/L	41	0.10	27	9.9	23	12	0.10	9500611
Total Silver (Ag)	mg/L	<0.00010	0.00010	0.00030	0.00044	0.0017	0.00010	0.00010	9500624
Total Sodium (Na)	mg/L	5.6	0.50	12	12	8.1	6.1	0.50	9500611
Total Strontium (Sr)	mg/L	1.4	0.020	0.57	0.41	0.58	0.51	0.020	9500611
Total Sulphur (S)	mg/L	2.3	0.20	5.7	3.2	2.5	2.2	0.20	9500611
Total Thallium (TI)	mg/L	0.00023	0.00020	0.00028	<0.00020	0.00020	<0.00020	0.00020	9500624
Total Tin (Sn)	mg/L	<0.0010	0.0010	0.0037	0.0052	0.0014	<0.0010	0.0010	9500624
Total Titanium (Ti)	mg/L	0.0092	0.0010	0.098	0.030	0.092	0.13	0.0010	9500624

RDL = Reportable Detection Limit

⁽¹⁾ Detection limits raised due to dilution to bring analyte within the calibrated range.

Your P.O. #: EDM4886

Sampler Initials: NY

REGULATED METALS (CCME/AT1) - TOTAL

BV Labs ID		WA5520		WA5521	WA5522	WA5523	WA5524		
Sampling Date		2019/07/04		2019/07/04	2019/07/04	2019/07/04	2019/07/04		
Sampling Date		09:55		10:55	11:55	13:55	14:55		
COC Number		M083946		M083946	M083946	M083946	M083946		
	UNITS	MW18-105	RDL	MW19-108	MW18-104	MW18-106	MW18-107	RDL	QC Batch
Total Uranium (U)	mg/L	0.012	0.00010	0.0047	0.0019	0.0030	0.0027	0.00010	9500624
Total Vanadium (V)	mg/L	0.0053	0.0010	0.036	0.011	0.033	0.018	0.0010	9500624
Total Zinc (Zn)	mg/L	0.19	0.0030	0.15	0.072	0.13	0.037	0.0030	9500624

Your P.O. #: EDM4886

Sampler Initials: NY

RESULTS OF CHEMICAL ANALYSES OF WATER

BV Labs ID		WA5520		WA5521	WA5522	WA5523		WA5524		
Campling Data		2019/07/04		2019/07/04	2019/07/04	2019/07/04		2019/07/04		
Sampling Date		09:55		10:55	11:55	13:55		14:55		
COC Number		M083946		M083946	M083946	M083946		M083946		
	UNITS	MW18-105	RDL	MW19-108	MW18-104	MW18-106	RDL	MW18-107	RDL	QC Batch
Microbiological Param.										
E.Coli DST	MPN/100mL	<100 (1)	100	<10 (1)	10 (1)	<10 (1)	10	<1.0	1.0	9493707
Total Coliforms DST	MPN/100mL	<100 (1)	100	<10 (1)	>24000 (1)	1100 (1)	10	>2400	1.0	9493707
Physical Properties	•									
Turbidity	NTU	>4000 (2)	0.10	670	130	3100	0.10	53	0.10	9495349
RDL = Reportable Detection	I tourte									

⁽¹⁾ Detection limit raised due to matrix interference.

⁽²⁾ Sample contained sediment

SLR CONSULTING (CANADA) LTD Client Project #: 212.06550.00003

Site Location: MOUNTAIN ASH

Your P.O. #: EDM4886 Sampler Initials: NY

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

BV Labs ID		WA5520		WA5521		WA5522		WA5523		WA5524		
Sampling Date		2019/07/04 09:55		2019/07/04 10:55		2019/07/04 11:55		2019/07/04 13:55		2019/07/04 14:55		
COC Number		M083946		M083946		M083946		M083946		M083946		
	UNITS	MW18-105	RDL	MW19-108	RDL	MW18-104	RDL	MW18-106	RDL	MW18-107	RDL	QC Batch

Low Level Elements												
Total Mercury (Hg)	ug/L	1.3 (1)	0.20	0.067 (1)	0.020	0.030 (1)	0.0060	0.32 (1)	0.20	0.048 (1)	0.0060	9502664

RDL = Reportable Detection Limit

⁽¹⁾ Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

SLR CONSULTING (CANADA) LTD Client Project #: 212.06550.00003

Site Location: MOUNTAIN ASH

Your P.O. #: EDM4886 Sampler Initials: NY

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

3.7°C Package 1

Results relate only to the items tested.

Your P.O. #: EDM4886 Sampler Initials: NY

QUALITY ASSURANCE REPORT

			QUALITY ASSUR					
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9493707	GK1	Method Blank	E.Coli DST	2019/07/06	<1.0	Recovery	mpn/100mL	
3 133707	CILI	Wethou Blank	Total Coliforms DST	2019/07/06	<1.0		mpn/100mL	
9493707	GK1	RPD	E.Coli DST	2019/07/06	170		%	N/A
3 .307 07	0.1.2	2	Total Coliforms DST	2019/07/06	33		%	N/A
9495349	EH2	Spiked Blank	Turbidity	2019/07/06		100	%	80 - 120
9495349	EH2	Method Blank	Turbidity	2019/07/06	<0.10		NTU	
9495349	EH2	RPD	Turbidity	2019/07/06	3.9		%	20
9495539	KD9	Matrix Spike	Dissolved Nitrite (N)	2019/07/07		100	%	80 - 120
		•	Dissolved Nitrate (N)	2019/07/07		99	%	80 - 120
9495539	KD9	Spiked Blank	Dissolved Nitrite (N)	2019/07/07		100	%	80 - 120
			Dissolved Nitrate (N)	2019/07/07		100	%	80 - 120
9495539	KD9	Method Blank	Dissolved Nitrite (N)	2019/07/07	< 0.010		mg/L	
			Dissolved Nitrate (N)	2019/07/07	< 0.010		mg/L	
9495539	KD9	RPD	Dissolved Nitrite (N)	2019/07/07	NC		%	20
			Dissolved Nitrate (N)	2019/07/07	0.63		%	20
9497185	IK0	Spiked Blank	Alkalinity (Total as CaCO3)	2019/07/08		105	%	80 - 120
9497185	IK0	Method Blank	Alkalinity (PP as CaCO3)	2019/07/08	<1.0		mg/L	
			Alkalinity (Total as CaCO3)	2019/07/08	<1.0		mg/L	
			Bicarbonate (HCO3)	2019/07/08	0.0.0,		mg/L	
					RDL=1.0			
			Carbonate (CO3)	2019/07/08	<1.0		mg/L	
			Hydroxide (OH)	2019/07/08	<1.0		mg/L	
9497185	IK0	RPD	Alkalinity (PP as CaCO3)	2019/07/08	NC		%	20
			Alkalinity (Total as CaCO3)	2019/07/08	1.7		%	20
			Bicarbonate (HCO3)	2019/07/08	1.7		%	20
			Carbonate (CO3)	2019/07/08	NC		%	20
			Hydroxide (OH)	2019/07/08	NC		%	20
9497187	IK0	Spiked Blank	рН	2019/07/08		100	%	97 - 103
9497187	IK0	RPD	рН	2019/07/08	0.052		%	N/A
9497188	IK0	Spiked Blank	Conductivity	2019/07/08		99	%	90 - 110
9497188	IK0	Method Blank	Conductivity	2019/07/08	<2.0		uS/cm	40
9497188	IK0	RPD	Conductivity	2019/07/08	0.31	0.0	%	10
9497648	MAP	Matrix Spike	Dissolved Aluminum (AI)	2019/07/09		93	%	80 - 120
			Dissolved Barium (Ba)	2019/07/09		92	%	80 - 120
			Dissolved Boron (B)	2019/07/09		94	%	80 - 120
			Dissolved Calcium (Ca)	2019/07/09 2019/07/09		NC 92	% %	80 - 120
			Dissolved Chromium (Cr) Dissolved Iron (Fe)	2019/07/09		94		80 - 120 80 - 120
			Dissolved Iron (Fe) Dissolved Lithium (Li)	2019/07/09			%	
			Dissolved Lithlam (Li) Dissolved Magnesium (Mg)	2019/07/09		94 87	% %	80 - 120 80 - 120
			Dissolved Magnesium (Mg) Dissolved Manganese (Mn)	2019/07/09		94	% %	80 - 120
			Dissolved Phosphorus (P)	2019/07/09		96	%	80 - 120
			Dissolved Priosphorus (F) Dissolved Potassium (K)	2019/07/09		91	%	80 - 120
			Dissolved Fotassium (K) Dissolved Silicon (Si)	2019/07/09		92	%	80 - 120
			Dissolved Silicon (Si)	2019/07/09		80	%	80 - 120
			Dissolved Strontium (Sr)	2019/07/09		86	%	80 - 120
			Dissolved Sulphur (S)	2019/07/09		102	%	80 - 120
9497648	MAP	Spiked Blank	Dissolved Aluminum (AI)	2019/07/09		96	%	80 - 120
		r	Dissolved Barium (Ba)	2019/07/09		97	%	80 - 120
			Dissolved Boron (B)	2019/07/09		97	%	80 - 120
			Dissolved Calcium (Ca)	2019/07/09		98	%	80 - 120
			Dissolved Chromium (Cr)	2019/07/09		98	%	80 - 120

Your P.O. #: EDM4886 Sampler Initials: NY

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Iron (Fe)	2019/07/09		105	%	80 - 120
			Dissolved Lithium (Li)	2019/07/09		96	%	80 - 120
			Dissolved Magnesium (Mg)	2019/07/09		96	%	80 - 120
			Dissolved Manganese (Mn)	2019/07/09		100	%	80 - 120
			Dissolved Phosphorus (P)	2019/07/09		95	%	80 - 120
			Dissolved Potassium (K)	2019/07/09		93	%	80 - 120
			Dissolved Silicon (Si)	2019/07/09		98	%	80 - 120
			Dissolved Sodium (Na)	2019/07/09		96	%	80 - 120
			Dissolved Strontium (Sr)	2019/07/09		98	%	80 - 120
			Dissolved Sulphur (S)	2019/07/09		97	%	80 - 120
9497648	MAP	Method Blank	Dissolved Aluminum (AI)	2019/07/09	<0.040		mg/L	
			Dissolved Barium (Ba)	2019/07/09	< 0.010		mg/L	
			Dissolved Boron (B)	2019/07/09	<0.020		mg/L	
			Dissolved Calcium (Ca)	2019/07/09	<0.30		mg/L	
			Dissolved Chromium (Cr)	2019/07/09	<0.010		mg/L	
			Dissolved Iron (Fe)	2019/07/09	<0.060		mg/L	
			Dissolved Lithium (Li)	2019/07/09	<0.020		mg/L	
			Dissolved Magnesium (Mg)	2019/07/09	<0.20		mg/L	
			Dissolved Manganese (Mn)	2019/07/09	< 0.0040		mg/L	
			Dissolved Phosphorus (P)	2019/07/09	<0.10		mg/L	
			Dissolved Potassium (K)	2019/07/09	<0.30		mg/L	
			Dissolved Silicon (Si)	2019/07/09	<0.10		mg/L	
			Dissolved Sodium (Na)	2019/07/09	<0.50		mg/L	
			Dissolved Strontium (Sr)	2019/07/09	<0.020		mg/L	
			Dissolved Sulphur (S)	2019/07/09	<0.20		mg/L	
9497648	MAP	RPD	Dissolved Calcium (Ca)	2019/07/09	0.75		%	20
			Dissolved Iron (Fe)	2019/07/09	NC		%	20
			Dissolved Magnesium (Mg)	2019/07/09	0.57		%	20
			Dissolved Manganese (Mn)	2019/07/09	NC		%	20
			Dissolved Potassium (K)	2019/07/09	1.1		%	20
			Dissolved Sodium (Na)	2019/07/09	0.69		%	20
9498897	IKO	Spiked Blank	Alkalinity (Total as CaCO3)	2019/07/09		92	%	80 - 120
9498897	IKO	Method Blank	Alkalinity (PP as CaCO3)	2019/07/09	<1.0		mg/L	
			Alkalinity (Total as CaCO3)	2019/07/09	<1.0		mg/L	
			Bicarbonate (HCO3)	2019/07/09	<1.0		mg/L	
			Carbonate (CO3)	2019/07/09	<1.0		mg/L	
			Hydroxide (OH)	2019/07/09	<1.0		mg/L	
9498897	IK0	RPD	Alkalinity (PP as CaCO3)	2019/07/09	NC		%	20
3 .3003.		2	Alkalinity (Total as CaCO3)	2019/07/09	2.2		%	20
			Bicarbonate (HCO3)	2019/07/09	2.2		%	20
			Carbonate (CO3)	2019/07/09	NC		%	20
			Hydroxide (OH)	2019/07/09	NC		%	20
9498906	IK0	Spiked Blank	pH	2019/07/09	140	101	%	97 - 103
9498906	IKO	RPD	рН	2019/07/09	0.053	101	%	N/A
9498908	IKO	Spiked Blank	Conductivity	2019/07/09	0.033	102	%	90 - 110
9498908	IKO	Method Blank	Conductivity	2019/07/09	<2.0	102	uS/cm	20 - 110
9498908	IKO	RPD	Conductivity	2019/07/09	1.1		%	10
9500611	ALX	Matrix Spike	Total Barium (Ba)	2019/07/10	1.1	96	% %	80 - 120
2200011	ALA	iviati in Spike	Total Barron (B)	2019/07/10		96 97	% %	80 - 120 80 - 120
			Total Boron (B) Total Calcium (Ca)	2019/07/10			% %	
			• •	2019/07/10		NC		80 - 120 80 - 120
			Total Iron (Fe)			101	%	

Your P.O. #: EDM4886 Sampler Initials: NY

QA/QC				CE REPORT(CONT'D)				
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
		•	Total Magnesium (Mg)	2019/07/10		95	%	80 - 120
			Total Manganese (Mn)	2019/07/10		94	%	80 - 120
			Total Phosphorus (P)	2019/07/10		95	%	80 - 120
			Total Potassium (K)	2019/07/10		94	%	80 - 120
			Total Silicon (Si)	2019/07/10		99	%	80 - 120
			Total Sodium (Na)	2019/07/10		NC	%	80 - 120
			Total Strontium (Sr)	2019/07/10		94	%	80 - 120
			Total Sulphur (S)	2019/07/10		95	%	80 - 120
9500611	ALX	Spiked Blank	Total Barium (Ba)	2019/07/10		96	%	80 - 120
		-r	Total Boron (B)	2019/07/10		96	%	80 - 120
			Total Calcium (Ca)	2019/07/10		95	%	80 - 120
			Total Iron (Fe)	2019/07/10		103	%	80 - 120
			Total Lithium (Li)	2019/07/10		94	%	80 - 120
			Total Magnesium (Mg)	2019/07/10		96	%	80 - 120
			Total Manganese (Mn)	2019/07/10		97	%	80 - 120
			Total Phosphorus (P)	2019/07/10		94	%	80 - 120
			Total Potassium (K)	2019/07/10		92	%	80 - 120
			Total Silicon (Si)	2019/07/10		98	%	80 - 120
			Total Sodium (Na)	2019/07/10		95	%	80 - 120
			Total Strontium (Sr)	2019/07/10		95	%	80 - 120
			Total Sulphur (S)	2019/07/10		96	%	80 - 120
9500611	ALX	Method Blank	Total Barium (Ba)	2019/07/10	< 0.010	30	mg/L	00 120
3300011	ALA	Wicthou Blank	Total Boron (B)	2019/07/10	<0.010		mg/L	
			Total Calcium (Ca)	2019/07/10	<0.30		mg/L	
			Total Iron (Fe)	2019/07/10	<0.060		mg/L	
			Total Lithium (Li)	2019/07/10	<0.020		mg/L	
			Total Magnesium (Mg)	2019/07/10	<0.20		mg/L	
			Total Magnesium (Mg) Total Manganese (Mn)	2019/07/10	<0.0040			
				2019/07/10	<0.10		mg/L	
			Total Petersium (K)				mg/L	
			Total Potassium (K)	2019/07/10	<0.30		mg/L	
			Total Silicon (Si)	2019/07/10	<0.10		mg/L	
			Total Sodium (Na)	2019/07/10	<0.50		mg/L	
			Total Strontium (Sr)	2019/07/10	<0.020		mg/L	
0500644		222	Total Sulphur (S)	2019/07/10	<0.20		mg/L	20
9500611	ALX	RPD	Total Barium (Ba)	2019/07/10	0.68		%	20
			Total Boron (B)	2019/07/10	1.0		%	20
			Total Calcium (Ca)	2019/07/10	0.17		%	20
			Total Iron (Fe)	2019/07/10	3.0		%	20
			Total Lithium (Li)	2019/07/10	0		%	20
			Total Magnesium (Mg)	2019/07/10	0.46		%	20
			Total Manganese (Mn)	2019/07/10	NC		%	20
			Total Phosphorus (P)	2019/07/10	NC		%	20
			Total Potassium (K)	2019/07/10	0.63		%	20
			Total Silicon (Si)	2019/07/10	0.92		%	20
			Total Sodium (Na)	2019/07/10	0.55		%	20
			Total Strontium (Sr)	2019/07/10	0.38		%	20
			Total Sulphur (S)	2019/07/10	0.37		%	20
9500624	LQ1	Matrix Spike	Total Aluminum (Al)	2019/07/10		97	%	80 - 120
			Total Antimony (Sb)	2019/07/10		105	%	80 - 120
			Total Arsenic (As)	2019/07/10		94	%	80 - 120
			Total Beryllium (Be)	2019/07/10		97	%	80 - 120
			Total Chromium (Cr)	2019/07/10		99	%	80 - 120

Your P.O. #: EDM4886 Sampler Initials: NY

04/06			QUALITY ASSURANCE	<u> </u>				
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Cobalt (Co)	2019/07/10		97	%	80 - 120
			Total Copper (Cu)	2019/07/10		109	%	80 - 120
			Total Lead (Pb)	2019/07/10		102	%	80 - 120
			Total Molybdenum (Mo)	2019/07/10		104	%	80 - 120
			Total Nickel (Ni)	2019/07/10		96	%	80 - 120
			Total Selenium (Se)	2019/07/10		97	%	80 - 120
			Total Silver (Ag)	2019/07/10		100	%	80 - 120
			Total Thallium (TI)	2019/07/10		99	%	80 - 120
			Total Tin (Sn)	2019/07/10		99	%	80 - 120
			Total Titanium (Ti)	2019/07/10		101	%	80 - 120
			Total Uranium (U)	2019/07/10		98	%	80 - 120
			Total Vanadium (V)	2019/07/10		99	%	80 - 120
			Total Zinc (Zn)	2019/07/10		NC	%	80 - 120
9500624	LQ1	Spiked Blank	Total Aluminum (Al)	2019/07/10		99	%	80 - 120
		•	Total Antimony (Sb)	2019/07/10		105	%	80 - 120
			Total Arsenic (As)	2019/07/10		95	%	80 - 120
			Total Beryllium (Be)	2019/07/10		94	%	80 - 120
			Total Chromium (Cr)	2019/07/10		100	%	80 - 120
			Total Cobalt (Co)	2019/07/10		98	%	80 - 120
			Total Copper (Cu)	2019/07/10		98	%	80 - 120
			Total Lead (Pb)	2019/07/10		97	%	80 - 120
			Total Molybdenum (Mo)	2019/07/10		100	%	80 - 120
			Total Nickel (Ni)	2019/07/10		97	%	80 - 120
			Total Selenium (Se)	2019/07/10		95	%	80 - 120
			Total Silver (Ag)	2019/07/10		100	%	80 - 120
			Total Thallium (TI)	2019/07/10		100	%	80 - 120
			Total Tin (Sn)	2019/07/10		98	%	80 - 120
			Total Titanium (Ti)	2019/07/10		99	%	80 - 120
			Total Uranium (U)	2019/07/10		93	%	80 - 120
			Total Vanadium (V)	2019/07/10		99	%	80 - 120
			Total Zinc (Zn)	2019/07/10		96	%	80 - 120
9500624	LQ1	Method Blank	Total Aluminum (Al)	2019/07/10	<0.0030	30	mg/L	00 120
3300024	LQI	Wethou blank	Total Antimony (Sb)	2019/07/10	<0.00060		mg/L	
			Total Arsenic (As)	2019/07/10	<0.00000		mg/L	
			Total Beryllium (Be)	2019/07/10	<0.0010		mg/L	
			Total Chromium (Cr)	2019/07/10	<0.0010		mg/L	
			Total Cobalt (Co)	2019/07/10	<0.0010		mg/L	
			Total Copper (Cu)	2019/07/10				
			Total Lead (Pb)	2019/07/10	<0.00020 <0.00020		mg/L	
			Total Lead (Pb) Total Molybdenum (Mo)		<0.00020		mg/L	
				2019/07/10			mg/L	
			Total Nickel (Ni)	2019/07/10	<0.00050		mg/L	
			Total Selenium (Se)	2019/07/10	<0.00020		mg/L	
			Total Silver (Ag)	2019/07/10	<0.00010		mg/L	
			Total Thallium (TI)	2019/07/10	<0.00020		mg/L	
			Total Tin (Sn)	2019/07/10	<0.0010		mg/L	
			Total Titanium (Ti)	2019/07/10	<0.0010		mg/L	
			Total Uranium (U)	2019/07/10	<0.00010		mg/L	
			Total Vanadium (V)	2019/07/10	<0.0010		mg/L	
			Total Zinc (Zn)	2019/07/10	<0.0030		mg/L	
9500624	LQ1	RPD	Total Aluminum (Al)	2019/07/10	5.2		%	20
			Total Antimony (Sb)	2019/07/10	NC		%	20
			Total Arsenic (As)	2019/07/10	NC		%	20

Your P.O. #: EDM4886 Sampler Initials: NY

			QUALITY ASSURANCE	KEPOKI (CONT D)				
QA/QC	114	06.7	Description	Data Avalored	Malica	D	LINUTC	061::
Batch	Init	QC Type	Parameter	Date Analyzed 2019/07/10	Value NC	Recovery	UNITS %	QC Limits 20
			Total Beryllium (Be)					
			Total Chromium (Cr)	2019/07/10	7.9		%	20
			Total County (Co.)	2019/07/10	NC		%	20
			Total Copper (Cu)	2019/07/10	7.8		%	20
			Total Lead (Pb)	2019/07/10	NC		%	20
			Total Molybdenum (Mo)	2019/07/10	1.8		%	20
			Total Nickel (Ni)	2019/07/10	12		%	20
			Total Selenium (Se)	2019/07/10	1.9		%	20
			Total Silver (Ag)	2019/07/10	NC		%	20
			Total Thallium (TI)	2019/07/10	NC		%	20
			Total Tin (Sn)	2019/07/10	NC		%	20
			Total Titanium (Ti)	2019/07/10	NC		%	20
			Total Uranium (U)	2019/07/10	4.8		%	20
			Total Vanadium (V)	2019/07/10	NC		%	20
			Total Zinc (Zn)	2019/07/10	NC		%	20
9501388	ZI	Matrix Spike	Dissolved Chloride (Cl)	2019/07/10		NC	%	80 - 120
9501388	ZI	Spiked Blank	Dissolved Chloride (CI)	2019/07/10		106	%	80 - 120
9501388	ZI	Method Blank	Dissolved Chloride (Cl)	2019/07/10	<1.0		mg/L	
9501388	ZI	RPD	Dissolved Chloride (CI)	2019/07/10	1.2		%	20
9501390	ZI	Matrix Spike	Dissolved Sulphate (SO4)	2019/07/10		NC	%	80 - 120
9501390	ZI	Spiked Blank	Dissolved Sulphate (SO4)	2019/07/10		103	%	80 - 120
9501390	ZI	Method Blank	Dissolved Sulphate (SO4)	2019/07/10	<1.0		mg/L	
9501390	ZI	RPD	Dissolved Sulphate (SO4)	2019/07/10	0.13		%	20
9502664	RK3	Matrix Spike	Total Mercury (Hg)	2019/07/11		95	%	80 - 120
9502664	RK3	Spiked Blank	Total Mercury (Hg)	2019/07/11		91	%	80 - 120
9502664	RK3	Method Blank	Total Mercury (Hg)	2019/07/11	<0.0020		ug/L	
9502664	RK3	RPD	Total Mercury (Hg)	2019/07/11	NC		%	20
9519537	ANE	Matrix Spike [WA5524-01]	Dissolved Aluminum (Al)	2019/07/23		110	%	80 - 120
			Dissolved Antimony (Sb)	2019/07/23		99	%	80 - 120
			Dissolved Arsenic (As)	2019/07/23		98	%	80 - 120
			Dissolved Beryllium (Be)	2019/07/23		102	%	80 - 120
			Dissolved Chromium (Cr)	2019/07/23		95	%	80 - 120
			Dissolved Cobalt (Co)	2019/07/23		94	%	80 - 120
			Dissolved Copper (Cu)	2019/07/23		93	%	80 - 120
			Dissolved Lead (Pb)	2019/07/23		92	%	80 - 120
			Dissolved Molybdenum (Mo)	2019/07/23		98	%	80 - 120
			Dissolved Nickel (Ni)	2019/07/23		94	%	80 - 120
			Dissolved Selenium (Se)	2019/07/23		108	%	80 - 120
			Dissolved Silver (Ag)	2019/07/23		94	%	80 - 120
			Dissolved Thallium (TI)	2019/07/23		96	%	80 - 120
			Dissolved Thailidin (Tr) Dissolved Tin (Sn)	2019/07/23		75 (1)	%	80 - 120
			Dissolved Titr (311) Dissolved Titanium (Ti)	2019/07/23		73 (1) 84	%	80 - 120
			Dissolved Tranium (T) Dissolved Uranium (U)					
			, ,	2019/07/23 2019/07/23		104	% %	80 - 120 80 - 120
			Dissolved Vanadium (V)	2019/07/23		98	%	80 - 120 80 - 120
0510527	ANIE	Snikad Plank	Dissolved Aluminum (Al)			94 106	%	80 - 120
9519537	ANE	Spiked Blank	Dissolved Antimony (Sh)	2019/07/23		106	%	80 - 120
			Dissolved Arrania (As)	2019/07/23		100	%	80 - 120
			Dissolved Arsenic (As)	2019/07/23		99	%	80 - 120
			Dissolved Beryllium (Be)	2019/07/23		100	%	80 - 120
			Dissolved Chromium (Cr)	2019/07/23		98	%	80 - 120
			Dissolved Cobalt (Co)	2019/07/23		97	%	80 - 120

Your P.O. #: EDM4886 Sampler Initials: NY

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Copper (Cu)	2019/07/23		99	%	80 - 120
			Dissolved Lead (Pb)	2019/07/23		94	%	80 - 120
			Dissolved Molybdenum (Mo)	2019/07/23		96	%	80 - 120
			Dissolved Nickel (Ni)	2019/07/23		97	%	80 - 120
			Dissolved Selenium (Se)	2019/07/23		107	%	80 - 120
			Dissolved Silver (Ag)	2019/07/23		94	%	80 - 120
			Dissolved Thallium (TI)	2019/07/23		97	%	80 - 120
			Dissolved Tin (Sn)	2019/07/23		81	%	80 - 120
			Dissolved Titanium (Ti)	2019/07/23		88	%	80 - 120
			Dissolved Uranium (U)	2019/07/23		100	%	80 - 120
			Dissolved Vanadium (V)	2019/07/23		99	%	80 - 120
			Dissolved Zinc (Zn)	2019/07/23		94	%	80 - 120
9519537	ANE	Method Blank	Dissolved Aluminum (AI)	2019/07/23	<0.0030		mg/L	
			Dissolved Antimony (Sb)	2019/07/23	<0.00060		mg/L	
			Dissolved Arsenic (As)	2019/07/23	<0.00020		mg/L	
			Dissolved Beryllium (Be)	2019/07/23	<0.0010		mg/L	
			Dissolved Chromium (Cr)	2019/07/23	<0.0010		mg/L	
			Dissolved Cobalt (Co)	2019/07/23	<0.00030		mg/L	
			Dissolved Copper (Cu)	2019/07/23	<0.00020		mg/L	
			Dissolved Lead (Pb)	2019/07/23	<0.00020		mg/L	
			Dissolved Molybdenum (Mo)	2019/07/23	<0.00020		mg/L	
			Dissolved Nickel (Ni)	2019/07/23	<0.00050		mg/L	
			Dissolved Selenium (Se)	2019/07/23	<0.00020		mg/L	
			Dissolved Silver (Ag)	2019/07/23	<0.00010		mg/L	
			Dissolved Thallium (TI)	2019/07/23	<0.00020		mg/L	
			Dissolved Tin (Sn)	2019/07/23	< 0.0010		mg/L	
			Dissolved Titanium (Ti)	2019/07/23	< 0.0010		mg/L	
			Dissolved Uranium (U)	2019/07/23	<0.00010		mg/L	
			Dissolved Vanadium (V)	2019/07/23	< 0.0010		mg/L	
			Dissolved Zinc (Zn)	2019/07/23	< 0.0030		mg/L	
9519537	ANE	RPD [WA5524-01]	Dissolved Aluminum (Al)	2019/07/23	9.8		%	20
			Dissolved Antimony (Sb)	2019/07/23	NC		%	20
			Dissolved Arsenic (As)	2019/07/23	12		%	20
			Dissolved Beryllium (Be)	2019/07/23	NC		%	20
			Dissolved Chromium (Cr)	2019/07/23	NC		%	20
			Dissolved Cobalt (Co)	2019/07/23	NC		%	20
			Dissolved Copper (Cu)	2019/07/23	NC		%	20
			Dissolved Lead (Pb)	2019/07/23	NC		%	20
			Dissolved Molybdenum (Mo)	2019/07/23	5.2		%	20
			Dissolved Nickel (Ni)	2019/07/23	NC		%	20
			Dissolved Selenium (Se)	2019/07/23	2.0		%	20
			Dissolved Silver (Ag)	2019/07/23	NC		%	20
			Dissolved Thallium (TI)	2019/07/23	NC		%	20
			Dissolved Tin (Sn)	2019/07/23	16		%	20
			Dissolved Titanium (Ti)	2019/07/23	NC		%	20
			Dissolved Tranium (T)	2019/07/23	4.6		%	20
			Dissolved Vanadium (V)	2019/07/23	NC		%	20
			= 10001100 1011001111 (*)	2013/01/23			,,,	

SLR CONSULTING (CANADA) LTD Client Project #: 212.06550.00003

Site Location: MOUNTAIN ASH

Your P.O. #: EDM4886 Sampler Initials: NY

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Zinc (Zn)	2019/07/23	NC		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Recovery or RPD for this parameter is outside control limits. The overall quality control for this analysis meets acceptability criteria.

BV Labs Job #: B953759 Report Date: 2019/07/25 SLR CONSULTING (CANADA) LTD Client Project #: 212.06550.00003 Site Location: MOUNTAIN ASH

Your P.O. #: EDM4886 Sampler Initials: NY

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

- Sugar Lita

Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics

Harry (Peng) Liang, Senior Analyst

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Calgary: 4000 19th St. NE, T2E 6P8. Toll Free (800) 386-7247 Edmonton: 9331-48 St. T6B 2R4. Toll Free (800) 386-7247 maxxam.ca

M 083946 Page _____of____

Invoice Information	Re	port Information	(if differs from	nvoice	2)				P	roject	Inforn	natio	on				Tur	rnarou	und	Time (TAT) Required
Company: SLR Consulking Ltd	Company	Summit F	tagregates.			Qu	otati	on #:			ř						X 5-7	/ Days	Reg	gular (Most analyses)
Contact Name: Robert Till		lame:				P.0	0. #/ /	AFE#:	Bel	io o	EDM	14	881	6		PLE	ASE PRO	VIDE A	ADV	ANCE NOTICE FOR RUSH PROJECTS
Address: 169410 Roper Road, Edmer						-	oject	-			55¢.			144			Sam	ne Day		rcharges will be applied) 2 Days
Phone:	Phone:					Sit	e Loca	ation:	1	nour	rtair	1 /	134			Į L	1 Da	ау		3-4 Days
Email: rtill astronouthing.com		rtillosir					e #:	_								Date	Requir	red: _	_	
copies: my nyari astronswhing c	Copies:	nyariousl	recoverling	100	n	San	mpled	Ву: _	N	oush	iny	ori				Rush	Confir	matio	on #	#:
Laboratory	Use Only									Ana	lysis F	lequ	estec	i						Regulatory Criteria
VES NO Cooler ID		Depot Recept		ainers	1 □ voc □	1-62	Routine Water	d Metals	ry Total MDissolved	Sieve (75 micron)	Texture (% Sand, Sift, Clay)	Basic Class II Landnii	中中	Collings & F. Col.					- DO NOT ANALYZE	AT1 CCME Drinking Water D50 (Drilling Waste) Saskatchewan Other:
Sample Identification	Depth (Unit)	Date Sampled (YYYY/MM/DD)	Time Sampled Matrix (HH:MM)		BTEX F1	BTEX F1-F2 BTEX F1-F4	Routin	Regula	Mercury	Sieve (Textur) Basic C	id in	Tors				3	НОГР	Special Instructions
1 Mw 18-105		2019/07/04	9:55 Am Ground	6			X	X	X			>		X						->silty
2 MW19-108			10:55 Am	6	1		X	X.	X			_	(X	1					Asilty
3 MW18-104			11:55 AM	6		1	X		X			×	C	X						1.00
4 MW18-106			1:55 pm	6	1	1	X	X	K)	(X	1	Ш				silly
5 MW18-107		V	2:53 AM	6		1	х	X,	X			X		X				Ш		
6		*										1								Metals preserved
7		- 0			4	_			1			1						Ш		not field filtered.
8		T			1							1			1			Ц		Too net in field a
9				Н	4	+		Н		1		1	1	1				Ш		Bottles wi morker or
10				Ц	-	+		Н				1	1	11						Pen. Labels on bags.
Please indicate Filtered, Preserved or	and the same		P			1	D.1											Ш		,
		OG LISAN	Respired	_	_									1me (HH:		05-Jul-19 07:00 Jenelle Feller		er		
Unless otherwise agreed to in writing, work submitted on this Chain of Custody is su	bject to Maxxam's star	idard Terms and Conditions	Signing of this Chain of C	astody dos	siment	is acknow	ledgme	nt and acc	eptance	of our te	rms which	are ava	ilable fo	r viewing at v	ww.max	JE	M	I	N:	S-0239

AB FCD-00331/7

Your P.O. #: EDM4886

Your Project #: 212.06550.00003 Site Location: MOUNTAIN ASH

PO # EDM3288

Your C.O.C. #: M083948

Attention: ROBERT TILL

SLR CONSULTING (CANADA) LTD 6940 ROPER ROAD EDMONTON, AB CANADA T6B 3H9

> Report Date: 2019/07/12 Report #: R2751511

> > Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B953951 Received: 2019/07/05, 12:20

Sample Matrix: Water # Samples Received: 2

# Samples Neceiveu. 2		Data	Data		
Analyses	Quantity	Date Extracted	Date Analyzed	Laboratory Method	Analytical Method
Alkalinity @25C (pp, total), CO3,HCO3,OH	2	N/A		AB SOP-00005	SM 23 2320 B m
Cadmium - low level CCME (Total)	2	N/A	2019/07/11		Auto Calc
Chloride by Automated Colourimetry	2	N/A	2019/07/10	AB SOP-00020	SM 23-4500-Cl-E m
Total Coliforms and E.Coli	2	2019/07/05	2019/07/06	AB SOP-00089	SM 23 9223 A,B m
Conductivity @25C	2	N/A	2019/07/10	AB SOP-00005	SM 23 2510 B m
Hardness	2	N/A	2019/07/11		Auto Calc
Mercury (Total) by CV	1	2019/07/10	2019/07/10	CAL SOP-00007	EPA 1631 RE 20460 m
Mercury (Total) by CV	1	2019/07/10	2019/07/11	CAL SOP-00007	EPA 1631 RE 20460 m
Elements by ICP-Dissolved-Lab Filtered (1)	2	N/A	2019/07/09	AB SOP-00042	EPA 6010d R5 m
Elements by ICP - Total	2	2019/07/10	2019/07/10	AB SOP-00014 / AB SOP-00042	EPA 6010d R4 m
Elements by ICPMS - Total	2	2019/07/10	2019/07/10	AB SOP-00014 / AB SOP-00043	EPA 6020b R2 m
lon Balance	2	N/A	2019/07/06		Auto Calc
Sum of cations, anions	2	N/A	2019/07/11		Auto Calc
Nitrate and Nitrite	2	N/A	2019/07/10		Auto Calc
Nitrate + Nitrite-N (calculated)	2	N/A	2019/07/10		Auto Calc
Nitrogen (Nitrite - Nitrate) by IC	2	N/A	2019/07/07	AB SOP-00023	SM 23 4110 B m
pH @25°C (2)	2	N/A	2019/07/10	AB SOP-00005	SM 23 4500-H+B m
Sulphate by Automated Colourimetry	2	N/A	2019/07/10	AB SOP-00018	SM 23 4500-SO4 E m
Total Dissolved Solids (Calculated)	2	N/A	2019/07/11		Auto Calc
Turbidity	2	N/A	2019/07/06	CAL SOP-00081	SM 23 2130 B m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Attention: ROBERT TILL

SLR CONSULTING (CANADA) LTD 6940 ROPER ROAD EDMONTON, AB CANADA T6B 3H9 Your P.O. #: EDM4886

Your Project #: 212.06550.00003 Site Location: MOUNTAIN ASH

PO # EDM3288

Your C.O.C. #: M083948

Report Date: 2019/07/12

Report #: R2751511 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B953951 Received: 2019/07/05, 12:20

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Dissolved > Total Imbalance: When applicable, Dissolved and Total results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (2) The CCME method requires pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the CCME holding time. Bureau Veritas Laboratories endeavours to analyze samples as soon as possible after receipt.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Jenelle Feller, Key Account Specialist

Email: JFeller@bvlabs.com

Phone# (403)735-2264

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: EDM4886 Sampler Initials: NY

ROUTINE WATER -LAB FILTERED (WATER)

BV Labs ID		WA6549	WA6550		
Sampling Date		2019/07/05	2019/07/05		
COC Number		M083948	M083948		
	UNITS	MW19-109	WW4	RDL	QC Batch
Calculated Parameters					
Anion Sum	meq/L	6.9	6.3	N/A	9493590
Cation Sum	meq/L	7.9	7.3	N/A	9493590
lardness (CaCO3)	mg/L	350	340	0.50	9494037
on Balance (% Difference)	%	6.2	7.6	N/A	9493527
Dissolved Nitrate (NO3)	mg/L	7.4	14	0.044	9493534
Nitrate plus Nitrite (N)	mg/L	1.7	3.2	0.014	9493540
Dissolved Nitrite (NO2)	mg/L	0.22	<0.033	0.033	9493534
Calculated Total Dissolved Solids	mg/L	360	330	1.0	9493550
Misc. Inorganics	•				•
Conductivity	uS/cm	660	600	2.0	9498940
)H	рН	8.19	8.13	N/A	9498939
Anions	•				•
Alkalinity (PP as CaCO3)	mg/L	<1.0	<1.0	1.0	9498938
Alkalinity (Total as CaCO3)	mg/L	290	280	1.0	9498938
Bicarbonate (HCO3)	mg/L	350	340	1.0	9498938
Carbonate (CO3)	mg/L	<1.0	<1.0	1.0	9498938
lydroxide (OH)	mg/L	<1.0	<1.0	1.0	9498938
Dissolved Sulphate (SO4)	mg/L	26	5.9	1.0	9501583
Dissolved Chloride (CI)	mg/L	18	12	1.0	9501576
Nutrients	•				
Dissolved Nitrite (N)	mg/L	0.065	<0.010	0.010	9495902
Dissolved Nitrate (N)	mg/L	1.7	3.2	0.010	9495902
ab Filtered Elements					•
Dissolved Calcium (Ca)	mg/L	77	80	0.30	9499250
Dissolved Iron (Fe)	mg/L	0.15	0.16	0.060	9499250
Dissolved Magnesium (Mg)	mg/L	37	35	0.20	9499250
Dissolved Manganese (Mn)	mg/L	0.42	<0.0040	0.0040	9499250
	mg/L	6.3	3.0	0.30	9499250
Dissolved Potassium (K)					

Your P.O. #: EDM4886 Sampler Initials: NY

REGULATED METALS (CCME/AT1) - TOTAL

BV Labs ID		WA6549		WA6550		
Sampling Date		2019/07/05		2019/07/05		
COC Number		M083948		M083948		
	UNITS	MW19-109	RDL	WW4	RDL	QC Batch
Low Level Elements						
Total Cadmium (Cd)	ug/L	10	0.020	<0.020	0.020	9494032
Elements						
Total Aluminum (Al)	mg/L	95	0.0030	0.0041	0.0030	9500624
Total Antimony (Sb)	mg/L	0.0034	0.00060	<0.00060	0.00060	9500624
Total Arsenic (As)	mg/L	0.071	0.00020	0.00032	0.00020	9500624
Total Barium (Ba)	mg/L	7.2 (1)	0.050	0.36	0.010	9500611
Total Beryllium (Be)	mg/L	0.0083	0.0010	<0.0010	0.0010	9500624
Total Boron (B)	mg/L	0.087	0.020	<0.020	0.020	9500611
Total Calcium (Ca)	mg/L	1500 (1)	1.5	68	0.30	9500611
Total Chromium (Cr)	mg/L	0.19	0.0010	0.0012	0.0010	9500624
Total Cobalt (Co)	mg/L	0.12	0.00030	<0.00030	0.00030	9500624
Total Copper (Cu)	mg/L	0.29	0.00020	0.034	0.00020	9500624
Total Iron (Fe)	mg/L	190	0.060	0.30	0.060	9500611
Total Lead (Pb)	mg/L	0.15	0.00020	0.011	0.00020	9500624
Total Lithium (Li)	mg/L	0.18	0.020	<0.020	0.020	9500611
Total Magnesium (Mg)	mg/L	210	0.20	30	0.20	9500611
Total Manganese (Mn)	mg/L	8.9	0.0040	<0.0040	0.0040	9500611
Total Molybdenum (Mo)	mg/L	0.023	0.00020	0.00065	0.00020	9500624
Total Nickel (Ni)	mg/L	0.41	0.00050	<0.00050	0.00050	9500624
Total Phosphorus (P)	mg/L	8.1	0.10	<0.10	0.10	9500611
Total Potassium (K)	mg/L	20	0.30	2.3	0.30	9500611
Total Selenium (Se)	mg/L	0.00059	0.00020	0.00093	0.00020	9500624
Total Silicon (Si)	mg/L	110 (1)	0.50	4.7	0.10	9500611
Total Silver (Ag)	mg/L	0.0025	0.00010	0.00012	0.00010	9500624
Total Sodium (Na)	mg/L	18	0.50	5.7	0.50	9500611
Total Strontium (Sr)	mg/L	2.4	0.020	0.39	0.020	9500611
Total Sulphur (S)	mg/L	11	0.20	1.7	0.20	9500611
Total Thallium (TI)	mg/L	0.0026	0.00020	<0.00020	0.00020	9500624
Total Tin (Sn)	mg/L	0.0047	0.0010	<0.0010	0.0010	9500624
Total Titanium (Ti)	mg/L	0.23	0.0010	<0.0010	0.0010	9500624

RDL = Reportable Detection Limit

⁽¹⁾ Detection limits raised due to dilution to bring analyte within the calibrated range.

BV Labs Job #: B953951 Report Date: 2019/07/12 SLR CONSULTING (CANADA) LTD Client Project #: 212.06550.00003 Site Location: MOUNTAIN ASH

Your P.O. #: EDM4886 Sampler Initials: NY

REGULATED METALS (CCME/AT1) - TOTAL

BV Labs ID		WA6549		WA6550		
Sampling Date		2019/07/05		2019/07/05		
COC Number		M083948		M083948		
	UNITS	MW19-109	RDL	WW4	RDL	QC Batch
Total Uranium (U)	mg/L	0.016	0.00010	0.0021	0.00010	9500624
Total Vanadium (V)	mg/L	0.22	0.0010	<0.0010	0.0010	9500624
Total Zinc (Zn)	mg/L	1.2	0.0030	0.99	0.0030	9500624
RDL = Reportable Detectio	n Limit	•	•		•	•

SLR CONSULTING (CANADA) LTD Client Project #: 212.06550.00003 Site Location: MOUNTAIN ASH

Your P.O. #: EDM4886

Sampler Initials: NY

RESULTS OF CHEMICAL ANALYSES OF WATER

	WA6549		WA6550							
	2019/07/05		2019/07/05							
	M083948		M083948							
UNITS	MW19-109	RDL	WW4	RDL	QC Batch					
MPN/100mL	100	100	<1.0	1.0	9494183					
MPN/100mL	120000	100	11	1.0	9494183					
NTU	>4000 (1)	0.10	0.66	0.10	9495457					
RDL = Reportable Detection Limit										
nt										
	MPN/100mL MPN/100mL NTU imit	2019/07/05 M083948 UNITS MW19-109 MPN/100mL 100 MPN/100mL 120000 NTU >4000 (1) imit	2019/07/05	2019/07/05 2019/07/05 M083948 M083948 WW4	2019/07/05 2019/07/05 M083948 M083948 WW4 RDL					

SLR CONSULTING (CANADA) LTD Client Project #: 212.06550.00003

Site Location: MOUNTAIN ASH

Your P.O. #: EDM4886 Sampler Initials: NY

MERCURY BY COLD VAPOR (WATER)

BV Labs ID		WA6549		WA6550		
Sampling Date		2019/07/05		2019/07/05		
COC Number		M083948		M083948		
	UNITS	MW19-109	RDL	WW4	RDL	QC Batch
Elements						
Total Mercury (Hg)	ug/L	2.08 (1)	0.20	<0.0020	0.0020	9500789

RDL = Reportable Detection Limit

⁽¹⁾ Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

SLR CONSULTING (CANADA) LTD Client Project #: 212.06550.00003

Site Location: MOUNTAIN ASH Your P.O. #: EDM4886

Sampler Initials: NY

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

7.0°C Package 1

Results relate only to the items tested.

SLR CONSULTING (CANADA) LTD Client Project #: 212.06550.00003

Site Location: MOUNTAIN ASH Your P.O. #: EDM4886

Sampler Initials: NY

QUALITY ASSURANCE REPORT

QA/QC	-							
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9494183	GK1	Method Blank	E.Coli DST	2019/07/06	<1.0		mpn/100ml	
			Total Coliforms DST	2019/07/06	<1.0		mpn/100ml	_
9494183	GK1	RPD	E.Coli DST	2019/07/06	NC		%	N/A
			Total Coliforms DST	2019/07/06	NC		%	N/A
9495457	EH2	Spiked Blank	Turbidity	2019/07/06		100	%	80 - 120
9495457	EH2	Method Blank	Turbidity	2019/07/06	<0.10		NTU	
9495457	EH2	RPD [WA6550-02]	Turbidity	2019/07/06	5.9		%	20
9495902	KD9	Matrix Spike	Dissolved Nitrite (N)	2019/07/07		99	%	80 - 120
			Dissolved Nitrate (N)	2019/07/07		100	%	80 - 120
9495902	KD9	Spiked Blank	Dissolved Nitrite (N)	2019/07/07		99	%	80 - 120
			Dissolved Nitrate (N)	2019/07/07		100	%	80 - 120
9495902	KD9	Method Blank	Dissolved Nitrite (N)	2019/07/07	<0.010		mg/L	
			Dissolved Nitrate (N)	2019/07/07	<0.010		mg/L	
9495902	KD9	RPD	Dissolved Nitrite (N)	2019/07/07	NC		%	20
			Dissolved Nitrate (N)	2019/07/07	NC		%	20
9498938	IK0	Spiked Blank	Alkalinity (Total as CaCO3)	2019/07/10		92	%	80 - 120
9498938	IK0	Method Blank	Alkalinity (PP as CaCO3)	2019/07/10	<1.0		mg/L	
			Alkalinity (Total as CaCO3)	2019/07/10	<1.0		mg/L	
			Bicarbonate (HCO3)	2019/07/10	<1.0		mg/L	
			Carbonate (CO3)	2019/07/10	<1.0		mg/L	
			Hydroxide (OH)	2019/07/10	<1.0		mg/L	
9498938	IK0	RPD	Alkalinity (PP as CaCO3)	2019/07/10	NC		%	20
			Alkalinity (Total as CaCO3)	2019/07/10	1.7		%	20
			Bicarbonate (HCO3)	2019/07/10	1.7		%	20
			Carbonate (CO3)	2019/07/10	NC		%	20
			Hydroxide (OH)	2019/07/10	NC		%	20
9498939	IK0	Spiked Blank	рН	2019/07/10		101	%	97 - 103
9498939	IK0	RPD	рН	2019/07/10	0.36		%	N/A
9498940	IK0	Spiked Blank	Conductivity	2019/07/10		102	%	90 - 110
9498940	IK0	Method Blank	Conductivity	2019/07/10	<2.0		uS/cm	
9498940	IK0	RPD	Conductivity	2019/07/10	0.61		%	10
9499250	ALX	Matrix Spike	Dissolved Calcium (Ca)	2019/07/09		97	%	80 - 120
			Dissolved Iron (Fe)	2019/07/09		101	%	80 - 120
			Dissolved Magnesium (Mg)	2019/07/09		98	%	80 - 120
			Dissolved Manganese (Mn)	2019/07/09		101	%	80 - 120
			Dissolved Potassium (K)	2019/07/09		102	%	80 - 120
			Dissolved Sodium (Na)	2019/07/09		NC	%	80 - 120
9499250	ALX	Spiked Blank	Dissolved Calcium (Ca)	2019/07/09		100	%	80 - 120
			Dissolved Iron (Fe)	2019/07/09		105	%	80 - 120
			Dissolved Magnesium (Mg)	2019/07/09		104	%	80 - 120
			Dissolved Manganese (Mn)	2019/07/09		102	%	80 - 120
			Dissolved Potassium (K)	2019/07/09		103	%	80 - 120
			Dissolved Sodium (Na)	2019/07/09		105	%	80 - 120
9499250	ALX	Method Blank	Dissolved Calcium (Ca)	2019/07/09	<0.30		mg/L	
			Dissolved Iron (Fe)	2019/07/09	<0.060		mg/L	
			Dissolved Magnesium (Mg)	2019/07/09	<0.20		mg/L	
			Dissolved Manganese (Mn)	2019/07/09	<0.0040		mg/L	
			Dissolved Potassium (K)	2019/07/09	<0.30		mg/L	
			Dissolved Sodium (Na)	2019/07/09	0.77,		mg/L	
					RDL=0.50 (1)			
9499250	ALX	RPD	Dissolved Calcium (Ca)	2019/07/09	2.2		%	20
			Dissolved Iron (Fe)	2019/07/09	0.079		%	20

SLR CONSULTING (CANADA) LTD Client Project #: 212.06550.00003

Site Location: MOUNTAIN ASH

Your P.O. #: EDM4886 Sampler Initials: NY

			QUALITY ASSURANCE					
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Daten		QC турс	Dissolved Magnesium (Mg)	2019/07/09	2.2	Recovery	%	20
			Dissolved Manganese (Mn)	2019/07/09	NC		%	20
			Dissolved Potassium (K)	2019/07/09	0.075		%	20
			Dissolved Foldassidin (K)	2019/07/09	1.6		%	20
9500611	ALX	Matrix Spike	Total Barium (Ba)	2019/07/10	1.0	96	%	80 - 120
JJ00011	ALA	Width Spike	Total Baridin (Ba)	2019/07/10		97	%	80 - 120
			Total Calcium (Ca)	2019/07/10		NC	%	80 - 120
			Total Iron (Fe)	2019/07/10		101	%	80 - 120
			Total lithium (Li)	2019/07/10		95	%	80 - 120
			Total Magnesium (Mg)	2019/07/10		95 95	% %	80 - 120
			Total Magnesidii (Mg) Total Manganese (Mn)	2019/07/10		93 94	% %	80 - 120
				• •		95		
			Total Phosphorus (P)	2019/07/10			%	80 - 120
			Total Potassium (K)	2019/07/10		94	%	80 - 120
			Total Salicon (Si)	2019/07/10		99 NG	%	80 - 120
			Total Sodium (Na)	2019/07/10		NC	%	80 - 120
			Total Strontium (Sr)	2019/07/10		94	%	80 - 120
0500644	*13/	6 11 101 1	Total Sulphur (S)	2019/07/10		95	%	80 - 120
9500611	ALX	Spiked Blank	Total Barium (Ba)	2019/07/10		96	%	80 - 120
			Total Boron (B)	2019/07/10		96	%	80 - 120
			Total Calcium (Ca)	2019/07/10		95	%	80 - 120
			Total Iron (Fe)	2019/07/10		103	%	80 - 120
			Total Lithium (Li)	2019/07/10		94	%	80 - 120
			Total Magnesium (Mg)	2019/07/10		96	%	80 - 120
			Total Manganese (Mn)	2019/07/10		97	%	80 - 120
			Total Phosphorus (P)	2019/07/10		94	%	80 - 120
			Total Potassium (K)	2019/07/10		92	%	80 - 120
			Total Silicon (Si)	2019/07/10		98	%	80 - 120
			Total Sodium (Na)	2019/07/10		95	%	80 - 120
			Total Strontium (Sr)	2019/07/10		95	%	80 - 120
			Total Sulphur (S)	2019/07/10		96	%	80 - 120
9500611	ALX	Method Blank	Total Barium (Ba)	2019/07/10	<0.010		mg/L	
			Total Boron (B)	2019/07/10	<0.020		mg/L	
			Total Calcium (Ca)	2019/07/10	<0.30		mg/L	
			Total Iron (Fe)	2019/07/10	<0.060		mg/L	
			Total Lithium (Li)	2019/07/10	<0.020		mg/L	
			Total Magnesium (Mg)	2019/07/10	<0.20		mg/L	
			Total Manganese (Mn)	2019/07/10	< 0.0040		mg/L	
			Total Phosphorus (P)	2019/07/10	<0.10		mg/L	
			Total Potassium (K)	2019/07/10	< 0.30		mg/L	
			Total Silicon (Si)	2019/07/10	<0.10		mg/L	
			Total Sodium (Na)	2019/07/10	<0.50		mg/L	
			Total Strontium (Sr)	2019/07/10	<0.020		mg/L	
			Total Sulphur (S)	2019/07/10	<0.20		mg/L	
9500611	ALX	RPD	Total Barium (Ba)	2019/07/10	0.68		%	20
			Total Boron (B)	2019/07/10	1.0		%	20
			Total Calcium (Ca)	2019/07/10	0.17		%	20
			Total Iron (Fe)	2019/07/10	3.0		%	20
			Total Lithium (Li)	2019/07/10	0		%	20
			Total Magnesium (Mg)	2019/07/10	0.46		%	20
			Total Manganese (Mn)	2019/07/10	NC		%	20
			Total Phosphorus (P)	2019/07/10	NC		%	20
			Total Potassium (K)	2019/07/10	0.63		%	20

SLR CONSULTING (CANADA) LTD Client Project #: 212.06550.00003

Site Location: MOUNTAIN ASH

Your P.O. #: EDM4886 Sampler Initials: NY

04/00			QUALITY ASSURANCE	· ·				
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
Dato		ζο . γρο	Total Silicon (Si)	2019/07/10	0.92		%	20
			Total Sodium (Na)	2019/07/10	0.55		%	20
			Total Strontium (Sr)	2019/07/10	0.38		%	20
			Total Sulphur (S)	2019/07/10	0.37		%	20
9500624	LQ1	Matrix Spike	Total Aluminum (Al)	2019/07/10	0.07	97	%	80 - 120
330002.	-4-	[WA6550-04]		2015/07/10		3,	,,	00 120
			Total Antimony (Sb)	2019/07/10		105	%	80 - 120
			Total Arsenic (As)	2019/07/10		94	%	80 - 120
			Total Beryllium (Be)	2019/07/10		97	%	80 - 120
			Total Chromium (Cr)	2019/07/10		99	%	80 - 120
			Total Cobalt (Co)	2019/07/10		97	%	80 - 120
			Total Copper (Cu)	2019/07/10		109	%	80 - 120
			Total Lead (Pb)	2019/07/10		102	%	80 - 120
			Total Molybdenum (Mo)	2019/07/10		104	%	80 - 120
			Total Nickel (Ni)	2019/07/10		96	%	80 - 120
			Total Selenium (Se)	2019/07/10		97	%	80 - 120
			Total Silver (Ag)	2019/07/10		100	%	80 - 120
			Total Thallium (TI)	2019/07/10		99	%	80 - 120
			Total Tin (Sn)	2019/07/10		99	%	80 - 120
			Total Titanium (Ti)	2019/07/10		101	%	80 - 120
			Total Uranium (U)	2019/07/10		98	%	80 - 120
			Total Vanadium (V)	2019/07/10		99	%	80 - 120
			Total Zinc (Zn)	2019/07/10		NC	%	80 - 120
9500624	LQ1	Spiked Blank	Total Aluminum (Al)	2019/07/10		99	%	80 - 120
9300024	LQI	Spikeu biank	Total Antimony (Sb)	2019/07/10		105	%	80 - 120
			Total Artimony (35) Total Arsenic (As)	2019/07/10		95	%	80 - 120 80 - 120
			Total Beryllium (Be)	2019/07/10		94	%	80 - 120 80 - 120
				2019/07/10		100	%	80 - 120 80 - 120
			Total Chromium (Cr)					
			Total Cobalt (Co)	2019/07/10		98	%	80 - 120
			Total Copper (Cu)	2019/07/10		98	%	80 - 120
			Total Lead (Pb)	2019/07/10		97	%	80 - 120
			Total Molybdenum (Mo)	2019/07/10		100	%	80 - 120
			Total Nickel (Ni)	2019/07/10		97	%	80 - 120
			Total Selenium (Se)	2019/07/10		95	%	80 - 120
			Total Silver (Ag)	2019/07/10		100	%	80 - 120
			Total Thallium (TI)	2019/07/10		100	%	80 - 120
			Total Tin (Sn)	2019/07/10		98	%	80 - 120
			Total Titanium (Ti)	2019/07/10		99	%	80 - 120
			Total Uranium (U)	2019/07/10		93	%	80 - 120
			Total Vanadium (V)	2019/07/10		99	%	80 - 120
			Total Zinc (Zn)	2019/07/10		96	%	80 - 120
9500624	LQ1	Method Blank	Total Aluminum (Al)	2019/07/10	<0.0030		mg/L	
			Total Antimony (Sb)	2019/07/10	<0.00060		mg/L	
			Total Arsenic (As)	2019/07/10	<0.00020		mg/L	
			Total Beryllium (Be)	2019/07/10	<0.0010		mg/L	
			Total Chromium (Cr)	2019/07/10	< 0.0010		mg/L	
			Total Cobalt (Co)	2019/07/10	<0.00030		mg/L	
			Total Copper (Cu)	2019/07/10	<0.00020		mg/L	
			Total Lead (Pb)	2019/07/10	<0.00020		mg/L	
			Total Molybdenum (Mo)	2019/07/10	<0.00020		mg/L	
			Total Nickel (Ni)	2019/07/10	<0.00050		mg/L	
			Total Selenium (Se)	2019/07/10	<0.00020		mg/L	

SLR CONSULTING (CANADA) LTD Client Project #: 212.06550.00003

Site Location: MOUNTAIN ASH

Your P.O. #: EDM4886 Sampler Initials: NY

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limit
Dattii	Ш	QС туре	Total Silver (Ag)	2019/07/10	<0.00010	Recovery	mg/L	QC LIIIII
			Total Thallium (TI)	2019/07/10	<0.00010		mg/L	
			Total Trialium (Tr) Total Tin (Sn)	2019/07/10	<0.0010		mg/L	
			Total Till (311) Total Titanium (Ti)	2019/07/10	<0.0010		mg/L	
			Total Tranium (II)	2019/07/10	<0.0010		mg/L	
			Total Vanadium (V)	2019/07/10	<0.0010		mg/L	
			Total Variation (V) Total Zinc (Zn)	2019/07/10	<0.0010		mg/L	
9500624	LQ1	RPD	Total Aluminum (Al)	2019/07/10	5.2		111g/L %	20
9500024	LQI	KPD	Total Antimony (Sb)	2019/07/10	NC		%	20
			Total Antimony (Sb) Total Arsenic (As)	2019/07/10	NC		%	20
			Total Beryllium (Be)	2019/07/10	NC		%	20
			Total Chromium (Cr)	2019/07/10	7.9		%	20
			• •					
			Total Copper (Cu)	2019/07/10	NC 7.8		% %	20 20
			Total Copper (Cu)	2019/07/10 2019/07/10	7.8 NC		%	20
			Total Lead (Pb)	2019/07/10				
			Total Molybdenum (Mo)	2019/07/10	1.8 12		%	20 20
			Total Nickel (Ni)				%	
			Total Silver (As)	2019/07/10	1.9 NG		%	20 20
			Total Silver (Ag)	2019/07/10	NC NG		%	
			Total Thallium (TI)	2019/07/10	NC		%	20
			Total Tite view (Ti)	2019/07/10	NC		%	20
			Total Titanium (Ti)	2019/07/10	NC		%	20
			Total Uranium (U)	2019/07/10	4.8		%	20
			Total Vanadium (V)	2019/07/10	NC		%	20
	DICO		Total Zinc (Zn)	2019/07/10	NC	404	%	20
9500789	RK3	Matrix Spike	Total Mercury (Hg)	2019/07/10		101	%	80 - 12
9500789	RK3	Spiked Blank	Total Mercury (Hg)	2019/07/10		113	%	80 - 12
9500789	RK3	Method Blank	Total Mercury (Hg)	2019/07/10	<0.0020		ug/L	
9500789	RK3	RPD	Total Mercury (Hg)	2019/07/10	NC		%	20
9501576	STI	Matrix Spike	Dissolved Chloride (Cl)	2019/07/10		NC	%	80 - 12
501576	STI	Spiked Blank	Dissolved Chloride (Cl)	2019/07/10		106	%	80 - 12
9501576	STI	Method Blank	Dissolved Chloride (Cl)	2019/07/10	<1.0		mg/L	
9501576	STI	RPD	Dissolved Chloride (Cl)	2019/07/10	0.52		%	20
9501583	STI	Matrix Spike	Dissolved Sulphate (SO4)	2019/07/10		NC	%	80 - 12
9501583	STI	Spiked Blank	Dissolved Sulphate (SO4)	2019/07/10		102	%	80 - 12
9501583	STI	Method Blank	Dissolved Sulphate (SO4)	2019/07/10	<1.0		mg/L	
9501583	STI	RPD	Dissolved Sulphate (SO4)	2019/07/10	1.4		%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

(1) Method blank above criteria. Data inspected. All data < RDL or greater than 10x Method Blank.

SLR CONSULTING (CANADA) LTD Client Project #: 212.06550.00003

Site Location: MOUNTAIN ASH

Your P.O. #: EDM4886 Sampler Initials: NY

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics

Harry (Peng) Liang, Senior Analyst

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Calgary: 4000 19th St. NE, T2E 6P8. Toll Free (800) 386-7247 Edmonton: 9331-48 St. T6B 2R4. Toll Free (800) 386-7247 maxxam.ca

179 CHAIN OF CUSTODY RECORD

M 083948 Page 1 of 1

Invoice Information				Rej	Report Information (if differs from invoice)					Project Information						Turnaround Time (TAT) Required													
Company	SLI	R	Cons	ul	ting	Ltd.		Company	54	nmit	Agg	regat	e).			Quotation #:							X	5 - 7 Da	ıys Rej	gular (Most analyses)			
Contact Name: Robert Till										P.O. 1	t/ AF	E#:	E	DM	48	36				PLEASE PROVIDE ADVANCE NOTICE FOR RUSH PROJECTS									
						Read		Address:			2								-	1				14.		Rush TAT (Surcharges will be applied)			
	Edr															Proje	ct #:	-	112.	06	550	- 00	000	3			Same D	ay	2 Days
Phone:								Phone:								Site L	ocat	ion:		ma	nta	nl	15h				1 Day		3-4 Days
Email:	rti	lla	str	Car	sul	Hing-	com	Email:	rtil	lastr	consu	thing.	car	77		Site #									D	ate Re	quired	:	
Copies:	ny	201	0) 5	to	Cons	altin	g-corr	Copies:	nye	aria s	streen	pullin	6) - 1	com	h	Samp	led I	ву:	N	Y					Ri	ısh Co	nfirma	tion f	#:
	J						ratory U	_					Ĭ							Ana	lysis R	eque	sted		_				Regulatory Criteria
Seni Pres		ES N	O Coo	ler ID					Depo	t Recept	ion												. 65	.=		T		T	X AT1
Seal into	ct l		Ter	np	6	9	6											iss 7	8				名は年の日本	Gi					
	Y	-	O Coo	ler ID													E	Tot MDiss	Aince Section		7		1/2	r L				111	CCME
Seal Pres	ct		Ter	np														To I	3		t, Cla		19					ALYZE	Drinking Water
Cooling M		ES N	O Coo	ler ID										20				010		~	d, Sil		19	30.01				ANA	D50 (Drilling Waste)
Seal Pres Seal Inta		-	Ter	np-									iners	□ voc			ater	Metals	3	nicro	San	12	7	CelèFerms				NO	5askatchewan
Cooling M					_			100			Time		onta	E	F1-F2	FIFE	Me W	ated	4 4	(75 n	(9) au	L'idas	19	7				- DO	Other:
	S	amp	le Id	entif	ficatio	n		Depth (Unit)		Sampled MM/DD)	Sampled (HH:MM)	Matrix	# of containers	BTEX F1	BTEX F1-F2	BTEX F1-F4	Routine Water	Regulated Metals	Salinity 4	Sieve (75 micron)	Texture (% Sand, Silt, Clay)	To hind h	Total May	Total				HOLD - DO NOT ANALYZE	Special Instructions
1 44	W19	-1	0		_				2019	107/05		Grand	6				X	X	(X		X					
2 mL	v19-	10	9										6				X.	XX				X		X					> silty
3 W	NA												6				×,	XX				X		X					
4 6	117											V	6		1, 1		X	2	-			X		×					
5 B	451								1	/		Stream	6				X	X)	(X		X					Sovied
6																													metals presented not filtered.
7										~																			Not in
8																													Rainy conditions
9																								4					Rainy conditions could not a rite
10																						1							on labels paper
	Ple	ease	indic	ate	Filtere	ed, Prese	erved or l	Both (F, P, F/	P)																				in each bag india
Relin	quishe	d by	: (Sig	nati	ure/ P	rint)	DATE (Y	YYY/MM/DD)	Time (нн:мм)	R	eceived	by:	(Sign	natu	re/P	rint)		DA	TE (Y	YYY/M	W/DD	Tim	e (HH:M	M)			M	axxam Job# Samp
Unless otherwi	e agreed to			Hofe / Noushin Yor 20191			1/07/05	dard Terms	and Conditions							NE MUNTRE				2019/07/05			2: 20		05-Jul-19 12:20 Jenelle Feller				

AB FCD-00331/7

KK7 INS-0170

Your P.O. #: EDM4886 PO # EDM3288

Your C.O.C. #: M083881

Attention: ROBERT TILL

SLR CONSULTING (CANADA) LTD 6940 ROPER ROAD EDMONTON, AB CANADA T6B 3H9

Report Date: 2019/07/18

Report #: R2753966 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B955649 Received: 2019/07/10, 20:35

Sample Matrix: Water # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity @25C (pp, total), CO3,HCO3,OH	3	N/A	2019/07/16	AB SOP-00005	SM 23 2320 B m
Cadmium - low level CCME - Dissolved	3	N/A	2019/07/12		Auto Calc
Cadmium - low level CCME (Total)	3	N/A	2019/07/15		Auto Calc
Chloride/Sulphate by Auto Colourimetry	3	N/A	2019/07/16	AB SOP-00020 / AB SOP- 00018	SM23-4500-CI/SO4-E m
Total Coliforms and E.Coli	3	2019/07/11	2019/07/12	AB SOP-00089	SM 23 9223 A,B m
Conductivity @25C	3	N/A	2019/07/16	AB SOP-00005	SM 23 2510 B m
Hardness	3	N/A	2019/07/12		Auto Calc
Mercury (Total) by CV	2	2019/07/16	2019/07/16	CAL SOP-00007	EPA 1631 RE 20460 m
Mercury (Total) by CV	1	2019/07/16	2019/07/17	CAL SOP-00007	EPA 1631 RE 20460 m
Elements by ICP-Dissolved-Lab Filtered (1)	3	N/A	2019/07/12	AB SOP-00042	EPA 6010d R5 m
Elements by ICP - Total	3	2019/07/13	2019/07/16	AB SOP-00014 / AB SOP- 00042	EPA 6010d R4 m
Elements by ICPMS-Dissolved-Lab Filtered (2)	3	N/A	2019/07/12	AB SOP-00043	EPA 6020b R2 m
Elements by ICPMS - Total	3	2019/07/13	2019/07/14	AB SOP-00014 / AB SOP- 00043	EPA 6020b R2 m
Ion Balance	3	N/A	2019/07/12		Auto Calc
Sum of cations, anions	3	N/A	2019/07/12		Auto Calc
Nitrate and Nitrite	3	N/A	2019/07/12		Auto Calc
Nitrate + Nitrite-N (calculated)	3	N/A	2019/07/12		Auto Calc
Nitrogen (Nitrite - Nitrate) by IC	2	N/A	2019/07/11	AB SOP-00023	SM 23 4110 B m
Nitrogen (Nitrite - Nitrate) by IC	1	N/A	2019/07/12	AB SOP-00023	SM 23 4110 B m
pH @25°C (3)	3	N/A	2019/07/16	AB SOP-00005	SM 23 4500-H+B m
Total Dissolved Solids (Calculated)	3	N/A	2019/07/17		Auto Calc
Turbidity	3	N/A	2019/07/13	CAL SOP-00081	SM 23 2130 B m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless

Your P.O. #: EDM4886 PO # EDM3288

Your C.O.C. #: M083881

Attention: ROBERT TILL

SLR CONSULTING (CANADA) LTD 6940 ROPER ROAD EDMONTON, AB CANADA T6B 3H9

Report Date: 2019/07/18

Report #: R2753966 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: B955649 Received: 2019/07/10, 20:35

indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

- * RPDs calculated using raw data. The rounding of final results may result in the apparent difference.
- (1) Dissolved > Total Imbalance: When applicable, Dissolved and Total results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (2) Samples were filtered and preserved at the lab. Values may not reflect concentrations at the time of sampling. Dissolved > Total Imbalance: When applicable, Dissolved and Total results were reviewed and data quality meets acceptable levels unless otherwise noted.
- (3) The CCME method requires pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the CCME holding time. Bureau Veritas Laboratories endeavours to analyze samples as soon as possible after receipt.

Encryption Key

Jenelle Feller Key Account Specialist 18 Jul 2019 17:04:14

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

Jenelle Feller, Key Account Specialist

Email: JFeller@bvlabs.com Phone# (403)735-2264

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

SLR CONSULTING (CANADA) LTD

Your P.O. #: EDM4886

ROUTINE + DISS. REG. METALS - LAB FILT (WATER)

BV Labs ID		WB5701		WB5702	WB5703		
Sampling Date		2019/07/10		2019/07/10	2019/07/10		
Sampling Date		13:45		14:52	16:48		
COC Number		M083881		M083881	M083881		
	UNITS	BHS1	QC Batch	WW2	MW19-110	RDL	QC Batch
Calculated Parameters							
Anion Sum	meq/L	4.3	9502278	6.2	6.0	N/A	9502278
Cation Sum	meq/L	4.4	9502278	6.1	5.9	N/A	9502278
Hardness (CaCO3)	mg/L	200	9502270	260	280	0.50	9502270
Ion Balance (% Difference)	%	0.87	9502276	1.3	0.91	N/A	9502276
Dissolved Nitrate (NO3)	mg/L	6.3	9502284	1.6	8.6	0.044	9502284
Nitrate plus Nitrite (N)	mg/L	1.4	9502287	0.37	1.9	0.014	9502287
Dissolved Nitrite (NO2)	mg/L	<0.033	9502284	<0.033	<0.033	0.033	9502284
Calculated Total Dissolved Solids	mg/L	210	9502288	300	290	1.0	9502288
Misc. Inorganics			<u> </u>			l.	
Conductivity	uS/cm	420	9508468	580	560	2.0	9508468
рН	рН	8.07	9508466	7.95	7.82	N/A	9508466
Low Level Elements							L.
Dissolved Cadmium (Cd)	ug/L	0.025	9502398	0.036	0.032	0.020	9502398
Anions							
Alkalinity (PP as CaCO3)	mg/L	<1.0	9508465	<1.0	<1.0	1.0	9508465
Alkalinity (Total as CaCO3)	mg/L	190	9508465	290	270	1.0	9508465
Bicarbonate (HCO3)	mg/L	240	9508465	350	330	1.0	9508465
Carbonate (CO3)	mg/L	<1.0	9508465	<1.0	<1.0	1.0	9508465
Hydroxide (OH)	mg/L	<1.0	9508465	<1.0	<1.0	1.0	9508465
Dissolved Chloride (Cl)	mg/L	8.2	9509749	2.0	8.4	1.0	9509749
Dissolved Sulphate (SO4)	mg/L	4.7	9509749	20	8.1	1.0	9509749
Nutrients	•					•	
Dissolved Nitrite (N)	mg/L	<0.010	9503263	<0.010	<0.010	0.010	9503263
Dissolved Nitrate (N)	mg/L	1.4	9503263	0.37	1.9	0.010	9503263
Lab Filtered Elements							
Dissolved Aluminum (Al)	mg/L	0.12	9504202	<0.0030	0.0078	0.0030	9504202
Dissolved Antimony (Sb)	mg/L	<0.00060	9504202	<0.00060	<0.00060	0.00060	9504202
Dissolved Arsenic (As)	mg/L	0.00044	9504202	<0.00020	0.00023	0.00020	9504202
Dissolved Barium (Ba)	mg/L	0.19	9503452	0.097	0.25	0.010	9503452
Dissolved Beryllium (Be)	mg/L	<0.0010	9504202	<0.0010	<0.0010	0.0010	9504202
Dissolved Boron (B)	mg/L	<0.020	9503452	0.023	<0.020	0.020	9503452
Dissolved Calcium (Ca)	mg/L	48	9503452	55	62	0.30	9503452
RDL = Reportable Detection Limit							
N/A = Not Applicable							

N/A = Not Applicable

SLR CONSULTING (CANADA) LTD Your P.O. #: EDM4886

ROUTINE + DISS. REG. METALS – LAB FILT (WATER)

BV Labs ID		WB5701		WB5702	WB5703		
Sampling Date		2019/07/10		2019/07/10	2019/07/10		
Sampling Date		13:45		14:52	16:48		
COC Number		M083881		M083881	M083881		
	UNITS	BHS1	QC Batch	WW2	MW19-110	RDL	QC Batch
Dissolved Chromium (Cr)	mg/L	<0.0010	9504202	<0.0010	<0.0010	0.0010	9504202
Dissolved Cobalt (Co)	mg/L	<0.00030	9504202	<0.00030	<0.00030	0.00030	9504202
Dissolved Copper (Cu)	mg/L	0.00095	9504202	0.0026	0.00032	0.00020	9504202
Dissolved Iron (Fe)	mg/L	0.10	9503452	<0.060	<0.060	0.060	9503452
Dissolved Lead (Pb)	mg/L	<0.00020	9504202	<0.00020	<0.00020	0.00020	9504202
Dissolved Lithium (Li)	mg/L	<0.020	9503452	<0.020	<0.020	0.020	9503452
Dissolved Magnesium (Mg)	mg/L	20	9503452	30	30	0.20	9503452
Dissolved Manganese (Mn)	mg/L	<0.0040	9503452	0.0096	0.042	0.0040	9503452
Dissolved Molybdenum (Mo)	mg/L	0.00098	9507484	0.0020	0.0021	0.00020	9504202
Dissolved Nickel (Ni)	mg/L	0.00085	9504202	0.00054	0.0015	0.00050	9504202
Dissolved Phosphorus (P)	mg/L	<0.10	9503452	<0.10	<0.10	0.10	9503452
Dissolved Potassium (K)	mg/L	4.8	9503452	2.0	2.7	0.30	9503452
Dissolved Selenium (Se)	mg/L	0.00058	9504202	0.00045	0.00067	0.00020	9504202
Dissolved Silicon (Si)	mg/L	6.4	9503452	4.0	4.4	0.10	9503452
Dissolved Silver (Ag)	mg/L	<0.00010	9504202	<0.00010	<0.00010	0.00010	9504202
Dissolved Sodium (Na)	mg/L	5.0	9503452	17	6.0	0.50	9503452
Dissolved Strontium (Sr)	mg/L	0.27	9503452	0.56	0.41	0.020	9503452
Dissolved Sulphur (S)	mg/L	1.8	9503452	5.3	2.2	0.20	9503452
Dissolved Thallium (TI)	mg/L	<0.00020	9504202	<0.00020	<0.00020	0.00020	9504202
Dissolved Tin (Sn)	mg/L	<0.0010	9504202	<0.0010	<0.0010	0.0010	9504202
Dissolved Titanium (Ti)	mg/L	0.0038	9504202	<0.0010	0.0012	0.0010	9504202
Dissolved Uranium (U)	mg/L	0.0011	9504202	0.00081	0.0024	0.00010	9504202
Dissolved Vanadium (V)	mg/L	<0.0010	9504202	<0.0010	<0.0010	0.0010	9504202
Dissolved Zinc (Zn)	mg/L	<0.0030	9504202	0.043	0.0032	0.0030	9504202
RDL = Reportable Detection Limi	t					•	•

SLR CONSULTING (CANADA) LTD Your P.O. #: EDM4886

REGULATED METALS (CCME/AT1) - TOTAL

BV Labs ID		WB5701	WB5702		WB5703		
Sampling Date		2019/07/10	2019/07/10		2019/07/10		
Jamping Date		13:45	14:52		16:48		
COC Number		M083881	M083881		M083881		
	UNITS	BHS1	WW2	RDL	MW19-110	RDL	QC Batch
Low Level Elements							
Total Cadmium (Cd)	ug/L	0.034	0.029	0.020	4.2	0.020	9502399
Elements							
Total Aluminum (Al)	mg/L	0.30	0.0060	0.0030	10	0.0030	9505482
Total Antimony (Sb)	mg/L	<0.00060	<0.00060	0.00060	<0.00060	0.00060	9505482
Total Arsenic (As)	mg/L	0.00061	<0.00020	0.00020	0.0084	0.00020	9505482
Total Barium (Ba)	mg/L	0.21	0.11	0.010	2.2	0.010	9505479
Total Beryllium (Be)	mg/L	<0.0010	<0.0010	0.0010	0.0019	0.0010	9505482
Total Boron (B)	mg/L	<0.020	0.023	0.020	<0.020	0.020	9505479
Total Calcium (Ca)	mg/L	50	59	0.30	600 (1)	1.5	9505479
Total Chromium (Cr)	mg/L	0.0010	<0.0010	0.0010	0.019	0.0010	9505482
Total Cobalt (Co)	mg/L	<0.00030	<0.00030	0.00030	0.030	0.00030	9505482
Total Copper (Cu)	mg/L	0.0013	0.0045	0.00020	0.032	0.00020	9505482
Total Iron (Fe)	mg/L	0.25	<0.060	0.060	10	0.060	9505479
Total Lead (Pb)	mg/L	<0.00020	0.00054	0.00020	0.019	0.00020	9505482
Total Lithium (Li)	mg/L	<0.020	0.023	0.020	<0.020	0.020	9505479
Total Magnesium (Mg)	mg/L	21	33	0.20	130	0.20	9505479
Total Manganese (Mn)	mg/L	<0.0040	0.012	0.0040	7.3	0.0040	9505479
Total Molybdenum (Mo)	mg/L	0.00038	0.0014	0.00020	0.0015	0.00020	9505482
Total Nickel (Ni)	mg/L	0.00088	0.00060	0.00050	0.065	0.00050	9505482
Total Phosphorus (P)	mg/L	<0.10	<0.10	0.10	2.5	0.10	9505479
Total Potassium (K)	mg/L	5.4	2.3	0.30	4.7	0.30	9505479
Total Selenium (Se)	mg/L	0.00068	0.00052	0.00020	0.00096	0.00020	9505482
Total Silicon (Si)	mg/L	7.5	4.6	0.10	15	0.10	9505479
Total Silver (Ag)	mg/L	<0.00010	<0.00010	0.00010	<0.00010	0.00010	9505482
Total Sodium (Na)	mg/L	5.3	20	0.50	6.9	0.50	9505479
Total Strontium (Sr)	mg/L	0.27	0.58	0.020	1.1	0.020	9505479
Total Sulphur (S)	mg/L	1.8	6.1	0.20	2.5	0.20	9505479
Total Thallium (TI)	mg/L	<0.00020	<0.00020	0.00020	0.00024	0.00020	9505482
Total Tin (Sn)	mg/L	<0.0010	<0.0010	0.0010	<0.0010	0.0010	9505482
Total Titanium (Ti)	mg/L	0.0068	<0.0010	0.0010	0.17	0.0010	9505482
Total Uranium (U)	mg/L	0.0013	0.00091	0.00010	0.0060	0.00010	9505482
Total Vanadium (V)	mg/L	0.0015	<0.0010	0.0010	0.025	0.0010	9505482

RDL = Reportable Detection Limit

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.

SLR CONSULTING (CANADA) LTD Your P.O. #: EDM4886

REGULATED METALS (CCME/AT1) - TOTAL

BV Labs ID		WB5701	WB5702		WB5703					
Sampling Date		2019/07/10	2019/07/10		2019/07/10					
Sampling Date		13:45	14:52		16:48					
COC Number		M083881	M083881		M083881					
	UNITS	BHS1	WW2	RDL	MW19-110	RDL	QC Batch			
Total Zinc (Zn)	mg/L	<0.0030	0.046	0.0030	0.14	0.0030	9505482			
RDL = Reportable Detection Limit										

SLR CONSULTING (CANADA) LTD Your P.O. #: EDM4886

RESULTS OF CHEMICAL ANALYSES OF WATER

BV Labs ID		WB5701	WB5702		WB5703					
Sampling Date		2019/07/10	2019/07/10		2019/07/10					
Sampling Date		13:45	14:52		16:48					
COC Number		M083881	M083881		M083881					
	UNITS	BHS1	WW2	RDL	MW19-110	RDL	QC Batch			
Microbiological Param.										
E.Coli DST	MPN/100mL	1600	<1.0	1.0	63 (1)	10	9502759			
Total Coliforms DST	MPN/100mL	>2400	1.0	1.0	180 (1)	10	9502759			
Physical Properties										
Turbidity	NTU	5.1	0.31	0.10	<0.10	0.10	9505873			
RDL = Reportable Detection	Limit				•					
(1) Detection limit raised du	e to matrix inte	rference.								

SLR CONSULTING (CANADA) LTD Report Date: 2019/07/18 Your P.O. #: EDM4886

MERCURY BY COLD VAPOR (WATER)

BV Labs ID		WB5701	WB5702		WB5703		
Sampling Date		2019/07/10 13:45	2019/07/10 14:52		2019/07/10 16:48		
COC Number		M083881	M083881		M083881		
	UNITS	BHS1	WW2	RDL	MW19-110	RDL	QC Batch
Elements							
Total Mercury (Hg)	ug/L	0.0025	<0.0020	0.0020	0.257 (1)	0.020	9509199

⁽¹⁾ Due to the sample matrix, sample required dilution. Detection limit was adjusted accordingly.

BV Labs Job #: B955649 SLR CONSULTING (CANADA) LTD Report Date: 2019/07/18 Your P.O. #: EDM4886

GENERAL COMMENTS

Each temperature is the average of up to three cooler temperatures taken at receipt

Package 1	5.0°C

RESULTS OF CHEMICAL ANALYSES OF WATER Comments

Method Blank Total Coliforms and E.Coli: Method Blank exceeds normal acceptance limits due to possible lab contamination. Sample WB5701, Elements by ICPMS-Dissolved-Lab Filtered: Test repeated.

Results relate only to the items tested.

SLR CONSULTING (CANADA) LTD Your P.O. #: EDM4886

QUALITY ASSURANCE REPORT

QA/QC		007		D		5		
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9502759	AP1	Method Blank	E.Coli DST	2019/07/12	1.0, RDL=1.0		mpn/100m	L
			Total Coliforms DST	2019/07/12	1.0, RDL=1.0		mpn/100m	L
9502759	AP1	RPD [WB5702-03]	E.Coli DST	2019/07/12	NC		%	N/A
			Total Coliforms DST	2019/07/12	0		%	N/A
9503263	PR6	Matrix Spike [WB5701-01]	Dissolved Nitrite (N)	2019/07/11		104	%	80 - 120
			Dissolved Nitrate (N)	2019/07/11		103	%	80 - 120
9503263	PR6	Spiked Blank	Dissolved Nitrite (N)	2019/07/11		102	%	80 - 120
		•	Dissolved Nitrate (N)	2019/07/11		103	%	80 - 120
9503263	PR6	Method Blank	Dissolved Nitrite (N)	2019/07/11	< 0.010		mg/L	
			Dissolved Nitrate (N)	2019/07/11	< 0.010		mg/L	
9503263	PR6	RPD [WB5701-01]	Dissolved Nitrite (N)	2019/07/11	NC		%	20
		[Dissolved Nitrate (N)	2019/07/11	0.16		%	20
9503452	MAP	Matrix Spike	Dissolved Barium (Ba)	2019/07/12	0.10	95	%	80 - 120
3303132		Width Spine	Dissolved Boron (B)	2019/07/12		102	%	80 - 120
			Dissolved Calcium (Ca)	2019/07/12		104	%	80 - 120
			Dissolved Iron (Fe)	2019/07/12		99	%	80 - 120
			Dissolved Lithium (Li)	2019/07/12		93	%	80 - 120
			, ,			103		
			Dissolved Magnesium (Mg)	2019/07/12			%	80 - 120
			Dissolved Manganese (Mn)	2019/07/12		107	%	80 - 120
			Dissolved Phosphorus (P)	2019/07/12		104	%	80 - 120
			Dissolved Potassium (K)	2019/07/12		98	%	80 - 120
			Dissolved Silicon (Si)	2019/07/12		99	%	80 - 120
			Dissolved Sodium (Na)	2019/07/12		99	%	80 - 120
			Dissolved Strontium (Sr)	2019/07/12		100	%	80 - 120
			Dissolved Sulphur (S)	2019/07/12		102	%	80 - 120
9503452	MAP	Spiked Blank	Dissolved Barium (Ba)	2019/07/12		89	%	80 - 120
			Dissolved Boron (B)	2019/07/12		95	%	80 - 120
			Dissolved Calcium (Ca)	2019/07/12		94	%	80 - 120
			Dissolved Iron (Fe)	2019/07/12		94	%	80 - 120
			Dissolved Lithium (Li)	2019/07/12		86	%	80 - 120
			Dissolved Magnesium (Mg)	2019/07/12		97	%	80 - 120
			Dissolved Manganese (Mn)	2019/07/12		99	%	80 - 120
			Dissolved Phosphorus (P)	2019/07/12		93	%	80 - 120
			Dissolved Potassium (K)	2019/07/12		90	%	80 - 120
			Dissolved Silicon (Si)	2019/07/12		91	%	80 - 120
			Dissolved Sodium (Na)	2019/07/12		92	%	80 - 120
			Dissolved Strontium (Sr)	2019/07/12		94	%	80 - 120
			Dissolved Sulphur (S)	2019/07/12		94	%	80 - 120
9503452	MAP	Method Blank	Dissolved Barium (Ba)	2019/07/12	< 0.010		mg/L	
			Dissolved Boron (B)	2019/07/12	<0.020		mg/L	
			Dissolved Calcium (Ca)	2019/07/12	<0.30		mg/L	
			Dissolved Iron (Fe)	2019/07/12	<0.060		mg/L	
			Dissolved Lithium (Li)	2019/07/12	<0.020		mg/L	
			Dissolved Magnesium (Mg)	2019/07/12	<0.20		mg/L	
			Dissolved Manganese (Mn)	2019/07/12	<0.0040			
			Dissolved Manganese (MII) Dissolved Phosphorus (P)	2019/07/12	<0.0040		mg/L	
							mg/L	
			Dissolved Potassium (K)	2019/07/12	<0.30		mg/L	
			Dissolved Silicon (Si)	2019/07/12	<0.10		mg/L	
			Dissolved Sodium (Na)	2019/07/12	<0.50		mg/L	
			Dissolved Strontium (Sr)	2019/07/12	<0.020		mg/L	
			Dissolved Sulphur (S)	2019/07/12	<0.20		mg/L	
9503452	MAP	RPD	Dissolved Barium (Ba)	2019/07/12	0.76		%	20

SLR CONSULTING (CANADA) LTD Your P.O. #: EDM4886

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Boron (B)	2019/07/12	2.7		%	20
			Dissolved Calcium (Ca)	2019/07/12	0.72		%	20
			Dissolved Iron (Fe)	2019/07/12	20		%	20
			Dissolved Lithium (Li)	2019/07/12	NC		%	20
			Dissolved Magnesium (Mg)	2019/07/12	0.45		%	20
			Dissolved Manganese (Mn)	2019/07/12	NC		%	20
			Dissolved Phosphorus (P)	2019/07/12	NC		%	20
			Dissolved Potassium (K)	2019/07/12	5.0		%	20
			Dissolved Silicon (Si)	2019/07/12	0.94		%	20
			Dissolved Sodium (Na)	2019/07/12	0.29		%	20
			Dissolved Strontium (Sr)	2019/07/12	0.46		%	20
			Dissolved Sulphur (S)	2019/07/12	0.089		%	20
9504202	HC7	Matrix Spike	Dissolved Aluminum (AI)	2019/07/12		90	%	80 - 120
		•	Dissolved Antimony (Sb)	2019/07/12		97	%	80 - 120
			Dissolved Arsenic (As)	2019/07/12		94	%	80 - 120
			Dissolved Beryllium (Be)	2019/07/12		90	%	80 - 120
			Dissolved Chromium (Cr)	2019/07/12		97	%	80 - 120
			Dissolved Cobalt (Co)	2019/07/12		95	%	80 - 120
			Dissolved Copper (Cu)	2019/07/12		96	%	80 - 120
			Dissolved Lead (Pb)	2019/07/12		90	%	80 - 120
			Dissolved Molybdenum (Mo)	2019/07/12		98	%	80 - 120
			Dissolved Nickel (Ni)	2019/07/12		93	%	80 - 120
			Dissolved Mickel (M) Dissolved Selenium (Se)	2019/07/12		99	%	80 - 120
			Dissolved Seleman (Se)	2019/07/12		89	%	80 - 120
			, 5,	2019/07/12		90		
			Dissolved Thallium (TI)			90	%	80 - 120
			Dissolved Tito rives (Ti)	2019/07/12			%	80 - 120
			Dissolved Titanium (Ti)	2019/07/12		98	%	80 - 120
			Dissolved Uranium (U)	2019/07/12		97 27	%	80 - 120
			Dissolved Vanadium (V)	2019/07/12		97	%	80 - 120
			Dissolved Zinc (Zn)	2019/07/12		104	%	80 - 120
9504202	HC7	Spiked Blank	Dissolved Aluminum (AI)	2019/07/12		99	%	80 - 120
			Dissolved Antimony (Sb)	2019/07/12		105	%	80 - 120
			Dissolved Arsenic (As)	2019/07/12		100	%	80 - 120
			Dissolved Beryllium (Be)	2019/07/12		95	%	80 - 120
			Dissolved Chromium (Cr)	2019/07/12		99	%	80 - 120
			Dissolved Cobalt (Co)	2019/07/12		101	%	80 - 120
			Dissolved Copper (Cu)	2019/07/12		102	%	80 - 120
			Dissolved Lead (Pb)	2019/07/12		97	%	80 - 120
			Dissolved Molybdenum (Mo)	2019/07/12		101	%	80 - 120
			Dissolved Nickel (Ni)	2019/07/12		101	%	80 - 120
			Dissolved Selenium (Se)	2019/07/12		99	%	80 - 120
			Dissolved Silver (Ag)	2019/07/12		98	%	80 - 120
			Dissolved Thallium (TI)	2019/07/12		99	%	80 - 120
			Dissolved Tin (Sn)	2019/07/12		96	%	80 - 120
			Dissolved Titanium (Ti)	2019/07/12		102	%	80 - 120
			Dissolved Uranium (U)	2019/07/12		101	%	80 - 120
			Dissolved Vanadium (V)	2019/07/12		103	%	80 - 120
			Dissolved Zinc (Zn)	2019/07/12		104	%	80 - 120
9504202	HC7	Method Blank	Dissolved Aluminum (AI)	2019/07/12	<0.0030		mg/L	
			Dissolved Antimony (Sb)	2019/07/12	<0.00060		mg/L	
			Dissolved Arsenic (As)	2019/07/12	<0.00020		mg/L	
			Dissolved Beryllium (Be)	2019/07/12	<0.0010		mg/L	
			Dissolved Chromium (Cr)	2019/07/12	<0.0010		mg/L	
			Dissolved Cobalt (Co)	2019/07/12	< 0.00030		mg/L	
			Dissolved Copper (Cu)	2019/07/12	<0.00030		mg/L	

Report Date: 2019/07/18

SLR CONSULTING (CANADA) LTD

Your P.O. #: EDM4886

				REPORT(CONT D)				
QA/QC Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Dissolved Lead (Pb)	2019/07/12	<0.00020		mg/L	
			Dissolved Molybdenum (Mo)	2019/07/12	<0.00020		mg/L	
			Dissolved Nickel (Ni)	2019/07/12	<0.00050		mg/L	
			Dissolved Selenium (Se)	2019/07/12	<0.00020		mg/L	
			Dissolved Silver (Ag)	2019/07/12	<0.00010		mg/L	
			Dissolved Thallium (TI)	2019/07/12	<0.00020		mg/L	
			Dissolved Tin (Sn)	2019/07/12	<0.0010		mg/L	
			Dissolved Titanium (Ti)	2019/07/12	<0.0010		mg/L	
			Dissolved Uranium (U)	2019/07/12	<0.00010		mg/L	
			Dissolved Vanadium (V)	2019/07/12	<0.0010		mg/L	
			Dissolved Zinc (Zn)	2019/07/12	<0.0030		mg/L	
9504202	HC7	RPD	Dissolved Aluminum (Al)	2019/07/12	NC		%	20
			Dissolved Antimony (Sb)	2019/07/12	NC		%	20
			Dissolved Arsenic (As)	2019/07/12	NC		%	20
			Dissolved Beryllium (Be)	2019/07/12	NC		%	20
			Dissolved Chromium (Cr)	2019/07/12	NC		%	20
			Dissolved Cobalt (Co)	2019/07/12	4.5		%	20
			Dissolved Copper (Cu)	2019/07/12	4.7		%	20
			Dissolved Lead (Pb)	2019/07/12	NC		%	20
			Dissolved Molybdenum (Mo)	2019/07/12	8.3		%	20
			Dissolved Nickel (Ni)	2019/07/12	0.86		%	20
			Dissolved Selenium (Se)	2019/07/12	11		%	20
			Dissolved Silver (Ag)	2019/07/12	NC		%	20
			Dissolved Thallium (TI)	2019/07/12	NC		%	20
			Dissolved Tin (Sn)	2019/07/12	NC		%	20
			Dissolved Titanium (Ti)	2019/07/12	NC		%	20
			Dissolved Uranium (U)	2019/07/12	4.8		%	20
			Dissolved Vanadium (V)	2019/07/12	NC		%	20
			Dissolved Zinc (Zn)	2019/07/12	6.3		%	20
9505479	FM0	Matrix Spike	Total Barium (Ba)	2019/07/16		99	%	80 - 120
			Total Boron (B)	2019/07/16		99	%	80 - 120
			Total Calcium (Ca)	2019/07/16		96	%	80 - 120
			Total Iron (Fe)	2019/07/16		105	%	80 - 120
			Total Lithium (Li)	2019/07/16		99	%	80 - 120
			Total Magnesium (Mg)	2019/07/16		99	%	80 - 120
			Total Manganese (Mn)	2019/07/16		99	%	80 - 120
			Total Phosphorus (P)	2019/07/16		97	%	80 - 120
			Total Potassium (K)	2019/07/16		96	%	80 - 120
			Total Silicon (Si)	2019/07/16		100	%	80 - 120
			Total Sodium (Na)	2019/07/16		100	%	80 - 120
			Total Strontium (Sr)	2019/07/16		98	%	80 - 120
			Total Sulphur (S)	2019/07/16		98	%	80 - 120
9505479	FM0	Spiked Blank	Total Barium (Ba)	2019/07/16		98	%	80 - 120
3303473	1 1010	эрікса Біалк	Total Boron (B)	2019/07/16		98	%	80 - 120
			Total Calcium (Ca)	2019/07/16		95	%	80 - 120
			Total Iron (Fe)	2019/07/16		103	%	80 - 120
			Total Lithium (Li)	2019/07/16		97	% %	80 - 120
			Total Magnesium (Mg)	2019/07/16		98	% %	80 - 120
			Total Magnesium (Mg) Total Manganese (Mn)	2019/07/16				
			S , ,			98 05	%	80 - 120 80 - 120
			Total Potassium (V)	2019/07/16		95 04	%	80 - 120 80 - 120
			Total Potassium (K)	2019/07/16		94	%	80 - 120
			Total Sodium (No.)	2019/07/16		98	%	80 - 120
			Total Streeties (Sc)	2019/07/16		98	%	80 - 120
			Total Strontium (Sr)	2019/07/16		96	%	80 - 120
			Total Sulphur (S)	2019/07/16		99	%	80 - 120

SLR CONSULTING (CANADA) LTD

Your P.O. #: EDM4886

QA/QC Batch	lni+	OC Type	Parameter	Date Analyzed	Value	Recovery	LINITS	OC Limita
9505479	Init FM0	QC Type Method Blank	Parameter Total Barium (Ba)	Date Analyzed 2019/07/16	Value <0.010	Recovery	UNITS mg/L	QC Limits
9505479	FIVIU	Method Blank	` '	2019/07/16	<0.010			
			Total Boron (B)	2019/07/16			mg/L	
			Total Calcium (Ca)	• •	<0.30		mg/L	
			Total Iron (Fe)	2019/07/16	<0.060		mg/L	
			Total Lithium (Li)	2019/07/16	<0.020		mg/L	
			Total Magnesium (Mg)	2019/07/16	<0.20		mg/L	
			Total Manganese (Mn)	2019/07/16	<0.0040		mg/L	
			Total Phosphorus (P)	2019/07/16	<0.10		mg/L	
			Total Potassium (K)	2019/07/16	<0.30		mg/L	
			Total Silicon (Si)	2019/07/16	<0.10		mg/L	
			Total Sodium (Na)	2019/07/16	<0.50		mg/L	
			Total Strontium (Sr)	2019/07/16	<0.020		mg/L	
			Total Sulphur (S)	2019/07/16	<0.20		mg/L	
9505479	FM0	RPD	Total Iron (Fe)	2019/07/16	NC		%	20
9505482	LQ1	Matrix Spike	Total Aluminum (Al)	2019/07/14		NC	%	80 - 120
			Total Antimony (Sb)	2019/07/14		108	%	80 - 120
			Total Arsenic (As)	2019/07/14		97	%	80 - 120
			Total Beryllium (Be)	2019/07/14		101	%	80 - 120
			Total Chromium (Cr)	2019/07/14		94	%	80 - 120
			Total Cobalt (Co)	2019/07/14		93	%	80 - 120
			Total Copper (Cu)	2019/07/14		90	%	80 - 120
			Total Lead (Pb)	2019/07/14		95	%	80 - 120
			Total Molybdenum (Mo)	2019/07/14		104	%	80 - 120
			Total Nickel (Ni)	2019/07/14		93	%	80 - 120
			Total Selenium (Se)	2019/07/14		101	%	80 - 120
			Total Silver (Ag)	2019/07/14		106	%	80 - 120
			Total Thallium (TI)	2019/07/14		105	%	80 - 120
			Total Thailidin (11)	2019/07/14			%	80 - 120
			` '			119		
			Total Uranium (Ti)	2019/07/14		94	%	80 - 120
			Total Uranium (U)	2019/07/14		115	%	80 - 120
			Total Vanadium (V)	2019/07/14		97	%	80 - 120
			Total Zinc (Zn)	2019/07/14		NC	%	80 - 120
9505482	LQ1	Spiked Blank	Total Aluminum (AI)	2019/07/14		92	%	80 - 120
			Total Antimony (Sb)	2019/07/14		109	%	80 - 120
			Total Arsenic (As)	2019/07/14		97	%	80 - 120
			Total Beryllium (Be)	2019/07/14		99	%	80 - 120
			Total Chromium (Cr)	2019/07/14		94	%	80 - 120
			Total Cobalt (Co)	2019/07/14		93	%	80 - 120
			Total Copper (Cu)	2019/07/14		93	%	80 - 120
			Total Lead (Pb)	2019/07/14		99	%	80 - 120
			Total Molybdenum (Mo)	2019/07/14		101	%	80 - 120
			Total Nickel (Ni)	2019/07/14		94	%	80 - 120
			Total Selenium (Se)	2019/07/14		100	%	80 - 120
			Total Silver (Ag)	2019/07/14		109	%	80 - 120
			Total Thallium (TI)	2019/07/14		107	%	80 - 120
			Total Tin (Sn)	2019/07/14		110	%	80 - 120
			Total Titanium (Ti)	2019/07/14		92	%	80 - 120
			Total Uranium (U)	2019/07/14		97	%	80 - 120
			Total Vanadium (V)	2019/07/14		96	%	80 - 120
			Total Zinc (Zn)	2019/07/14		92	%	80 - 120
9505482	LQ1	Method Blank	Total Aluminum (Al)	2019/07/14	<0.0030	32		00 - 120
505462	LQI	IVIEUTOU DIGITK					mg/L	
			Total Arcania (As)	2019/07/14	<0.00060		mg/L	
			Total Arsenic (As)	2019/07/14	<0.00020		mg/L	
			Total Beryllium (Be)	2019/07/14	<0.0010		mg/L	
			Total Chromium (Cr)	2019/07/14	< 0.0010		mg/L	

Report Date: 2019/07/18

SLR CONSULTING (CANADA) LTD

Your P.O. #: EDM4886

QA/QC			_			_		
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
			Total Cobalt (Co)	2019/07/14	<0.00030		mg/L	
			Total Copper (Cu)	2019/07/14	<0.00020		mg/L	
			Total Lead (Pb)	2019/07/14	<0.00020		mg/L	
			Total Molybdenum (Mo)	2019/07/14	<0.00020		mg/L	
			Total Nickel (Ni)	2019/07/14	<0.00050		mg/L	
			Total Selenium (Se)	2019/07/14	<0.00020		mg/L	
			Total Silver (Ag)	2019/07/14	<0.00010		mg/L	
			Total Thallium (TI)	2019/07/14	<0.00020		mg/L	
			Total Tin (Sn)	2019/07/14	<0.0010		mg/L	
			Total Titanium (Ti)	2019/07/14	< 0.0010		mg/L	
			Total Uranium (U)	2019/07/14	< 0.00010		mg/L	
			Total Vanadium (V)	2019/07/14	< 0.0010		mg/L	
			Total Zinc (Zn)	2019/07/14	<0.0030		mg/L	
9505482	LQ1	RPD	Total Aluminum (AI)	2019/07/14	NC		%	20
			Total Lead (Pb)	2019/07/14	NC		%	20
9505873	EH2	Spiked Blank	Turbidity	2019/07/13		96	%	80 - 120
9505873	EH2	Method Blank	Turbidity	2019/07/13	< 0.10		NTU	
9505873	EH2	RPD	Turbidity	2019/07/13	2.1		%	20
9507484	LQ1	Matrix Spike	Dissolved Molybdenum (Mo)	2019/07/15		96	%	80 - 120
9507484	LQ1	Spiked Blank	Dissolved Molybdenum (Mo)	2019/07/15		94	%	80 - 120
9507484	LQ1	Method Blank	Dissolved Molybdenum (Mo)	2019/07/15	< 0.00020		mg/L	
9507484	LQ1	RPD	Dissolved Molybdenum (Mo)	2019/07/15	NC		%	20
9508465	IKO	Spiked Blank	Alkalinity (Total as CaCO3)	2019/07/16		92	%	80 - 120
9508465	IK0	Method Blank	Alkalinity (PP as CaCO3)	2019/07/16	<1.0		mg/L	
			Alkalinity (Total as CaCO3)	2019/07/16	<1.0		mg/L	
			Bicarbonate (HCO3)	2019/07/16	<1.0		mg/L	
			Carbonate (CO3)	2019/07/16	<1.0		mg/L	
			Hydroxide (OH)	2019/07/16	<1.0		mg/L	
9508465	IK0	RPD [WB5703-01]	Alkalinity (PP as CaCO3)	2019/07/16	NC		%	20
			Alkalinity (Total as CaCO3)	2019/07/16	1.5		%	20
			Bicarbonate (HCO3)	2019/07/16	1.5		%	20
			Carbonate (CO3)	2019/07/16	NC		%	20
			Hydroxide (OH)	2019/07/16	NC		%	20
9508466	IK0	Spiked Blank	pH	2019/07/16		100	%	97 - 103
9508466	IKO	RPD [WB5703-01]	pH	2019/07/16	0.39		%	N/A
9508468	IKO	Spiked Blank	Conductivity	2019/07/16	0.00	100	%	90 - 110
9508468	IK0	Method Blank	Conductivity	2019/07/16	<2.0	100	uS/cm	30 110
9508468	IK0	RPD [WB5703-01]	Conductivity	2019/07/16	2.7		%	10
9509199	RK3	Matrix Spike	Total Mercury (Hg)	2019/07/16	2.,	81	%	80 - 120
9509199	RK3	Spiked Blank	Total Mercury (Hg)	2019/07/16		90	%	80 - 120
9509199	RK3	Method Blank	Total Mercury (Hg)	2019/07/16	<0.0020	30	ug/L	00 - 120
9509199	RK3	RPD	Total Mercury (Hg)	2019/07/16	NC		ug/L %	20
9509199	STI	Matrix Spike	Dissolved Chloride (Cl)	2019/07/16	INC	NC	% %	80 - 120
3303743	311	iviati ix Spike	Dissolved Chloride (CI) Dissolved Sulphate (SO4)	2019/07/16				
0500740	C T I	Caiked Blank	,			NC 108	%	80 - 120
9509749	STI	Spiked Blank	Dissolved Chloride (CI)	2019/07/16		108	%	80 - 120
0500740	C -1	Mathad Dicele	Dissolved Sulphate (SO4)	2019/07/16	-1.0	108	% /1	80 - 120
9509749	STI	Method Blank	Dissolved Chloride (CI)	2019/07/16	<1.0		mg/L	
05005:5	c=:	222	Dissolved Sulphate (SO4)	2019/07/16	<1.0		mg/L	
9509749	STI	RPD	Dissolved Chloride (Cl)	2019/07/16	1.5		%	20

Report Date: 2019/07/18

SLR CONSULTING (CANADA) LTD Your P.O. #: EDM4886

QUALITY ASSURANCE REPORT(CONT'D)

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
	•		Dissolved Sulphate (SO4)	2019/07/16	0.63	•	%	20

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

V Labs Job #: B955649 SLR CONSULTING (CANADA) LTD eport Date: 2019/07/18 Your P.O. #: EDM4886

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Calgary: 4000 19th St. NE, T2E 6P8. Toll Free (800) 386-7247 Edmonton: 9331-48 St. T6B 2R4. Toll Free (800) 386-7247 maxxam.ca 708

CHAIN OF CUSTODY RECORD

M 083881 Page ___of __

Company: SLR (GISSUITING (Eareda) Ltd. Com Contact Name: Robert T.11 Address: 69410 Roper Road. Edgranton, AB Phone: 780-490-7893 Email: rhil asir consulting. com Copies: Ayarasir consulting. com Laboratory Use Only Seal Present Seal Intact Cooling Media	tact Name: Pober ress: ne: rtill osl	rconsultronsu	lling	COL	m	P.O.	ct#: ocatio	#: <u>E</u>	DM	148	86				PLEAS	Rush T Same	DEAD AT (S	egular (Most analyses) VANCE NOTICE FOR RUSH PROJECTS urcharges will be applied) 2 Days 3-4 Days
Address: 69210 Roper Road. Edgrafon, AB Phone: 780-490-7893 Phone: Thil a sir contulting com Copies: Ayariasir consulting com Laboratory Use Only Seal Present Temp C	ne: il: rtillasi es: nyarias	rcansu	lting			Proje Site I	ct#: ocatio		DM	148	80				E	Same 1 Day	'AT (S	urcharges will be applied)
Phone: 780-490-7893 Phone: 780-490-7893 Phone: rhil a sir contulling.com Ema Copies: Ayariasir consulling.com Copies: Ayariasir consulling.com Copies: Seal Present YES NO Cooler ID Seal Present Temp C C C	ne: il: rtillasi es: nyarias	Irconiu				Site I	ocatio								Date R	Same 1 Day	Day	2 Days
Email: rhild strongulling.com Ema Copies: Ayaridstronsulling.com Copi Laboratory Use Only Seal Present YES NO Cooler ID Seal Present Seal Intact Temp	rtillasi es: nyarias	Irconiu				Site I	ocatio								Date R	1 Day		-
Email: rhil a str consulting. com Copies: Ayariastr consulting. com Laboratory Use Only Seal Present Seal Intact Temp Temp	rtillasi es: nyarias	Irconiu				Site #	_								Date R		d.	3-4 Days
Copies: Ayariastronsuling.com copi Laboratory Use Only Seal Present Temp Cooler ID Seal Intact Temp Cooler ID	es: nyarias	Irconiu					-							D	ate R	eauire	d·	
Laboratory Use Only Seal Present Seal Intact Temp			Itino	4.00	m	Samp	led By							_		-4	_	
Seal Present Seal Intact Temp	Depot Recept	tion												R	Rush C	onfirm	ation	#:
Seal Present Seal Intact Temp	Depot Recept	tion							1	Analys	is Rec	uest	ed					Regulatory Criteria
Seal Intact Temp							1									1-1	1	₩ AT1
YES NO Cooler ID		Time		in C	BTEX F1-F2	BTEX F1-F4	Regulated Metals Tot Onse	Total K Dis	ty 4	Sieve (75 micron) Texture (% Sand, Silt. Clav)		Lin	Total (oli forms+				HOLD - DO NOT ANALYZE	CCME Drinking Water D50 (Drilling Waste) Saskatchewan Other:
Sample Identification Depth (U	(YYYY/MM/DD)	Sampled I	Matrix	#ofc	BTEX F1-	втех	Regul	Mercury	Salinity 4	Sieve	Basic	-					НОГО	Special Instructions
1 BHS1	2019/07/10	-	vare				< X	×		+		-	4					Metal preserved not
2 WWZ		2:52		6			< X	X				X	X					filtered.
3 MW19-110	1	A:48 PM	V	6			(X	X				×	X					
4																		
5																		
6																		
7																		
8																		
9																		
10						-					П					1	0.1	ul-19 20:35
Please indicate Filtered, Preserved or Both (F, P	P, F/P)			- 1							\Box				Ta	nelle		
Relinquished by: (Signature/ Print) DATE (YYYY/MM/	(DD) Time (HH:MM)	Rece	ived b	y: (Si	gnatur	e/Pr	nt)		DATE	(YYYY)	MM/	(DD	Time (HH:M	IM)				
Jun / Noushin Yor 2019/07/	10 19:00	-55H1	Circ	530	in	1	6	1	2	919	07	()	2035			B9:		The state of the s
					0	1	(1							CCC	5	IN	S-0170

APPENDIX H Baseline Water Resources – Water Well Testing Results Letter Report

Hydrogeological Assessment Report
Mountain Ash Limited Partnership Aggregate Operation
NW and SW Section 31, Twp 26, Rge 3 W5M
Rocky View County, Alberta
SLR Project No. 212.06650.00003

Mr. K. Carroll 103 Dalcastle Mews NW Calgary, Alberta T3A 2N8 June 7, 2013

RE: Water Well Testing Results: SE 06-027-03 W5M

PENGROWTH ENERGY CORPORATION: 03-06-027-03 W5M BASELINE WATER RESOURCE INC.: Project # 13-4007

INTRODUCTION

Baseline Water Resource Inc. (BWRI) was retained by Pengrowth Energy Corporation (Pengrowth) to conduct a baseline water well assessment (1 well) for Mr. Kevin Carroll in SE 06-027-03 W5M on May 7, 2013. Pengrowth plans to develop from a surface location within 03-06-027-03 W5M.

The table below displays the water well location, UTM co-ordinates and where available the corresponding Alberta Environment and Sustainable Resource Development (ESRD) Drilling Report GIC ID number (ESRD, 2013).

Water Well	Legal Land Location	NAD 83, UTM Zone 11	ESRD Well
Name			GIC ID
House Well	SE 06-027-03 W5M	5683479 m, 0680742 m	0360164

RESULTS

HOUSE WELL

Procedure

Testing was completed by discharging water from a hose bib off east side of the residence. Water was flowed through ¾" lines and discharged approximately 5 m east of the residence. Photographs of the well casing, discharge connection/sample area, and the Flow Through Cell at discharge follow this report.

Water Quantity

The water level at the start of the test was 35.100 m from the top of the well casing (TOC). The well was pumped at a constant flow rate of 24.0 L/min (5.28 IGPM) for 60 minutes. The water level at the end of the test was 35.270 m

from the TOC (0.170 m total drawdown). The water level in the well recovered to 35.115 m in 60 minutes (90% Recovery). Yield test data is presented in Table 1.

Water Quality

Water quality samples were collected and submitted to ALS Laboratory Group Ltd (ALS) in Calgary, Alberta for routine potability, total metals, benzene, toluene, ethyl benzene and xylenes (BTEX) and petroleum hydrocarbon fractions (F1-F2) and bacteriological analysis (total coliforms and E. coli). A copy of the laboratory analytical report is attached.

Field parameters including electrical conductivity (EC), pH and temperature were measured prior to water sample collection. Field parameter results are included in the table below.

Water Well Name	Time	EC (µS/cm)	рН	Temp (°C)
House Well	1520 h	534	7.28	5.7

Water quality analytical results were compared to the "Guideline for Canadian Drinking Water Quality" (GCDWQ) standard (Health Canada, 2012). Guidelines are either health-based (Maximum Acceptable Concentration (MAC)) or Aesthetic Objectives (AO). Aesthetic Objectives are based on considerations such as taste, odour and colour, and do not constitute a health hazard. Water quality exceedances are summarized in the table below.

Parameter	Concentration	MAC	AO
Iron (Fe)-Total	0.927 mg/L		0.3 mg/L
Turbidity	6.70 NTU	1 NTU	-

The turbidity value (6.70 NTU) exceeded the MAC guidelines. It should be noted that this is an operational guideline intended for water treatment facilities and therefore is not directly related to private water wells.

In cases where a MAC has been exceeded, the landowner is encouraged to contact the local health unit.

BTEX and Petroleum Hydrocarbon Analysis

None of the analyzed parameters were detected above the laboratory's minimum reportable detection limits.

Free Gas Analysis

Water was directed through a Flow Through Cell (FTC) at a constant rate of 3.0 L/min for 60 minutes (180 L total). No free gas was observed during the sampling event

INTERPRETATION OF ANALYTICAL RESULTS

For assistance with the interpretation of your water sample analytical results, please find the attached interpretation guides provided by Alberta Health Services.

Any parameter exceedance relating to groundwater quality can be discussed with your local Health Office. For further information call the Health Link line at 1-866-408-LINK (5465) or go to the following website link:

http://www.healthlinkalberta.ca/default.htm

FOLLOW UP CONTACT FOR WATER WELL CONCERNS

Any concerns regarding baseline water well quality or performance should be directed to Alberta Environment and Sustainable Resources (ESRD). To reach a water well specialist at ESRD, the contact number is 1-800-222-6514.

CLOSURE

Baseline Water Resource Inc. is pleased to submit this report as fulfillment of Pengrowths' requirements for baseline water well testing.

Sincerely,

S. Brent Bowerman, P.Geol. President Baseline Water Resource Inc.

DISCLAIMER

Baseline Water Resource Inc. has used proficient skill and diligence conducting the water well assessment and preparation of this report. This report is a representation of the conditions and information present and available at the time of the assessment. Information received from all other sources is considered to be accurate but cannot be guaranteed. Baseline Water Resource Inc. is not responsible for any individual interpretation of this material nor any decisions based upon findings in this report.

REFERENCES

Alberta Environment and Sustainable Resource Development (ESRD), 2013. "Groundwater Information Centre Map". http://www.envinfo.gov.ab.ca/GroundWater/. Last accessed May 7, 2013.

Alberta Health Services, Environmental Health, 2009. Guide to Interpreting Your Drinking Water Chemical Test Results, June, 2009.

Alberta Health Services, Environmental Health, 2009. Interpretation of Bacteriological Results, June 2009.

Health Canada, 2012. "Guidelines for Canadian Drinking Water Quality Summary Table (Prepared by the Federal-Provincial-Territorial Committee on Drinking Water)".

Photograph 1. View of the well casing, located approximately 12 m west of the residence.

Photograph 2. View of the discharge connection and sample area located on the east side of the residence.

Photograph 3. View of the FTC at discharge, located approximately 5 m east of the residence.

TABLE 1. YIELD TEST DATA (House Well)

Total Drawdown: 0.170 m

90% Recovery: 35.117 m

Draw	vdown	Rec	overy
Time (minutes)	Depth to Water (m b.t.c. ¹)	Time (minutes)	Depth to Water (m b.t.c.)
0	35.100	0	35.270
1	35.100	1	35.125
2	35.100	2	35.120
3	35.100	3	35.120
4	35.100	4	35.120
5	35.100	5	35.120
6	35.100	6	35.120
7	35.105	7	35.120
8	35.105	8	35.120
9	35.105	9	35.115
10	35.105	10	35.115 ²
15	-	·	
20	35.230		
25	35.115	,	
30	35.140		
35	35.260		
40	35.135		
50	35.120		
60	35.270		

NOTES:

- 1. b.t.c. denotes "below top of well casing".
- 2. Denotes 90% Recovery achieved.
- 3. The constant pumping rate was 24.0 L/min (5.28 lgpm).
- 4. The distance between ground level and the top of the well casing 0.33 m.
- 5. All water level measurements were taken from the top of the well casing.
- 6. A water level tape was used to collect water level measurements.

BASELINE WATER RESOURCE INC.

ATTN: CLINT GANES #7, 3800-19 STREET NE CALGARY AB T2E 6V2

Date Received: 08-MAY-13

Report Date: 14-MAY-13 17:07 (MT)

Version: **FINAL**

Client Phone: 403-282-3999

Certificate of Analysis

Lab Work Order #: L1298547

Project P.O. #:

2013LC0027

Job Reference:

13-4007

C of C Numbers:

Legal Site Desc:

03-06-027-03 W5M

Other

INV COMMENTS: 13-4007

Information:

Senior Scientist

[This report shall not be reproduced except in full without the written authority of the Laboratory.]

ADDRESS: 2559 29 Street NE, Calgary, AB T1Y 7B5 Canada | Phone: +1 403 291 9897 | Fax: +1 403 291 0298 ALS CANADA LTD Part of the ALS Group A Campbell Brothers Limited Company

Environmental 🔭

www.alsglobal.com

RIGHT SOLUTIONS RIGHT PARTNER

ANALYTICAL GUIDELINE REPORT

L1298547 CONTD Page 2 of 5

Sample Details	Ph	0		11.5	The same		14-MAY-13 17:
Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guideline Limits
L1298547-1 K CARROLL							
Sampled By: GF on 07-MAY-13 @ 15:20						#1	#2
Matrix: WATER						#1	#2
Physical Tests							11/2
Turbidity	6 70	1	0.10	NTU	10-MAY-13		
Anions and Nutrients							
Alkalinity, Total (as CaCO3)	334		5.0	mg/L	08-MAY-13		
Bicarbonate (HCO3)	407		5.0	mg/L	08-MAY-13		
Carbonate (CO3)	<5.0		5.0	mg/L	08-MAY-13		
Chloride (CI)	1.79		0,10	mg/L	08-MAY-13	250	
Conductivity (EC)	626	1 1	3.0	uS/cm	08-MAY-13		
Fluoride (F)	0.13		0.10	mg/L	08-MAY-13		1.5
Hardness (as CaCO3)	337			mg/L	11-MAY-13		
Hydroxide (OH)	<5.0		5,0	mg/L	08-MAY-13		
Ion Balance	101			%	11-MAY-13		4.00
Nitrate and Nitrite (as N)	0.704		0.071	mg/L	10-MAY-13		10
Nitrate (as N)	0.633		0.050	mg/L	08-MAY-13		10
Nitrite (as N)	0.072		0.050	mg/L	08-MAY-13		1
pH	7.65		0.10	pН	08-MAY-13	6,5-8.5	
TDS (Calculated)	345			mg/L	11-MAY-13	500	
Sulfate (SO4)	18.7		0.50	mg/L	08-MAY-13	500	
Bacteriological Tests				1			
MPN - E. coli	<1		1	MPN/100m L	08-MAY-13		••0
MPN - Total Coliforms	<1		1	MPN/100m	08-MAY-13		**0
Total Metals				_			
Aluminum (AI)-Total	<0.0050		0.0050	mg/L	10-MAY-13	0.1	
Antimony (Sb)-Total	<0.00010		0.00010	mg/L	10-MAY-13	4.1	0.006
Arsenic (As)-Total	0.00011		0.00010	mg/L	10-MAY-13		0.01
Barium (Ba)-Total	0.108		0.000050	mg/L	10-MAY-13		1
Beryllium (Be)-Total	<0.00050	1 1	0.00050	mg/L	10-MAY-13		'
Boron (B)-Total	0.016		0.010	mg/L	10-MAY-13		5
Cadmium (Cd)-Total	<0.000050		0.000050	mg/L	10-MAY-13		0.005
Calcium (Ca)-Total	66.3		0.10	mg/L	10-MAY-13		0.005
Chromium (Cr)-Total	<0.00050		0.00050	mg/L	10-MAY-13		0.05
Cobalt (Co)-Total	<0.00010		0.00010	mg/L	10-MAY-13		0.00
Copper (Cu)-Total	0.00183		0.00010	mg/L	10-MAY-13	1	
Iron (Fe)-Total	0.927		0.030	mg/L	10-MAY-13	*0.3	
Lead (Pb)-Total	0.00022		0.00010	mg/L	10-MAY-13	0,3	0.04
Lithium (Li)-Total	0.0100		0.0050	mg/L	10-MAY-13		0.01
Magnesium (Mg)-Total	38.8		0.10	mg/L	10-MAY-13		
Manganese (Mn)-Total	0.0092		0.0050	mg/L	10-MAY-13	0.05	
Mercury (Hg)-Total	<0.000050		0.000050	mg/L	10-MAY-13	0.03	0.001
Molybdenum (Mo)-Total	0.00101		.000050	mg/L	10-MAY-13		0.001
Nickel (Ni)-Total	0.00055		0.00050	mg/L	10-MAY-13		
Potassium (K)-Total	2.27		0.50	mg/L	10-MAY-13		
Selenium (Se)-Total	0.0016		0.0010	mg/L	10-MAY-13		0.01
Silver (Ag)-Total	<0.000010		.000010	mg/L	10-MAY-13		5.01

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made.
Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied

Federal Guidelines for Canadian Drinking Water Quality (AUG, 2012) = [Suite] - CA_CDWQ MAC and AO (includes "interim" MACs)

ANALYTICAL GUIDELINE REPORT

L1298547 CONTD.... Page 3 of 5

Sample Details Grouping Analyte	Result	Qualifier	D.L.	Units	Analyzed		Guideline Limits
1298547-1 K. CARROLL ampled By: GF on 07-MAY-13 @ 15:20 latrix: WATER						#1	#2
otal Metals							
Sodium (Na)-Total	11.0		1.0	mg/L	10-MAY-13	200	
Thallium (TI)-Total	<0.00010		0.00010	mg/L	10-MAY-13	200	
Tin (Sn)-Total	<0.00010		0.00010	mg/L	10-MAY-13		
Titanium (Ti)-Total	<0.0010		0.0010	mg/L	10-MAY-13		
Uranium (U)-Total	0.00168		0.000010	mg/L	10-MAY-13		0.02
Vanadium (V)-Total	<0.0010		0.0010	mg/L	10-MAY-13		0.00
Zinc (Zn)-Total	< 0.0050		0.0050	mg/L	10-MAY-13	5	
olatile Organic Compounds					1		
Benzene	<0.00050		0.00050	mg/L	10-MAY-13		0.005
Ethylbenzene	<0.00050		0.00050			0.000	0.005
Toluene	<0.00050	1		mg/L	10-MAY-13	0.0024	
			0.00050	mg/L	10-MAY-13	0.024	
o-xylene m+p-Xylene	<0.00050		0.00050	mg/L	10-MAY-13		
	<0.00050		0.00050	mg/L	10-MAY-13	26	
Xylenes	<0.00050		0.00050	mg/L	10-MAY-13	0.3	
F1(C6-C10) F1-BTEX	<0.10		0.10	mg/L	10-MAY-13		
ydrocarbons	<0.10		0.10	mg/L	10-MAY-13		1 1
F2 (C10-C16)	<0 25		0.25	mg/L	10-MAY-13		

Detection Limit for result exceeds Guideline Limit. Assessment against Guideline Limit cannot be made. Analytical result for this parameter exceeds Guideline Limit listed on this report. Guideline Limits applied

Federal Guidelines for Canadian Drinking Water Quality (AUG, 2012) = [Suite] - CA_CDWQ MAC and AO (includes "interim" MACs)

Reference Information

Methods Listed (if applicable):

ALS Test Code	Matrix	Test Description	Method Reference***
BTX,F1-CL	Water	BTEX and F1 (C6-C10)	EPA 5030/8015& 8260-P&T GC-MS/FID
CL-CL	Water	Chloride (CI)	APHA 4110 B-Ion Chromatography
Inorganic Anions by io	n chromatogra	phy (IC) in water and aqueaous ex	tracts of soils.
F-IC-CL	Water	Fluoride	APHA 4110 B-Ion Chromatography
F2-CL	Water	F2	EPA 3510/8000-GC-FID
HG-TOT-CVAFS-CL	Water	Total Mercury in Water by CVAFS	EPA 1631E

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves a cold-oxidation of the acidified sample using bromine monochloride prior to reduction of the sample with stannous chloride. Instrumental analysis is by cold vapour atomic fluorescence spectrophotometry (EPA Method 245.7).

IONBALANCE-CL Water Ion Balance Calculation APHA 1030E

MET-DIS-ICP-CL Water Dissolved Metals by ICPOES EPA SW-846 3005A/6010B

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedure involves filtration (EPA Method 3005A) and analysis by inductively coupled plasma optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-ICP-CL Water Total Metals in Water by EPA SW-846 3005A/6010B

ICPOES

This analysis is carried out using procedures adapted from "Standard Methods for the Examination of Water and Wastewater" published by the American Public Health Association, and with procedures adapted from "Test Methods for Evaluating Solid Waste" SW-846 published by the United States Environmental Protection Agency (EPA). The procedures may involve preliminary sample treatment by acid digestion using a hotblock (EPA Method 3005A). Instrumental analysis is by inductively coupled plasma - optical emission spectrophotometry (EPA Method 6010B).

MET-TOT-LOW-MS-CL Water Total Metals in Water by ICPMS EPA SW-846 3005A/6020A N2N3-CALC-CL Water Nitrate+Nitrite CALCULATION NO2-CI Water Nitrite-N APHA 4110 B-Ion Chromatography NO3-IC-CL Water Nitrate-N APHA 4110 B-Ion Chromatography PH/EC/ALK-CL Water pH, Conductivity and Total APHA 4500H, 2510, 2320

Alkalinity

All samples analyzed by this method for pH will have exceeded the 15 minute recommended hold time from time of sampling (field analysis is recommended for pH where highly accurate results are needed)

pH measurement is determined from the activity of the hydrogen ions using a hydrogen electrode and a reference electrode.

Alkalinity measurement is based on the sample's capacity to neutralize acid

Conductivity measurement is based on the sample's capacity to convey an electric current

SO4-CL Water Sulfate (SO4) APHA 4110 B-Ion Chromatography

TC-EC-MPN-CL Water Total Coliforms and E. Coli by APHA METHOD 9223

MPN
This analysis is carried out using procedures adapted from APHA Method 9223 "Enzyme Substrate Coliform Test". E. coli and Total Coliform are determined simultaneously. The

sample is mixed with a mixture hydrolyzable substrates and then sealed in a multi-well packet. The packet is incubated for 18 or 24 hours and then the number of wells exhibiting a positive response are counted. The final result is obtained by comparing the positive responses to a probability table.

TURBIDITY-CL Water Turbidity APHA 2130 B-Nephelometer

A strong light beam is sent through a transparent tube containing the sample. Light that is reflected at 90 degrees to the axis by suspended particles is detected by the photocell. The electrical response is proportional to the sample turbidity.

*** ALS test methods may incorporate modifications from specified reference methods to improve performance.

ALBERTA, CANADA

Chain of Custody numbers:

The last two letters of the above lest code(s) indicate the laboratory that performed analytical analysis for that test. Refer to the list below:

Laboratory Definition Code Laboratory Location Laboratory Definition Code Laboratory Location

CL ALS ENVIRONMENTAL - CALGARY,

Additional Information:

INV COMMENTS 13-4007

Reference Information

GLOSSARY OF REPORT TERMS

Surrogates are compounds that are similar in behaviour to target analyte(s), but that do not normally occur in environmental samples. For applicable tests, surrogates are added to samples prior to analysis as a check on recovery. In reports that display the D.L. column, laboratory objectives for surrogates are listed there.

mg/kg - milligrams per kilogram based on dry weight of sample mg/kg wwt - milligrams per kilogram based on wet weight of sample mg/kg lwt - milligrams per kilogram based on lipid-adjusted weight mg/L - unit of concentration based on volume, parts per million. < - Less than.

D.L. - The reporting limit.

N/A - Result not available. Refer to qualifier code and definition for explanation.

Test results reported relate only to the samples as received by the laboratory.

UNLESS OTHERWISE STATED, ALL SAMPLES WERE RECEIVED IN ACCEPTABLE CONDITION.

Analytical results in unsigned test reports with the DRAFT watermark are subject to change, pending final QC review.

Application of guidelines is provided "as is" without warranty of any kind, either expressed or implied, including, but not limited to fitness for a particular purpose, or non-infringement. ALS assumes no responsibility for errors or omissions in the information.

WWW.ALSENVIRO.COM

(ALS)	S)		2										ſ
REPORT TO	10:	BEPORT DISTRIBUTION:	5 - 2	Ī	LAB WORK ORDER #	ORDER #							
COMPAN	COMPANY; Basoline Water Resource Inc.	EMAIL / FAX	FINAL RESULTS	FINAL RESULTS BY EMAIL ONLY	١		r		SEBVIC	SERVICE DECLIGETED	200	۱	T
CONTACT	CONTACT: Clint Ganes	clints	Ter, cam				_	* REGULAR	REGULAR SERVICE (DEFAULT)	DEFAIL			T
ADORESS	ADDRESS: #7, 3800 - 19 Street NE	EMAL 2: gregf@baselinewster.com	ar.com				•		PRIORITY SERVICE (50% SURCHARGE)	50% SUR	CHARGE		
	Calgary. AB T2E 6V2	EMAIL 3:					-	EMERGEN	EMERGENCY SERVICE (100% SURCHARGE)	CE (100%	SURCHAI	RGE)	
PHONE	PHONE: 403-282-3999 FAX:	SELECT: pdf_x_ c	digital both					ANALYSIS REQUESTED	EQUESTEC				
CELL PHC	CELL PHONE: 403-869-2592	INDICATE BOTTL	INDICATE BOTTLES: FILTEREDYPRESERVED (F/P)	(F/P) →	1	Z	K		K		K	L	
INVOICE TO:	TO: SAME AS ABOVE: NO	BWRI PROJECT # 13-	13-4007									N	
COMPAN	COMPANY: Pongrawth Energy Corp.	#80f			_				_			/\ ¿	S
CONTACT		AFE: 2013100027	27					_					ובעי
ADDRESS	íó				70				_				AIAT
		LSD: 03-06-02-	26-027-03 WSM										NO:
PHONE: (403)	403) FAX:	QUOTE:					-	_)F C
Lab Sample Number	SAMPLEID	SAMPLING LOCATION	SAMPLED BY / DATE /	SAMPLE TYPE	IETALS 7	TEX	1 & F2					IAZARI GHLY CI	ыявен
-					v	B	-		‡	‡	‡	4	N
7	K. Carroll	MILLERANT. NO.C.	CF INSTERS	U.O.	×	7	×		+	+	‡	12	1
ဗ			10010		+-		F		H	-	F	+	1
4					F				+		‡	╀	4
40					H	t	F		H		ļ	╀	
g						L	L		+	F		╀	
7					-		F		-			╀	
60					-		F		F	F	F	\vdash	
Ø							F			F	-	╀	
9						L	F		-	-		-	
#							F			F	-	+	
12									-	H	+	+	
	GUIDELINES / REGULATIONS	SPE	SPECIAL INSTRUCTIONS / NATURE OF HAZARDOUS MATERIAL	NATURE OF HAZAR	DOUS MAT	RIAL				SAMPL	SAMPLE CONDITION	를	
9	GCDWQ (Guidelines for Canadian Drinking Water Quality)	If Gas Compositional Analysis identifies the presence of methane gas, the PM must report directly to Clint Ganes (clintg@baselinewater.com) to determine if Gas Isotopic Analysis is required.	sis identifies the presewater.com) to dete	sence of methane mine if Gas Isoto	gas, the pic Analy	PM mus sis is re	st repor quired.	directly to	₩ 8 8	FROZEN M	MEAN TEMPERATURE	ERATUR	
Failure	Failure to complete all portions of this form may delay analysis. By the	analysis. By the use of thi of	use of this form the user acknowledges and agrees with the Terms and Conditions as specified on the reverse of the white report copy.	knowledges and opy.	agrees v	ith the	Terms	and Condi	tions as	specifie	d on th	e reve	98
14.50	(18) Pulled 05/08/13	10 C920H	RECEIVED BY: MOD	DATE & TIME MIG	8	2	7	/h	SAMPI	SAMPLE CONDITION ACCEPTABLE UPON RECEIPT ? (Y/N)	TION ACC 7 (Y/N)	EPTAB	mi
MELIMODISM		ii.	RECUVED BY:	DATE & TIME:					_				•
								ļ	$\left\{ \right.$				

GUIDE TO INTERPRETING YOUR DRINKING WATER CHEMICAL TEST RESULTS

The laboratory report on the chemical quality of your drinking water sample is attached.

The Guidelines for Canadian Drinking Water Quality provide maximum limits for substances in drinking water that can be harmful to your health, such as sodium, fluoride, nitrate and nitrite. For your protection, the maximum limits are set below the levels at which any harmful health effects have actually been observed.

The other chemical quality limits provided below (e.g. total hardness, sulphate and iron) are not significant to health, but describe water quality conditions that are best for various household uses and for aesthetic reasons such as the water's taste, smell, and appearance.

The amount of a substance in your water sample is described as milligrams per Litre (mg/L), which is equivalent to parts per million (ppm).

The test results for Conductivity, Cation/Anion Sum, Ion Balance, % Difference are for laboratory work purposes only.

PARAMETER (limit)	DESCRIPTION
pH (6.5 – 8.5)	A pH above 8.5 may lead to problems with scale formation (mineral deposits) on cookware, plumbing and appliance parts. Corrosion (rusting or eating away) of plumbing and appliance parts may be a problem below pH 6.5.
Sodium (200 mg/L)	Sodium in drinking water should not exceed 20 mg/L for people on sodium-reduced diet (if your doctor told you to cut down on salt). If in doubt consult your doctor. Over 200 mg/L will give water a salty taste, but poses no significant risk to people in good health.
Potassium (No guideline)	Potassium at levels of 50 to 100 mg/L may add to corrosion and scaling problems.
Calcium (No guideline)	Calcium adds to water hardness and is essential for human health.
Magnesium (No guideline)	Magnesium adds to water hardness and is essential for human health. High levels of magnesium can cause a laxative effect (loose stools) in new users.
Total Hardness (80 to 100 mg/L)	Water hardness results from the calcium, magnesium, and other minerals that water collects as it moves through the ground. Water hardness is described as follows: soft = 0 to <60 mg/L; medium hard = 60 to <120 mg/L; hard = 120 to <180 mg/L; and very hard = 180 mg/L or more. Soft water can increase corrosion while hard water increases scaling on pipes, water heaters and appliances. Hard water also requires more soap during washing. Water softeners will lower hardness to acceptable levels, but will increase sodium levels (see sodium).
Iron (0.3 mg/L)	At levels above 0.3 mg/L, iron can leave a reddish-brown stain on laundry and plumbing fixtures and produce unpleasant tastes in beverages. High iron levels also cause growth of iron bacteria on parts of the well, water system, and plumbing. Shock chlorination is used to control iron bacteria (shocking your well may have to be repeated every year). In really bad cases, an iron filter may be needed.
Total Dissolved Solids (TDS) (500 mg/L)	TDS is a measure of minerals in the water. High TDS can cause scaling and affect water's taste and smell. Low TDS can give water a flat taste.

PARAMETER (limit)	DESCRIPTION
Carbonate, Bicarbonate & Hydroxide (No guideline)	Carbonates, bicarbonates and hydroxides are related to water's alkalinity, salinity, and the amount of total dissolved solids. Higher levels of bicarbonates can cause more scale formation.
Total Alkalinity (No guideline)	Alkalinity is formed by bicarbonate, carbonate and hydroxide. Lower levels of alkalinity can cause corrosion problems while higher levels can cause more scale formation.
Fluoride (1.5 mg/L)	Fluoride levels over 1.5 mg/L may increase the risk of dental fluorosis (e.g. white spots on tooth enamel) in children with developing teeth (newborns to age thirteen). Contact your family dentist for information on the correct use of fluoride supplements for children in low-fluoride areas (less than 0.7 mg/L).
	Fluoride can be removed from drinking water by point-of-use devices such as reverse osmosis or distillation.
Nitrate (10 mg/L) Nitrite	Nitrate and nitrite levels above the limits can cause methemoglobinemia (often referred to as blue baby syndrome) in sensitive people, including pregnant women and infants less than 6 months of age. Nitrates and nitrites decrease the ability of the blood to carry oxygen, which can be life-threatening. Infants and sensitive people should not drink water or eat foods prepared with water that contains levels of nitrates or nitrites above the limit.
(1.0 mg/L)	Agricultural wastes (nitrates are a part of fertilizers) and malfunctioning or poorly designed onsite septic systems are common sources of nitrate and nitrite contamination of water wells. Nitrates and nitrites can be removed by point-of-use devices such as distillation and reverse osmosis.
Sulphate (500 mg/L)	Sulphates can occur naturally in water, or result from the decomposition of plants, animals and organic wastes. Ground water that naturally contains sulphates may also contain sulphate-reducing bacteria which change sulphates to hydrogen sulphide (a gas with a "rotten egg" odour). Sulphate-reducing bacteria can also cause corrosion problems. Aeration or chlorination followed by filtration will reduce hydrogen sulphide in well water.
	High levels of sulphate may have a laxative effect (loose stools) on new users. Regular users tend to become accustomed to high sulphate levels.
Chloride (250 mg/L)	Chloride over 250 mg/L may affect the taste of water and beverages. High levels of chloride may also cause either corrosion or scale formation, depending upon what else is in the water. A sudden increase in chloride levels may indicate pollution of your water supply (e.g. from road salt, irrigation drainage).

For more information contact

- www.albertahealthservices.ca/eph.asp
- HEALTH Link Alberta at 403-943-LINK or 1-866-408-LINK
- or your local health centre at one of the locations listed below.

Airdrie	Banff Banff Health Centre 303 Lynx Street PO Box 1266 Banff, AB T1L 1B3 Phone: 403-762-2990 Fax: 403-762-5570	Calgary/Mountain View/Rocky View	Canmore
Airdrie Public Health Centre		Calgary and Area	Canmore Public Health
604 Main Street South		10101 Southport Rd SW	#104, 800 Railway Avenue
Airdrie, AB T4B 3K7		Calgary, AB T2G 2E6	Canmore, AB T1W 1P1
Phone: 403-912-8400		Phone: 403-943-2288	Phone: 403-678-5656
Fax: 403-912-8410		Fax: 403-943-8056	Fax: 403-678-5068
Claresholm Claresholm Public Health 5221 2 nd Street W PO Box 1391 Claresholm, AB TOL 0T0 Phone: 403-625-4061 Fax: 403-625-4062	Didsbury Didsbury Health Unit PO Bag 130 1210 -20th Avenue Didsbury, AB TOM 0W0 Phone: 403-335-7292 Fax: 403-335-7610	Okotoks Okotoks Public Health Centre 11 Cimarron Commons Okotoks, AB T1S 2E9 Phone: 403-995-2600 Fax: 403-995-2639	Strathmore Public Heatth Building 650 Westchester Road Strathmore, AB T1P 1H8 Phone: 403-361-7200 Fax: 403-934-7244

Interpretation of Bacteriological Results

The Provincial Laboratory of Public Health performs laboratory tests on well water samples. Initially the laboratory looks for whether bacteria are present or absent in a sample. The presence of certain types of bacteria such as *E-coli* or Total Coliforms indicates that your water may be unsafe to drink. Private laboratories often test for fecal coliforms instead of *E-coli*.

If your well water sample result shows the presence of *E-coli* or Total Coliforms, you will be contacted by a Health Inspector to discuss these results and what further actions should be taken.

The following definitions will help you interpret your report:

DEFINITIONS

Absent: Indicates bacteria were not identified in the well water sample tested.

Present: Indicates bacteria were identified in the well water sample tested.

E-coli:

The presence of *E-coli* in a private water supply indicates that the water supply has recently been impacted by fecal contamination and **should not be considered safe to drink**. This situation should be discussed with the Health Inspector who can make recommendations about boiling your water or other treatment methods.

Total Coliforms:

The presence of Total Coliforms in a private water supply indicates the possible surface contamination of the water supply. Total Coliforms may also indicate inadequate water treatment (if treatment used). This situation should be discussed with the Health Inspector who can make recommendations on what further action you should take.

For more information contact:

- www.albertahealthservices.ca/eph.asp
- Health Link Alberta at 403-943-LINK or 1-866-408-LINK
- · or your local health centre

global environmental solutions

Calgary, AB

1185-10201 Southport Rd SW Calgary, AB T2W 4X9 Canada

Tel: (403) 266-2030 Fax: (403) 263-7906

Kamloops, BC

8 West St. Paul Street Kamloops, BC V2C 1G1 Canada

Tel: (250) 374-8749 Fax: (250) 374-8656

Ottawa, ON

400 - 2301 St. Laurent Blvd. Ottawa, ON K1G 4J7 Canada

Tel: (613) 725-1777 Fax: (905) 415-1019

Toronto, ON

36 King Street East, 4th Floor Toronto, ON M5C 3B2 Canada

Tel: (905) 415-7248 Fax: (905) 415-1019

Whitehorse, YT 6131 6th Avenue

Whitehorse, YT Y1A 1N2 Canada

Tel: (867) 689-2021

Edmonton, AB

6940 Roper Road Edmonton, AB T6B 3H9 Canada

Tel: (780) 490-7893 Fax: (780) 490-7819

Kelowna, BC

#107-1726 Dolphin Avenue Kelowna, BC V1Y 9R9 Canada

Tel: (250) 762-7202 Fax: (250) 763-7303

Prince George, BC

1586 Ogilvie Street Prince George, BC V2N 1W9 Canada

Tel: (250) 562-4452 Fax: (250) 562-4458

Vancouver, BC (Head Office)

200-1620 West 8th Avenue Vancouver, BC V6J 1V4 Canada

Tel: (604) 738-2500 Fax: (604) 738-2508

Yellowknife, NT

1B Coronation Drive Yellowknife, NT X1A 0G5 Canada

Tel: (867) 688-2847

Grande Prairie, AB

9905-97 Avenue Grande Prairie, AB T8V 0N2 Canada

Tel: (780) 513-6819 Fax: (780) 513-6821

Markham, ON

200 - 300 Town Centre Blvd Markham, ON L3R 5Z6 Canada

Tel: (905) 415-7248 Fax: (905) 415-1019

Regina, SK

1048 Winnipeg Street Regina, SK S4R 8P8 Canada

Tel: (306) 525-4690 Fax (306) 525-4691

Victoria, BC

Unit 303 - 3960 Quadra Street Victoria, BC V8X 4A3 Canada

Tel: (250) 475-9595 Fax: (250) 475-9596 Guelph, ON

105-150 Research Lane Guelph, ON N1G 4T2 Canada

Tel: (226) 706-8080 Fax: (226) 706-8081

Nanaimo, BC

9-6421 Applecross Road Nanaimo, BC V9V 1N1 Canada

Tel: (250) 390-5050 Fax: (250) 390-5042

Saskatoon, SK

620-3530 Millar Avenue Saskatoon, SK S7P 0B6 Canada

Tel: (306) 374-6800 Fax: (306) 374-6077

Winnipeg, MB

1353 Kenaston Boulevard Winnipeg, MB R3P 2P2 Canada

Tel: (204) 477-1848 Fax: (204) 475-1649

Appendix J

Water Management Plan/Stormwater Management Plan

Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership

SLR Project No: 212.06650.00007/8

Mountain Ash Limited Partnership Summit Pit

SLR Project No: 212.06650.00006

April 2021

Revision 3, May 2023

Stormwater Management Plan for Summit Pit

Rocky View County, Alberta SLR Project No: 212.06650.00006

Prepared by: SLR Consulting (Canada) Ltd. 200 – 708 11th Ave SW Calgary, Alberta, T2R 0ER

for

Mountain Ash Ltd. Partnership 1945 Briar Crescent NW Calgary, AB, T2N 3V6

April 2021 Administrative Amendment June 2021 Revision 1, July 2021 Revision 2, October 2021 Revision 3, May 2023

This document has been prepared by SLR Canada. The material and data in this report were prepared under the supervision and direction of the undersigned.

Prepared by:

Luis Vasquez, M. Sc., P. Eng. 2023 Principal Hydrotechnical Engineer APEGA No. 284074 Reviewed by:

Steve Usher, P.Geo.Principal Hydrogeologist

APEGA No. 150942

Distribution: 1 electronic copy – Mountain Ash Limited Partnership

1 electronic copy – SLR Consulting (Canada) Ltd.

PERMIT TO PRACTICE SLR CONSULTING (CANADA) LTD.

RM SIGNATURE: _

RM APEGA ID #: 119511

DATE: 2023-05-15

PERMIT NUMBER: P005449

The Association of Professional Engineers and Geoscientists of Alberta (APEGA)

Table of Contents

1.0	INTRODUCTION	1
1.1	Hydrogeology	1
1.2	Hydrology	
1.3	Proposed Development	
1.4	Objectives	3
2.0	STORMWATER MANAGEMENT PLAN	4
2.1	Strategy Overview	4
2.2	Design Criteria	
2.3	Surface Water Quality	
2.4 2.5	Surface Water Runoff	
	Outline Design of Stormwater Management Features	
3.0	MAINTENANCE AND OPERATIONAL REQUIREMENTS	
3.1	Overview	
3.2	Pipe Systems / Culverts	
3.3 3.4	Swales	
3.4	·	
4.0	CONCLUSIONS	17
5.0	REFERENCES	17
6.0	STATEMENT OF LIMITATIONS	18
TADI	I CC	
TABI	LE3	
Table 1	Swale Peak Flow Calculations	7
Table 2	Design Runoff Volumes for Selected 24-hour Rainfall Events	9
Table 3	Summary of Settlement Ponds Hydraulic Analysis	10
Table 4	Summary of Sumps Sizing	13
Table 5	Typical Pipe/ Culvert Maintenance Requirements	14
Table 6	Typical Swale Operation and Maintenance Requirements	15
Table 7	Typical Attenuation Pond / Sump Maintenance Requirements	16

FIGURES

Figure 1	Site Location & Study Area
Figure 2	Watershed Divides and Pond Catchment Areas
Figure 3A	Phase 1 – External Contact Water Management
Figure 3B	Phase 2 – External Contact Water Management
Figure 3C	Phase 3 – External Contact Water Management
Figure 3D	Phase 4 – External Contact Water Management
Figure 3E	Phase 5 – External Contact Water Management
Figure 3F	Phase 6 – External Contact Water Management

1.0 INTRODUCTION

Mountain Ash Limited Partnership (Mountain Ash) is planning to develop the Summit Pit (the Project) along Highway 567 within NW and SW 31-026-03 W5M, northeast of the Town of Cochrane, in Rocky View County (RVC), Alberta (Figure 1). The Project will encompass approximately 208 acres (84 ha) excluding existing road rights-of-way. Mountain Ash is applying for Phase 1 of a six-phase mining plan. This land is currently owned by 1410266 Alberta Ltd. (a general partner of Mountain Ash). Summit Pit received land use and a master site development plan (MSDP) approval on March 2, 2021 (Land Use Bylaw C-8051-2020).

A conceptual Stormwater Management Plan (SWMP) was developed for the Project in 2016 (SLR 2016). The SWMP is required to ensure sustainable and effective management of surface water quality to protect existing local water users and the natural environment, which includes neighboring domestic wells and the Big Hill Springs Provincial Park. The conceptual SWMP has been revisited to consider the new phase mine plan developed in 2019. The water management strategy previously proposed, which is discussed in this report, has been maintained for the updated SWMP.

1.1 Hydrogeology

A hydrogeological assessment (SLR 2020) was undertaken as part of the MSDP application to assess the potential for groundwater impacts from the Project operations in relation to nearby groundwater users. A Groundwater Monitoring Plan (GMP) was subsequently prepared in relation to the operation of the Summit Pit. The objective of the GMP is to ensure the effects of site operations on groundwater resources in the vicinity of the site are monitored and negative impacts prevented wherever possible.

A total of 10 groundwater monitoring points were installed at the site and have been subject to periodic groundwater elevation monitoring between October 2014 and September 2019 (as detailed in the Hydrogeological Assessment, SLR 2020). A summary of the analysis related to the Storm Water Management Plan is presented below:

- The highest groundwater elevations are recorded in the sand and gravel at 1,274.87 masl (16.21 m below ground surface [bgs]) on November 20, 2014. Groundwater levels have been declining since, and in July 2019 had reached a low of 1273.65 masl (17.43 m bgs) at the same monitoring point.
- Minimal fluctuation in the groundwater levels within the sand and gravel indicates very little or no influence from pumping within residential wells completed in the bedrock in the area.

The base of the settlement ponds will be approximately 3 m bgs in the glacial till, and consequently a minimum of 10 m above the sand and gravel groundwater table. Groundwater monitoring will be ongoing to ensure that the base of the pit (and the infiltration areas) will be kept a minimum of 1.0 m above the maximum groundwater table. The drainage features will be designed to prevent direct interaction with the groundwater system.

1.2 Hydrology

1.2.1 Overview

The site is located approximately 1 km upslope of the Big Hill Springs Provincial Park and is located within the surface water catchment of an Unnamed Watercourse which forms a tributary to the larger Bighill Creek. No surface water bodies (streams or lakes) have been identified within the site area itself; however, there are two wetlands in the northwest corner considered as Class III (seasonal) wetlands which are to be retained on the landscape. The small wetlands scattered across the property where aggregate extraction will take place are not going to be retained. Mountain Ash will consider upgrading or replacing wetlands however possible at the time of reclamation.

The wetlands located in the northwest corner of the site (see wetland area on Figure 2), which do not have a surface discharge outlet, are fed by rainfall and snowmelt from the local catchment and from a portion of the catchment to the north of Highway 567 (via a culvert located beneath the highway). These wetlands will be retained on the landscape and this small area will not be developed for aggregate extraction with exception of construction of settlement Pond C (Figure 3C). The Hydrogeological Assessment (SLR 2020) also confirms that these wetlands are not groundwater fed.

Giving the impermeable nature of the surficial soils at surface, infiltration of precipitation (snow or rainfall) landing on the existing site would be limited; therefore, the predominant hydrological regime would be characterized by stormwater runoff.

1.2.2 Rainfall Data

Intensity Duration Frequency (IDF) rainfall data has been obtained from the Environment and Climate Change Canada Website for the rainfall gauge located at Calgary International Airport some 30 km southeast of the site (ID 3031094). The period of record used to derive the IDF statistics is from 1947 through 2015. The IDF graph represents rainfall storm duration against rainfall intensity for varying rainfall return periods and is used to inform the outline hydraulic design / sizing of stormwater management features.

1.3 Proposed Development

As shown on Figure 2, the northwest quarter of Section 31 (Figure 1) covers a total area of approximately 65 ha (160 acres), whereas the southwest quarter covers approximately 70 ha (173 acres). The ultimate excavation footprint covering a continuous parcel overlapping both quarter sections will be approximately 84 ha (208 acres). Surface runoff from the perimeter berm will have to be collected and sediment control will be provided. Once permitted, the property will be operated in six phases of uneven size (depending upon setbacks), each lasting about six years. Each phase will be worked via individual cells with a maximum of approximately four cells 'open' at any given time. A summary of the individual phases is provided below (see Figure 2):

- Phase 1 includes working cells 1 to 15.
- Phase 2 is immediately to the north and will be worked over cells 16 to 31.
- Phase 3 includes working cells 32 to 47.
- Phase 4 will be worked via cells 48 to 61. The two wetlands in the northwest corner will be retained and Phase 4 will be developed on the lands south and east of them.
- Phase 5 will be worked via cells 62 to 76, and 78.

Phase 6 will be worked via cells 79 to 87.

Based on drilling investigations at the site, there is 4 m to 6 m of glacial till overburden overlying the sand and gravels. The till soils will be stripped and stockpiled around the perimeter of the relevant extraction phases for screening purposes and ultimately for future use in the site restoration.

The sand and gravel are the target deposit for extraction and lies immediately above the underlying bedrock. Groundwater in assessment boreholes were noted between 20 m and 24 m bgs and generally lies above the bedrock. It is anticipated that the site will be worked to 1.0 m above the maximum recorded groundwater level within the gravel deposit and will therefore be worked dry, with no requirement for operational or permanent dewatering. Actual depths will be determined with progressive investigation of water levels as the site is developed.

Objectives 1.4

The objectives of this SWMP are to demonstrate that stormwater water runoff within the site confines will be effectively and sustainably managed using City of Calgary¹, Rocky View County², and Province of Alberta³ stormwater management techniques and best practice guidance (where applicable).

The underlying principles of this assessment are:

- 1) To ensure that storm water generated by incident rainfall on the site (and its immediate surrounds) is managed to prevent a potential increase in flood risk downstream in the catchment and maintain 'dry' working areas.
- 2) To provide suitable stormwater quality treatment to prevent potential pollution of the underlying aguifer and surface water bodies within the catchment.
- 3) To provide a passive or, gravity stormwater management system that does not require routine pumping.
- 4) To achieve separation of 'clean' (i.e., stormwater runoff from unworked land) and potentially 'dirty' (i.e., runoff from overburden tips) stormwater runoff where practically possible.
- 5) To provide stormwater management measures, which can be incorporated into the site development to prevent operational areas being impacted by stormwater runoff.

³ Alberta Environmental Protection (1999). Stormwater Management Guidelines for the Province of Alberta, January 1999.

¹ The City of Calgary Water Resources (2011) Stormwater Management & Design Manual, September 2011.

² Rocky View County (2013). County Servicing Standards, Section 700, May 2013.

2.0 STORMWATER MANAGEMENT PLAN

2.1 Strategy Overview

The stormwater management strategy will be implemented over six Surface Water Management Phases and the proposed strategy for each phase is presented on Figures 3A to 3F. Generally, the surface water management measures for each phase are similar and entail the following where applicable:

- Install perimeter (grassed / lightly vegetated) ditches (swales) at the outer foot of the screening berms / overburden stockpiles to route 'dirty' runoff (initial treatment) from the mounds to appropriately sized settlement / attenuation ponds (secondary treatment). Shallower longitudinal gradients in the swales would encourage longer residence times, lower velocities and thus improve treatment effectiveness. The perimeter ditches are identified with blue dashed lines and the ponds as blue rectangles on Figure 2 and Figures 3A to 3F.
- A locally created sump excavated into the underlying sands and gravels accepts the 'treated' outflow from the pond where the runoff will locally form groundwater recharge (via infiltration through the sands and gravels thus providing a tertiary level of surface water treatment) and reduction in surface water volumes. Sumps are to be connected to the outer settlement ponds by a culvert/pipe beneath the perimeter berm. The infiltration sumps are identified as magenta squares on Figure 2 and Figures 3A to 3F.
- Interception ditches are proposed upslope of the Surface Water Management Phases to prevent stormwater runoff from the up-gradient catchment entering the extraction areas. This water is considered 'clean' and therefore does not require treatment; instead, it is routed around the Surface Water Management Phases via diversion ditches and allowed to disperse overland (via a series of shallow excavated diffusion channels). This provides hydrological continuity between the upslope and downslope of the relevant Surface Water Management Phases. The diversion ditches are identified with orange dashed lines on Figures 3A to 3F.
- A temporary locally created sump excavated within the extraction area to collect clean runoff upslope of the Surface Water Management Phases during the development of Phases 2, 3 and 4 (see orange square on Figures 3B to 3D). Prior to Phase 4 extraction, the temporary sump will also collect water from Pond C during the Phase 3 extraction operation (Figure 3C). The temporary sump is to be located in a low topographic spot within the extraction area and is required due to topographic constraints that impede gravity flow of clean water away from the extraction area (see direction of diversion ditches discharging to the temporary sump). Water collected in the temporary sump will be infiltrated back into the ground.

2.2 Design Criteria

All stormwater management features (i.e., swales, settlement ponds and discharge sumps) are sized to the 1:100 year storm event as required by Provincial / County guidance. The stormwater management elements are sized using the rainfall intensities for varying storm durations taken from the IDF Graph.

With regards to swale design the application of the recommended 'Unit Area Release Rate Method' enables the peak runoff to be determined by incorporation of a conservative unit release rate = 90 l/s/ha (City of Calgary Stormwater Management & Design Manual). Freeboard allowances are incorporated into the outline design to provide snowmelt offsetting.

For the attenuation / settlement pond design, to achieve acceptable sedimentation the target velocity and particle size range for wet ponds is $2.8 \times 10^{-4} \, \text{m/s}$ and $20-50 \, \text{µm}$, respectively (City of Calgary Stormwater Management & Design Manual). The outflow rate (m³/s) and surface area (m²) are determined from application of this minimum settlement velocity. The pond volume is determined by accommodating the stormwater runoff volume from its receiving catchment for the 1:100 year 24-hour storm event and is designed to maintain a 300 mm freeboard above this design storm event. The pond catchment areas are shown on Figure 2.

The sump(s) within the sands / gravel horizon are also sized to accommodate a 1:100 year 24-hour outflow hydrograph from the associated settlement pond (i.e., the design storm event) plus incident rainfall onto the extraction area. A proposed 300 mm freeboard is also recommended for the outline sump design. The hydraulic conductivity of the sands and gravels governs the rate of infiltration rate (i.e., discharge rate) into the sand and gravels and the lower in-situ permeability of 1 x 10⁻⁴ m/s is applied to adopt a conservative approach.

With respect to snowmelt contributions to stormwater runoff, this is inherently difficult to accurately quantify as recognized by the Alberta Stormwater Management Guidelines (Section 4.4.5 of the guidelines). Furthermore, review of the City of Calgary Stormwater Management & Design Manual and Rocky View Servicing Standards confirms that the design criteria for storage features is a 1:100 year (24 hour) storm (no detailed quantitative assessment of snowmelt appears to be required). Notwithstanding, a minimum freeboard allowance of 0.1 m on top of the 1:100 year 24-hour event have been incorporated into the outline design of the stormwater management features to provide additional conveyance capacity as a contingency for potential snowmelt contributions to site runoff.

Snow accumulations must be appropriately managed by site operatives to ensure the operational efficiency of the proposed SWMP is maintained where possible. This includes avoiding localized large snow piles along draining to only one ditch rather than making use of the network of ditches, and timely removal of snow and/or ice accumulation in the ditches as required to maintain conveyance capacity.

All stormwater management features are to be unlined as it is anticipated that the surficial till (clay) has sufficient stability and cohesive properties to facilitate the excavations. However, if liners are deemed to be necessary for particular features / reasons, this can be incorporated at the discretion of the developer. In any case, all features are to be grassed to enable filtration, reduce sediment transfer and enhance stability. The appropriate stormwater management elements will be constructed prior to commencement of the relevant excavations to enable establishment of the grass and their construction specifications verified before accepting the design flows.

2.3 Surface Water Quality

To account for the sensitive nature of the surrounding water environment, the proposed SWMP offers three stages of surface water quality treatment for stormwater runoff shed from overburden areas:

Stage 1	Filtration / aeration / biological interaction through conveyance of water in proposed surface water ditches.
Stage 2	Suspended solid settlement and further biological interaction within settlement / attenuation ponds. Residence time within the pond encourages settlement and is provided via appropriate hydraulic design (to achieve minimum settlement velocities).
Stage 3	Infiltration through the sands and gravels before entering the groundwater

Plant areas located within the site should be developed with appropriate cross-falls to allow immediate positive drainage to proposed ditches. Surface water drainage from the site plant areas will be passed through an oil interceptor before discharging into receiving ditches.

2.4 Surface Water Runoff

2.4.1 Outside Extraction Areas

Surface water runoff from the overburden storage and screening areas (and the local up-gradient catchment where applicable) will be attenuated via settlement ponds designed to achieve appropriate sedimentation with a target velocity of 2.8 x 10⁻⁴ m/s taken from the City of Calgary Stormwater Management & Design Manual.

2.4.2 Within Sand and Gravel Extraction Areas

Each cell will be excavated first through the glacial till, which will be stockpiled, and then into the target sand and gravel. Incident rainfall onto the extraction areas within the glacial till horizon would need to be locally managed (due to limited permeability / infiltration capacity of the till) via integrating an appropriate cross fall within the base of the working area (i.e. 1% to 2%) to convey rainfall to a dedicated sump with proposed minimum dimensions of $[5 \text{ m (W) x 5 m (L) x 1 m (D)}] = 25 \text{ m}^3$. Each quadrant will be worked via individual cells with a maximum of approximately four cells 'open' at any given time. Numerical analysis (for the design 1:100 year 24-hour storm event) confirms limited accumulation of runoff within the extraction areas (maximum of $4 \text{ x cells} = 40,000 \text{ m}^2$). The spread over the extraction base area is equivalent to <0.001 m of water depth during the storm event. It is also noted that the exposure of the till during excavations will be temporary until the underlying sands and gravels are reached.

Once the excavation enters the sand and gravel, incident rainfall (for the design 1:100 year 24-hour storm event) is readily infiltrated thus no management of precipitation within the extraction areas is required.

The aggregate extraction is dry i.e., groundwater will not be encountered. Taking the above into consideration, no regular requirement for dewatering the extraction areas via pumping is anticipated. However, in the event that groundwater is unexpectedly encountered it is recommended that extraction be limited in that area and the floor of the excavation area be raised for subsequent extraction. Given the flexible extent of the extraction area, no emergency pumping is deemed necessary.

2.5 Outline Design of Stormwater Management Features

The following subsections outline the hydraulic design for the proposed stormwater management elements.

2.5.1 Swales

A standard swale size is proposed for the development and has been determined by analyzing the swale with the largest contributing catchment area and shallowest longitudinal gradients.

Using the design criteria outlined in Section 2.2 the rate of runoff is determined by the Unit Area Release Rate Method:

$$Q = UARR \times A$$

Where: Q = Peak Runoff Rate (I/s)

UARR = Unit Area Release Rate (I/s/ha)

A = Catchment Area (ha)

Adoption of a higher UARR (i.e., 90 l/s/ha for this assessment) ensures a conservative approach to the swale hydraulic design. Table 1 summarizes the peak flow calculation for the swale with the largest catchment (corresponds to the Phase 2 north diversion ditch shown on Figure 3B).

Table 1 Swale Peak Flow Calculations

Parameter	ID	Unit	Value	Notes
Unit Area Release Rate	UARR	I/s/ha	90	The top end figure within the 'higher release rate' category as defined in the City of Calgary Stormwater Management & Design Manual for areas of moderate slopes where surface ponding storage is limited
Catchment Area	А	ha	27.33	Measured from AutoCAD development plans for the Phase 2 north diversion ditch shown on Figure 3B
Calculated Peak Flow	Q	m³/s	2.46	Standard swale design is sized to accommodate this peak flow (plus freeboard allowances to provide offsetting of snowmelt contributions)

The channel geometry required to convey the anticipated peak flow has been determined through application of Manning's Equation. The Manning's 'n' coefficient of the swales, established from experience and referenced to respected literature⁴, has been estimated to be 0.033. The proposed geometry is as follows:

Base Width = 0.750 m Base to Top of Bank = 0.750 m

Side Slopes = 1 vertical to 2 horizontal

Minimum Longitudinal Gradient = 1% Total Swale Top Width = 3.75 m

The proposed standardized swale design has sufficient capacity for all proposed swales within the stormwater management plan and review of the site contour data (2 m LiDAR) confirms that all ditches have an average longitudinal gradient >1% (thus the design capacity of the swales in practice will be >2.82 m³/s given the proposed swale depth of 0.750 m).

⁴ Chow, V.T. (1959). Open Channel Hydraulics

The following construction and maintenance measures should be included in the design of the swales:

- Swales should be grassed to promote filtration and treatment of intercepted runoff whilst also providing stability integrity.
- Where acute bends within the alignment of swales are required, erosion protection measures (i.e., rip-rap or gravel) should be provided to prevent erosion of the swale.
- Erosion protection (i.e., rip-rap or gravel) should be provided for point discharges into / from swales to prevent erosion.
- Routine / inspection to ensure optimum operation efficiency a potential maintenance strategy is outlined in Section 3.3.

2.5.2 Settlement Ponds

A total of three settlement / attenuation ponds will be constructed, Ponds A, B and C as depicted on Figures 3A to 3F. The exact positions of these will be determined by site management; however, the general location should be maintained as they are dictated by the surrounding topography and remove any requirement for pumping (i.e., ponds are located at low topographic points to allow for gravity drainage).

2.5.2.1 Storm Event Management

Using the design criteria specified in Section 2.2, the ponds are designed to accommodate a 1:100 year 24-hour storm event (as required by City of Calgary and Rocky View County Guidance) whilst also maintaining sufficient surface areas to facilitate sedimentation. The runoff generated from the storm event has been calculated using industry recognized SWMM software developed by the United States Environmental Protection Agency (Version 5.1, U.S. EPA, 2015). The City of Calgary Stormwater Management & Design Manual recommends using EPA SWMM in the design of dual (minor and major) drainage systems. Minor systems are typically flow conveyance structures such as ditches, whereas major systems are typically storage facilities such as ponds. A Chicago temporal distribution⁵ has been applied to formulate the synthetic design storm as per the City of Calgary Stormwater Management & Design Manual. The runoff volumes and peak flows obtained from the modelling are summarized in Table 2. Peak inflow rates range from 0.07 m³/s to 0.18 m³/s. Pond storage required to retain the runoff resulting from the 1:100 year 24-hour storm event range from 1,201 m³ to 2,957 m³.

Table 2 also shows peak flows for the 1:5 year 24-hour storm event, required to evaluate pond geometry requirements for solids settling.

 Table 2
 Design Runoff Volumes for Selected 24-hour Rainfall Events

Parameter	Unit	Pond A	Pond B	Pond C
Catchment Area	ha	4.1	4.1	9.3
Width of Overland Flow Path	m	150	150	300
Average Catchment Surface Slope	%	1	1	1
Percentage of Impervious Area	%	5	5	5
1:5-year 24-hour S	torm Event			
Total Rainfall	mm		52.8	
Total Runoff	mm	3.2	3.2	3.3
Peak Flow	m3/s	0.03	0.03	0.07
1:100-year 24-hou	r Storm Event			
Total Rainfall	mm		94.1	
Total Runoff	mm	30.8	30.6	31.8
Peak Flow	m3/s	0.07	0.07	0.18
Total Runoff Volume	m3	1,201	1,255	2,957

2.5.2.2 Storm Event Management

The ponds are designed to provide a minimum 85% removal of Total Suspended Solids (TSS) for particle sizes greater than, or equal to $50~\mu m$ (City of Calgary Stormwater Management & Design Manual). The settling velocity corresponding to a particle size of $50~\mu m$ for sediment removal is $2.8~x~10^{-4}~m/s$.

The distance required to settle out a certain size of sediment particle is determined by the settling length equation:

Length = $[r Q_p / V_s]^{0.5}$

Where: Length = horizontal settlement length (m)

r = length to width ratio of pond (using 3 for all the three ponds)

 Q_p = peak flow rate corresponding to a 1:5-year event (m³/s)

V_s = settling velocity (dependent on the desired particle size to settle)

Side slopes 3H:1V have been used to determine the pond dimensions. A summary of the settlement ponds hydraulic analysis and pond sizing is provided in Table 3.

 Table 3
 Summary of Settlement Ponds Hydraulic Analysis

Category	Parameter	Unit	Pond A	Pond B	Pond C	Notes
	Active Pond Depth	m	1	1	1	Active depth and vertical distance between pipe outlet invert and 1:100-year design water level
	Proposed Minimum Permanent Depth	m	2	2	2	A minimum depth from the pond bottom to pipe outlet invert (normal water level) must be 2.0 m.
	Freeboard Above HWL	m	0.35	0.35	0.35	A minimum freeboard of 0.30 m is required.
Pond Depth,	Proposed Total Water Depth	m	3	3	3	Permanent pond depth plus active pond depth from the pond bottom to the design water level
Width and Length	Pond Dimensions (L x W)	m	66 x 22	70 x 23	104 x 34	A Minimum Length (L) to Width (W) ratio 3:1, providing maximum settlement length
	Pond Surface Area	m3	1,452	1,615	3,543	Assuming pond with rectangle shape, pond top surface area is Length (L) by Width (W)
	Modelled Water Depths	m	0.92	0.92	0.93	1:100 Year modelled stormwater depth above pipe outlet invert (normal water level)
	Pond Side Slopes	-		3H:1V		Assumed slope for pond sizing purposes
Volume	Total Permanent Pond Volume	m³	1,924	2,020	5,242	Extracted from pond hydraulic
	Total Available Pond Treatment Volume	m³	1,312	1,384	3,197	calculation

Category	Parameter	Unit	Pond A	Pond B	Pond C	Notes	
	Modelled Required Volume of Stormwater Attenuation	m³	1,201	1,255	2,957	Total runoff volume of 1:100-year 24- hour storm event	
	Active Storage Detention Time	hr		24		Acceptable decign criteria as nor City	
	85% Removal of Particle Size	μm		20 – 50		Acceptable design criteria as per City of Calgary Stormwater Management & Design Manual (2011)	
Settlement	Settling Velocity	m/s	2.83 × 10 ⁻⁴				
Removal	1:5-year Peak Flow	m³/s	0.03	0.03	0.07	Extracted result from model simulations	
	Required Settling Length	m	17.8	18.0	27.5	Settling Calculations as per equation of City of Calgary Stormwater Management & Design Manual (2011)	
Outflow Pipe (for discharge to infiltration sump)	Outflow Pipe Diameter	mm	450	450	600	Minimum Slope versus Pipe Size as per City of Calgary Stormwater Management & Design Manual (2011)	
	Modelled Pipe Outflow	m³/s	0.37	0.39	0.44	Extracted results from model	
	Modelled Pipe Outflow Velocity	m/s	1.07	1.08	1.34	simulations	

The required settlement lengths (i.e., 17.8 m to 27.5 m in Table 3) are much shorter than the proposed pond lengths (i.e., 66 m to 104 m in Table 3), which are required to meet the storage volumes needed to contain the runoff resulting from the 1:100 year 24-hour storm event.

It is worth noting that the excavated material resulting from the pond excavations can be integrated into the perimeter screening berms. Appropriate stormwater pond signage must be erected as described in Section 709 of the Rocky View County Servicing Standards Guidelines.

Pond inflow and outflow pipes will be fitted with a manual penstock valve to facilitate maintenance and to manually manage conveyance of water in the SWMP if required. The pond inlet and outlets are located at opposite ends to ensure maximum settlement potential. In order to maintain optimum pond efficiency, it is imperative that periodic / regular maintenance is undertaken as described in Section 3.4.

2.5.3 Groundwater Recharge / Discharge Sumps

Discharge sumps (Sump A, B and C) are required to discharge treated surface water runoff to unsaturated deposits of sand and gravel.

Figures 3A to 3F indicate the locations of the sumps; however, the exact positioning of these will be determined by site management. Nonetheless, the general siting location will be maintained as they are dictated by the location of the settlement ponds and perimeter swales.

As with the settlement ponds, the sumps will remain operational for the duration of the entire development (from commissioning as per the appropriate Surface Water Management Phases). Pond and sumps will be located within the perimeter screening area and thus the relevant standoff distances will be maintained.

Like the first two stages of the stormwater management plan, which have been sized to accommodate the 1:100-year storm event, the sump design has adopted the same standard to ensure collected surface water is adequately controlled. The hydrological inputs to the sumps are the outflow hydrographs from the respective settlement / attenuation ponds and incident rainfall landing within the sump footprint.

The maximum infiltration rate from the sump into sands and gravels will be controlled by the in-situ hydraulic conductivity of 1×10^{-4} m/s (lower end of the measured range of hydraulic conductivity was selected – see Section 1.3.2). The time taken for the inflow hydrograph from the design rainfall event into the sump to half drain is less than 24 hours. Therefore, the system has half drained within a day and thus provides some residual capacity in case there is another rainfall event the next day.

A standard sump outline design has been derived for all three sumps and a summary of the proposed sump dimensions is presented in Table 4.

It is recommended that the following design considerations are taken into account:

- A minimum 0.5 m depth earth berm (and appropriate fencing) around the sump opening for safety precautions and to prevent direct (potentially dirty) runoff entering the sump.
- Appropriate signage must be erected as described in Section 709 of the Rocky View Servicing Standards Guidelines and tailored accordingly for the sump.
- Any other safety considerations to be implemented as required by site management / Health & Safety legislation.
- Grass seeding of the sump embankment to improve stability, reduce siltation of the sand and gravel layer and provide filtration of resulting from runoff from the sump slopes.
- Suitable erosion protection (i.e. erosion control blanket / rip-rap) to be provided down the sump slope from culvert outfall to base in order to prevent scour and erosion into the sump embankment.
- Suitable side slopes from a stability perspective must be defined by a qualified geotechnical engineer for detailed design of the sumps.
- A 5 m standoff to swales / perimeter berm and other any other constraining features to provide access for maintenance or for raising berm heights should future weather conditions indicate a need for more freeboard.
- Regular / periodic maintenance should be undertaken to maintain optimum sump efficiency (typical maintenance requirements are outlined in Section 3.4).

Table 4 Summary of Sumps Sizing

Parameter	Unit	Sump A	Sump B	Sump C	Notes	
Base Dimensions	m	8.0 x 9.0	8.0 x 9.0	8.0 x 9.0		
Minimum Base Area	m ²	72	72	72		
Assumed Side Slopes	1 in X	2	2	2	Dranged (natantial) standardized	
Surface Area Footprint	m ²	1,056	1,056	1,056	Proposed (potential) standardized sump design	
Total Sump Depth	m	6.0	6.0	6.0		
Total Available Sump Volume	m³	3,384	3,384	3,384		
Maximum Water Depth	m	3.8	3.9	5.7	Pond outflow hydrograph retained within sump volume	
Freeboard Depth	m	2.204	2.125	0.332	300 mm freeboard provided	
Maximum Volume of Water Storage in Sump	m³	1,201	1,255	2,957	Confirms freeboard capacity is available to provide offsetting of snowmelt contributions	

3.0 MAINTENANCE AND OPERATIONAL REQUIREMENTS

3.1 Overview

All stormwater drainage features associated with the development will remain under private ownership and will be maintained and operated by Mountain Ash.

The following sections outline recommended maintenance requirements for various aspects of the surface water management system. If necessary, and once the site is in operation, these outlined maintenance and management proposals will be refined by the operators to suit specific conditions / requirements.

3.2 Pipe Systems / Culverts

The anticipated maintenance and management plan for culverts / pipes within the SWMP is outlined in Table 5.

 Table 5
 Typical Pipe/ Culvert Maintenance Requirements

Maintenance Schedule	Required Action	Minimum Frequency
Regular	Ensure pipe intakes / outlets are clear of debris/silt.	Monthly (or as required)
Maintenance	Jet wash any sediment accumulations in manholes (within the site 'plant' area) and remove any debris.	Monthly (or as required)
Intermittent maintenance	CCTV survey of inaccessible culverts / pipes to identify any defects/signs of performance degradation such as: Cracked/deteriorating pipe; Leaking joints/seals at manholes; Pipe settling and potential structural failure; High water lines showing regular high stage in pipes (sign of lack of capacity or downstream constraint); and Suspected infiltration or exfiltration.	Every 2 – 5 years
Seasonal Maintenance	During winter months pipes / culverts should be kept clear of ice / snow accumulations via appropriate methods (such as steaming).	Winter
Remedial actions	Repair defects using suitable methods. Effective temporary repairs may be sufficient in short term until scheduled improvements can be made.	As required
Monitoring	Record areas of surface ponding and manhole / culvert surcharging (photos, inundated areas, depths) during extreme storm events and investigate the reasoning for this post-storm.	As required

3.3 Swales

The proposed surface water management scheme uses linear swales to convey intercepted stormwater to settlement ponds. A potential maintenance and management plan for these features is outlined in Table 6.

 Table 6
 Typical Swale Operation and Maintenance Requirements

Maintenance Schedule	Required Action	Minimum Frequency
	Litter, debris, and leaf removal.	Every 2 Months (or as required)
Regular Maintenance	Grass cutting - to maintain sward to desired height for conveyance / treatment and landscape / ecological benefit.	Every 2 Months (during growing season, or as required)
iviaintenance	Manage other vegetation and remove nuisance plants.	Every 6 Months (at start, or as required)
	Remove silt accumulations within erosion protection rip-rap and inspect/maintain structural integrity.	Every 2 Months (or as required)
Occasional	Check for poor vegetation growth due to lack of sunlight or dropping of leaf litter and cut back adjacent vegetation where possible.	Annually
Maintenance	Re-seed area of poor vegetation growth. Alter plant types to better suit conditions, if required.	Annually, or if bare soil is exposed over 10% or more of the swale treatment area
	Repair of erosion or other damage by re-turning or re-seeding and providing subsequent erosion protection measures (such as stone rip-rap) if problems persist.	As required
Remedial Actions	Re-level uneven surfaces and reinstate design levels.	As required
	Scarify and spike topsoil layer to improve infiltration performance, break up silt deposits and prevent compaction of soil surface.	As required
	Inspect erosion protection measures (grass/rip-rap) and record/establish remediation frequencies and requirements (de-silting, structural integrity, etc.)	Every 2 Months
Monitoring	Inspect infiltration surfaces for ponding, compaction, silt accumulation. Records areas where water is ponding for more than 48 hours.	Every 2 Months (or as required)
	Inspect silt accumulation rates and establish appropriate removal frequencies.	Every 6 Months

3.4 Settlement Ponds / Sumps

The proposed surface water management scheme utilizes stormwater settlement / attenuation ponds and sumps whose operational efficiency is critical in the management of stormwater associated with the development.

Therefore, anticipated maintenance requirements and management for the settlement ponds / sumps and their hydraulic control features are outlined in Table 7.

 Table 7
 Typical Attenuation Pond / Sump Maintenance Requirements

Maintenance Schedule	Required Action	Minimum Frequency
	Litter and debris removal.	Monthly (or as required)
Regular	Grass cutting to maintain sward to desired height for conveyance/treatment and landscape/ecological benefit.	Monthly during growing season or as required
Maintenance	Manage other vegetation and remove nuisance plants.	Monthly (or as required)
	De-silting of exposed sands and gravel layer at base of sump.	Monthly (or as required)
	Manage submerged and emergent planting.	Annually
Occasional Maintenance	Remove 25% of bank vegetation from water's edge to the pond crest.	Annually
	Tidy all dead growth before start of growing season.	Annually
Intermittent	Remove sediment from one quadrant of the main body of the ponds.	2 – 10 years
Maintenance	Remove sediment from the main body of the ponds when pool volume is reduced by 20%.	2 – 5 years (or as required)
	Repair of erosion or other damage.	As required
Remedial Actions	Aerate pond when signs of eutrophication are detected.	As required
Remedial Actions	Realignment of rip-rap or other damage.	As required
	Repair/rehabilitation of hydraulic inlets and outlets.	As required
Monitoring	Inspect hydraulic structures for evidence of poor operation.	Monthly/after large storms
	Inspect banksides, structures, pipework, etc. for evidence of physical damage.	Monthly/after large storms

Maintenance Schedule	Required Action	Minimum Frequency
	Inspect water body for signs of eutrophication.	Monthly during warm seasons
	Inspect silt accumulation rates and establish appropriate removal frequencies.	Monthly

4.0 CONCLUSIONS

The conclusions of the assessment are as follows:

- The stormwater management assessment herein has been developed to sustainably manage surface water intercepted by or shed from the proposed development.
- Appropriate City, County and Provincial guidance documents relating to stormwater management have been referenced (where appropriate) to inform the assessment.
- A particular emphasis has been placed on surface water quality owing to the potentially 'sensitive' nature of the local water environment. As such, three stages of surface water treatment are proposed before surface water is ultimately discharged to groundwater.
- Excavations and workings are to take place at least 1.0 m above the groundwater table, therefore no dewatering of the sand and gravel unit is proposed.
- All elements of the surface water system have been sized to accommodate the design 1:100 year rainfall storm event. An overall conservative approach has been undertaken by providing freeboard allowances and modelling 'worst case' scenarios.
- Potential maintenance schedules for the stormwater management features have been outlined and their implementation is fundamental to ensure the efficacy of the surface water management system.
- The overall assessment confirms that the proposals to manage stormwater runoff are feasible, sustainable and practical and are appropriate for the duration of the development.

5.0 REFERENCES

Alberta Geological Survey, 1999. Geological Map of Alberta, 1:1,000,000 scale.

Downing, D.J. and Pettapiece, W.W., 2006. *Natural Regions and Subregions of Alberta*. Natural Regions Committee.

Shetsen, I. 1987. Quaternary Geology, Southern Alberta. 1:500,000 scale map. Alberta Research Council SLR Consulting 2020. Hydrogeological Risk Assessment. Report Reference: 212.06650.00003.

Rocky View County (2013). County Servicing Standards

Alberta Environmental Protection (1999). Stormwater Management Guidelines for the Province of Alberta. Environmental Sciences Division

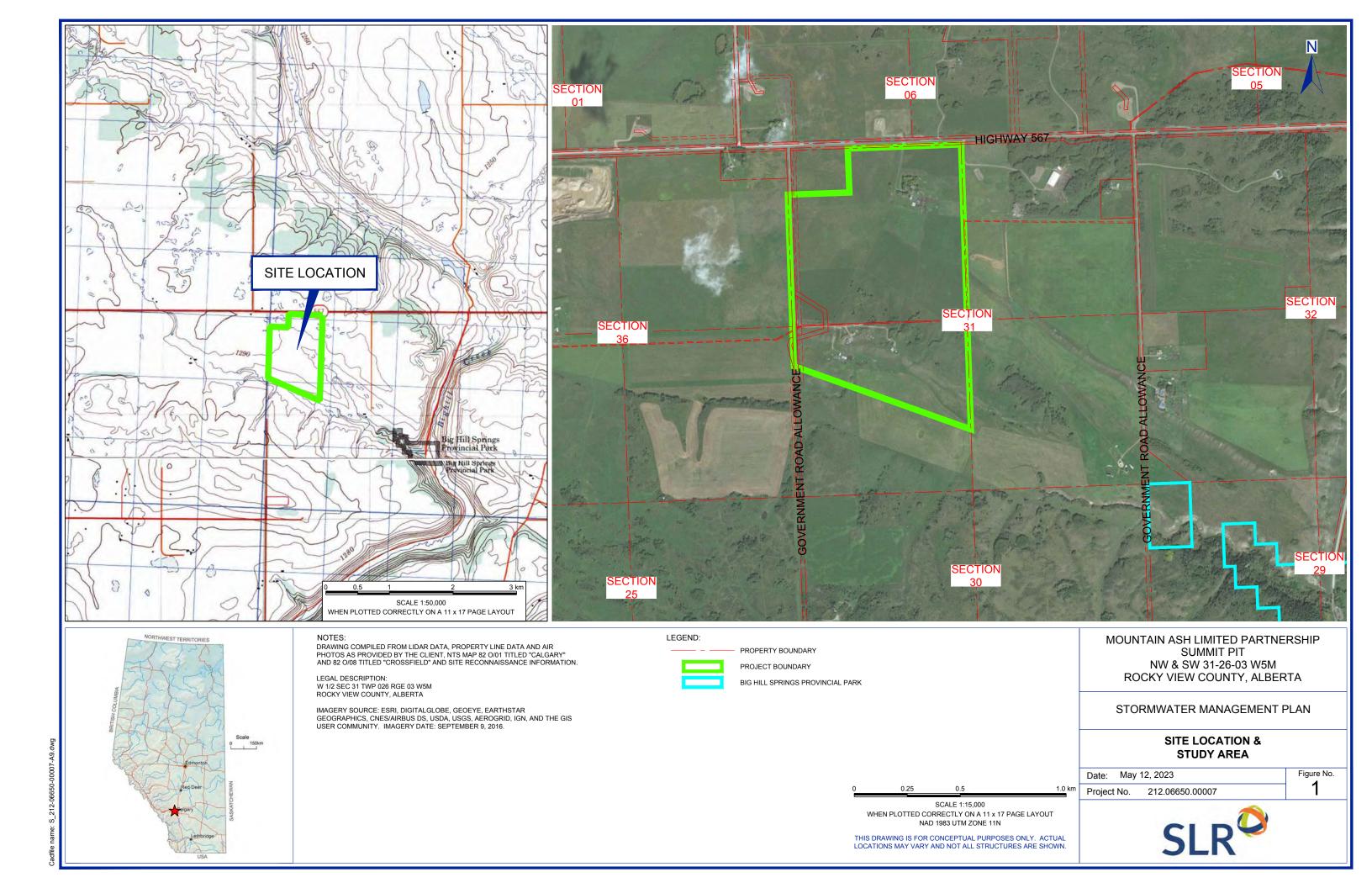
The City of Calgary (2011). Stormwater Management & Design Manual. The City of Calgary Water Resources

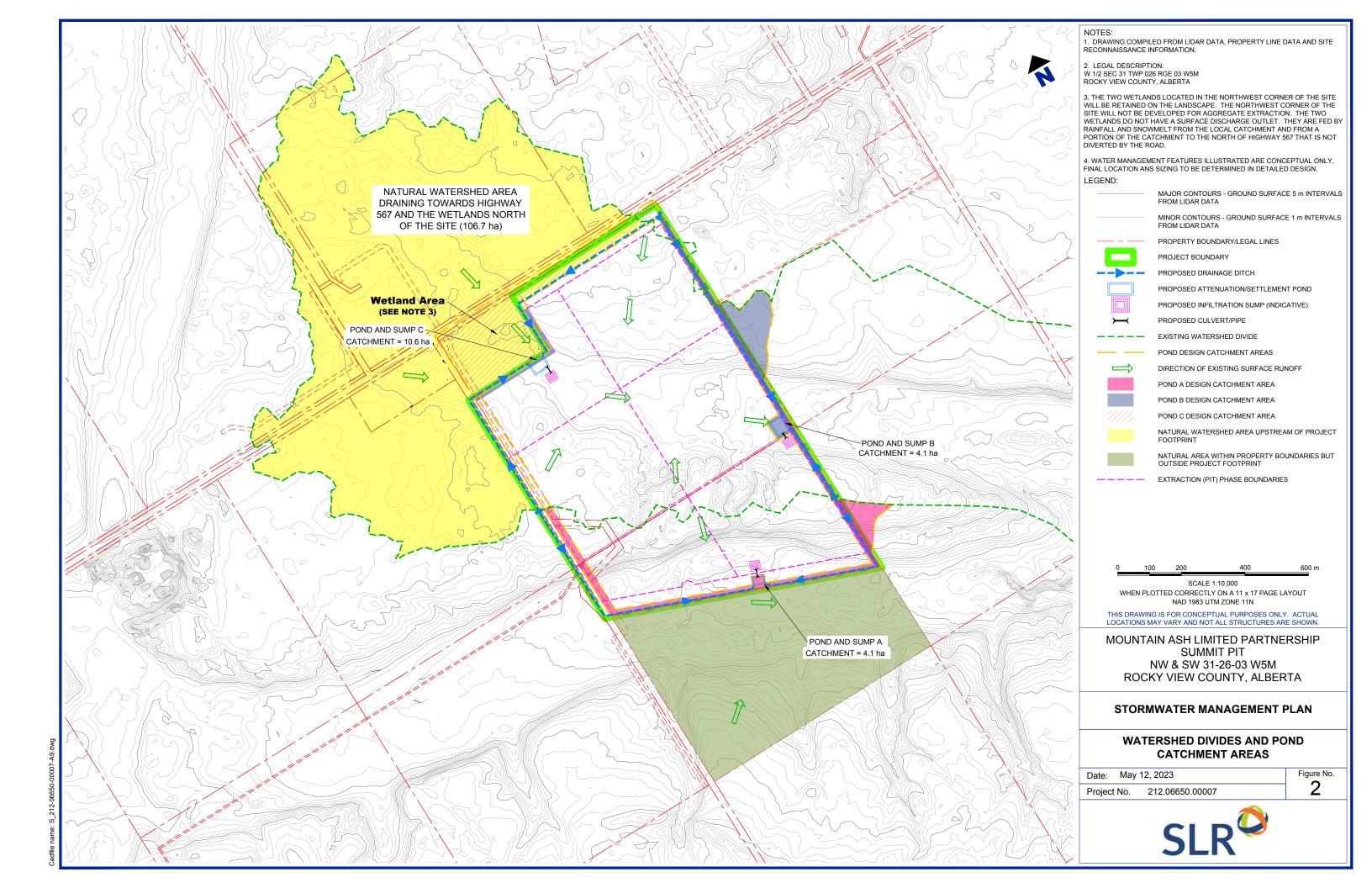
6.0 STATEMENT OF LIMITATIONS

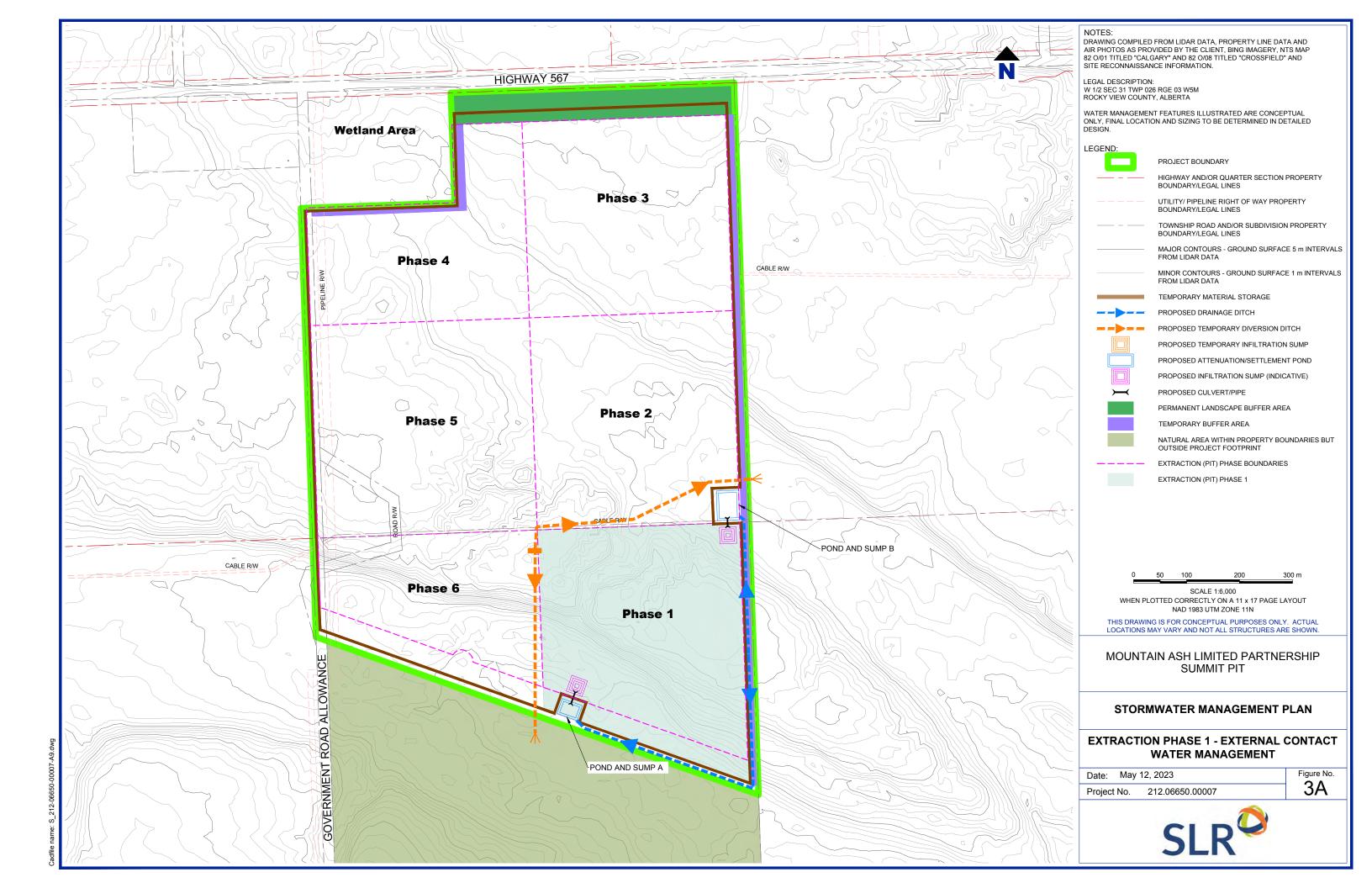
This report has been prepared and the work referred to in this report has been undertaken by SLR for Mountain Ash Limited Partnership., hereafter referred to as the "Client". The report has been prepared in accordance with the Scope of Work and agreement between SLR and the Client. It is intended for the sole and exclusive use of the Client. Other than by the Client and as set out herein, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of SLR.

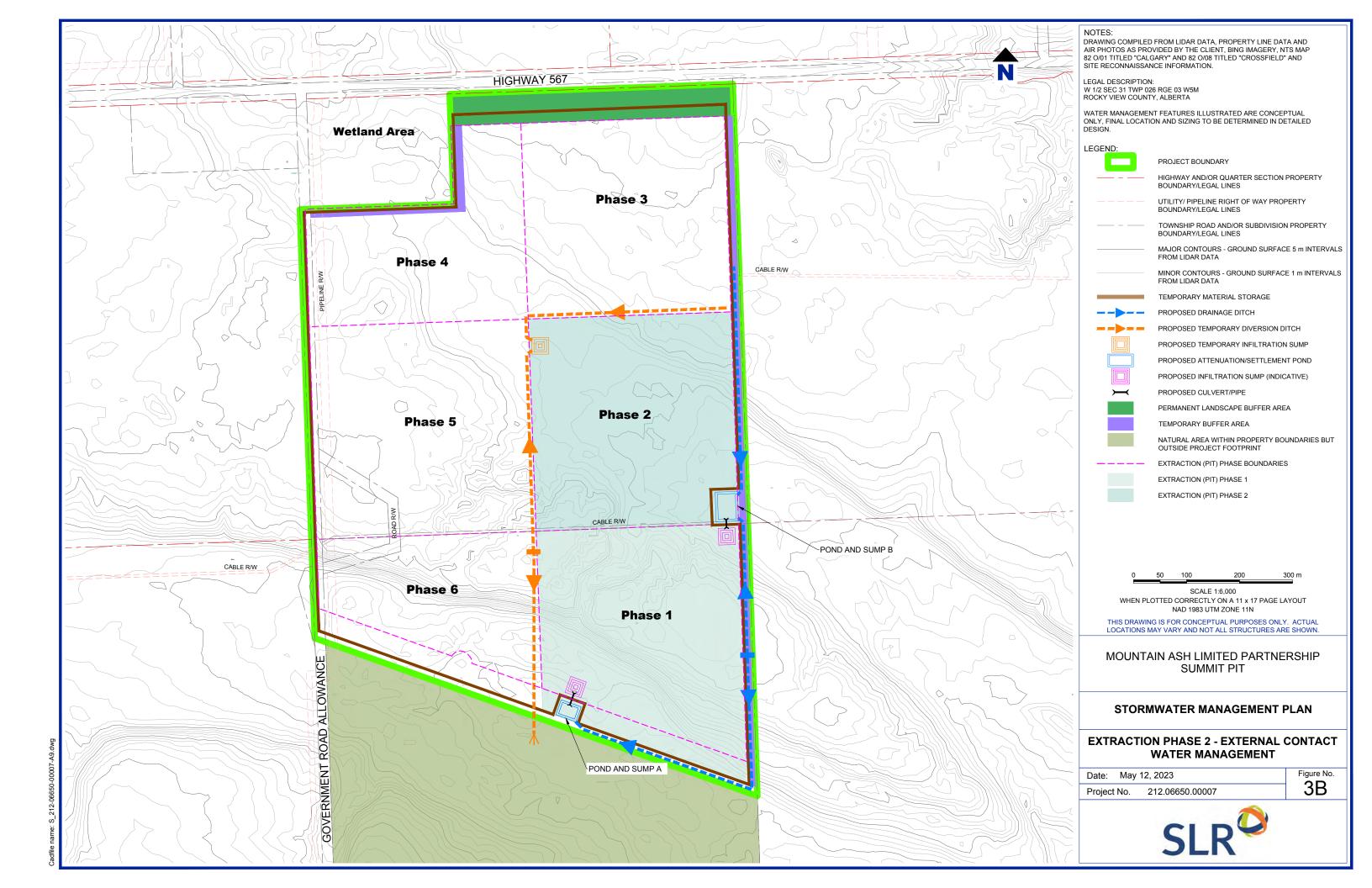
This report has been prepared for specific application to this site and site conditions existing at the time work for the report was completed. Any conclusions or recommendations made in this report reflect SLR's professional opinion.

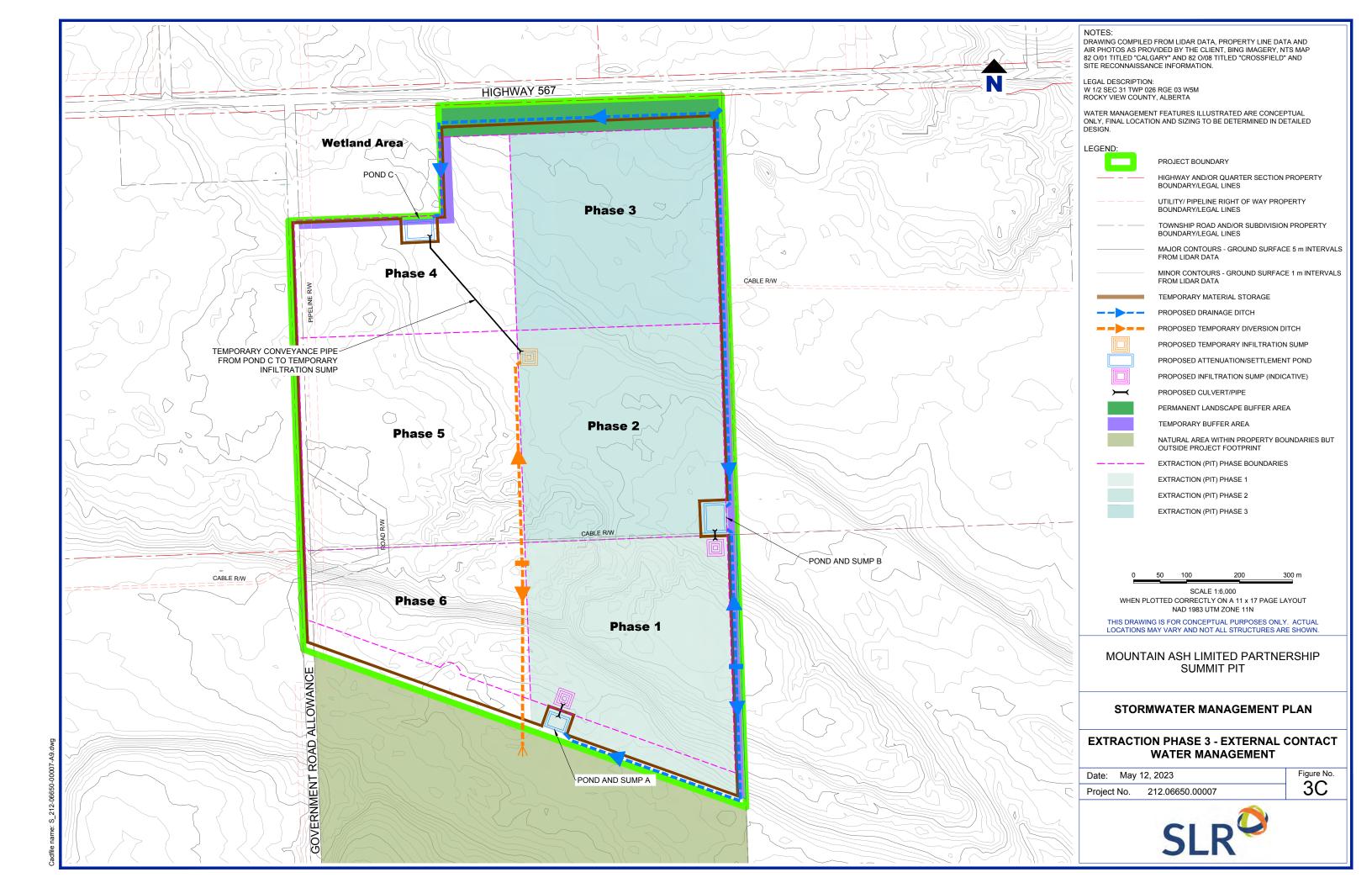
Information contained within this report may have been provided to SLR from third party sources. This information may not have been verified by a third party and/or updated since the date of issuance of the external report and cannot be warranted by SLR. SLR is entitled to rely on the accuracy and completeness of the information provided from third party sources and no obligation to update such information.

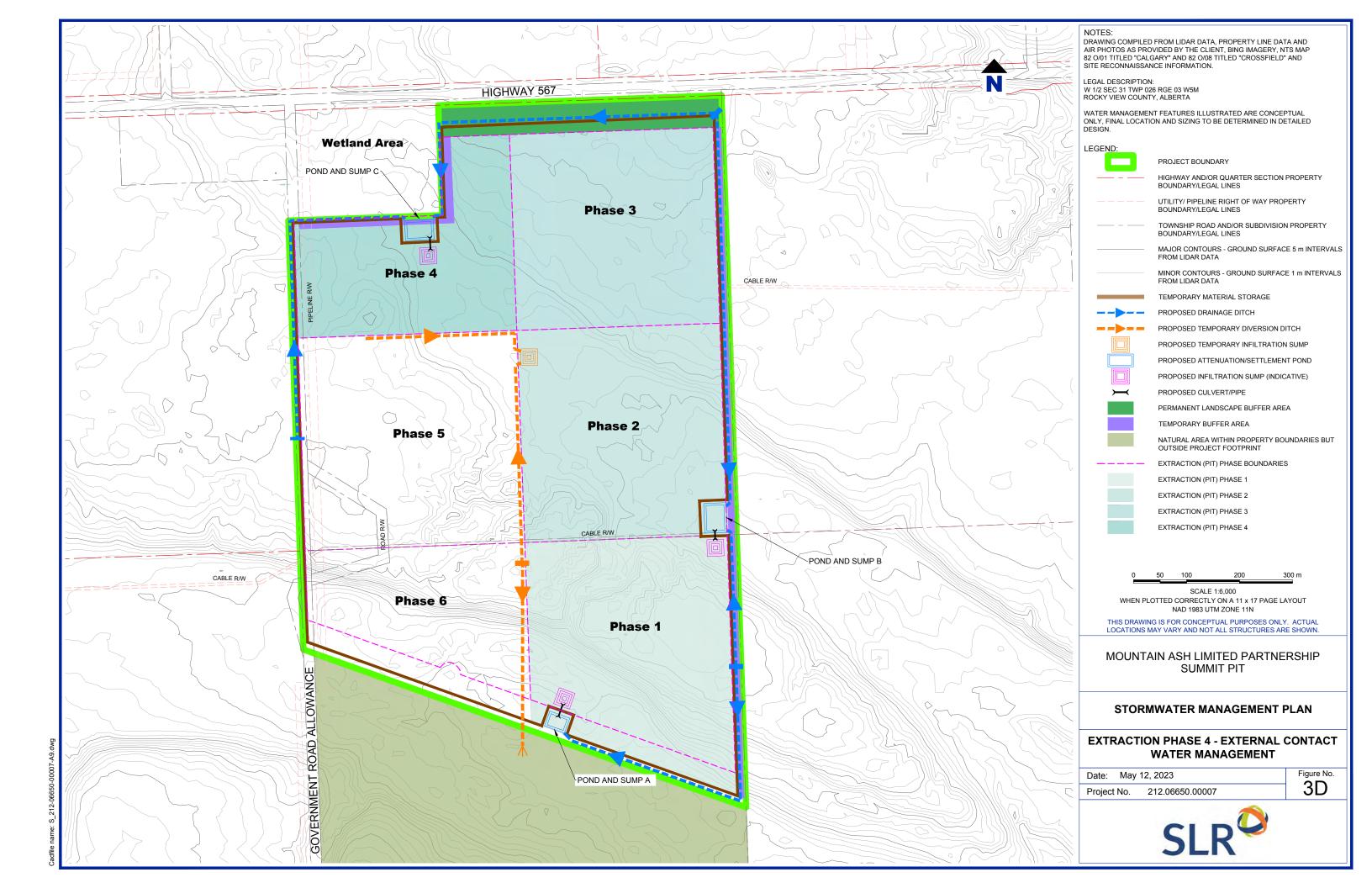

Nothing in this report is intended to constitute or provide a legal opinion. SLR makes no representation as to the requirements of compliance with environmental laws, rules, regulations, or policies established by federal, provincial, or local government bodies. Revisions to the regulatory standards referred to in this report may be expected over time. As a result, modifications to the findings, conclusions, and recommendations in this report may be necessary.

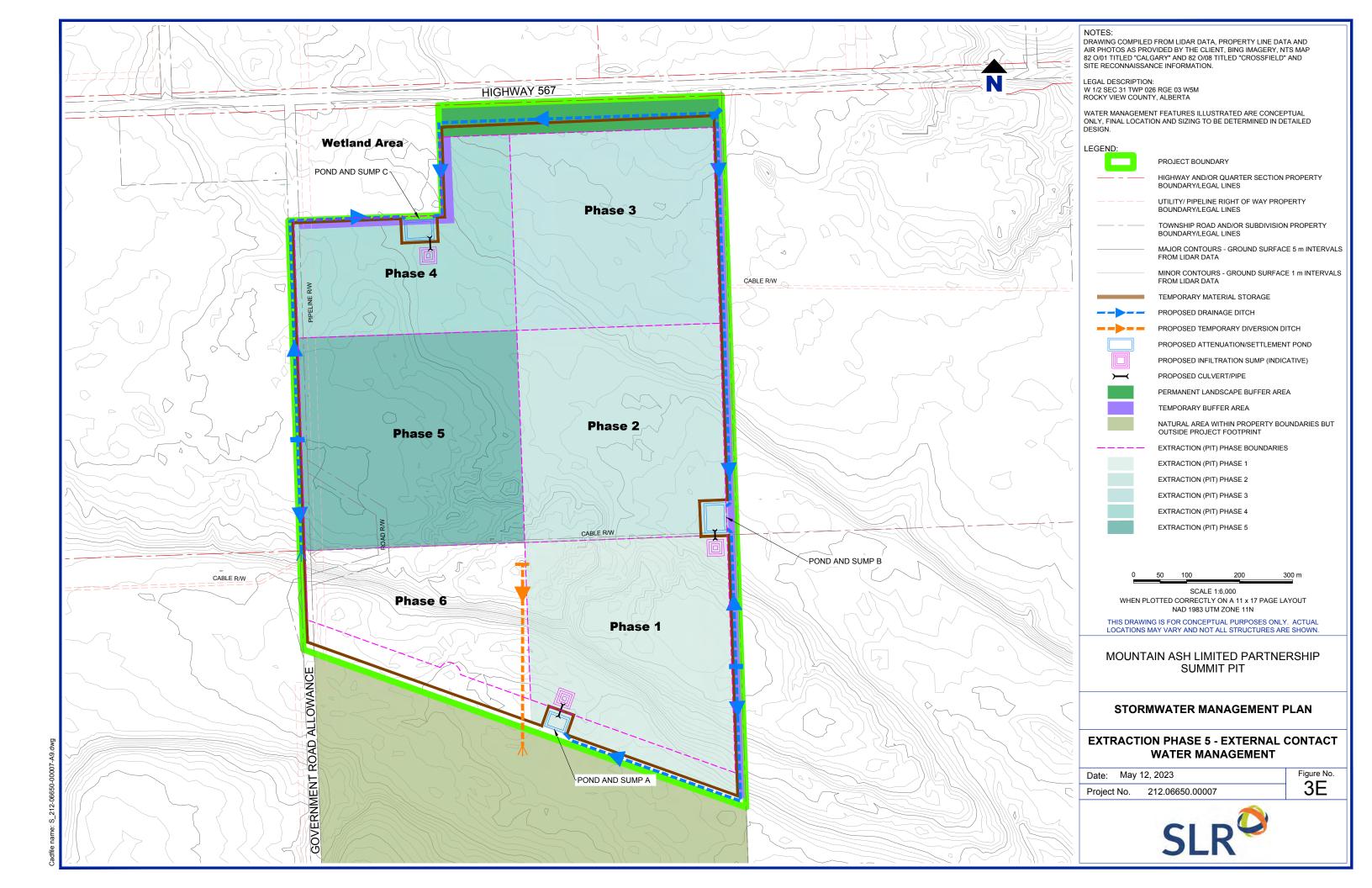


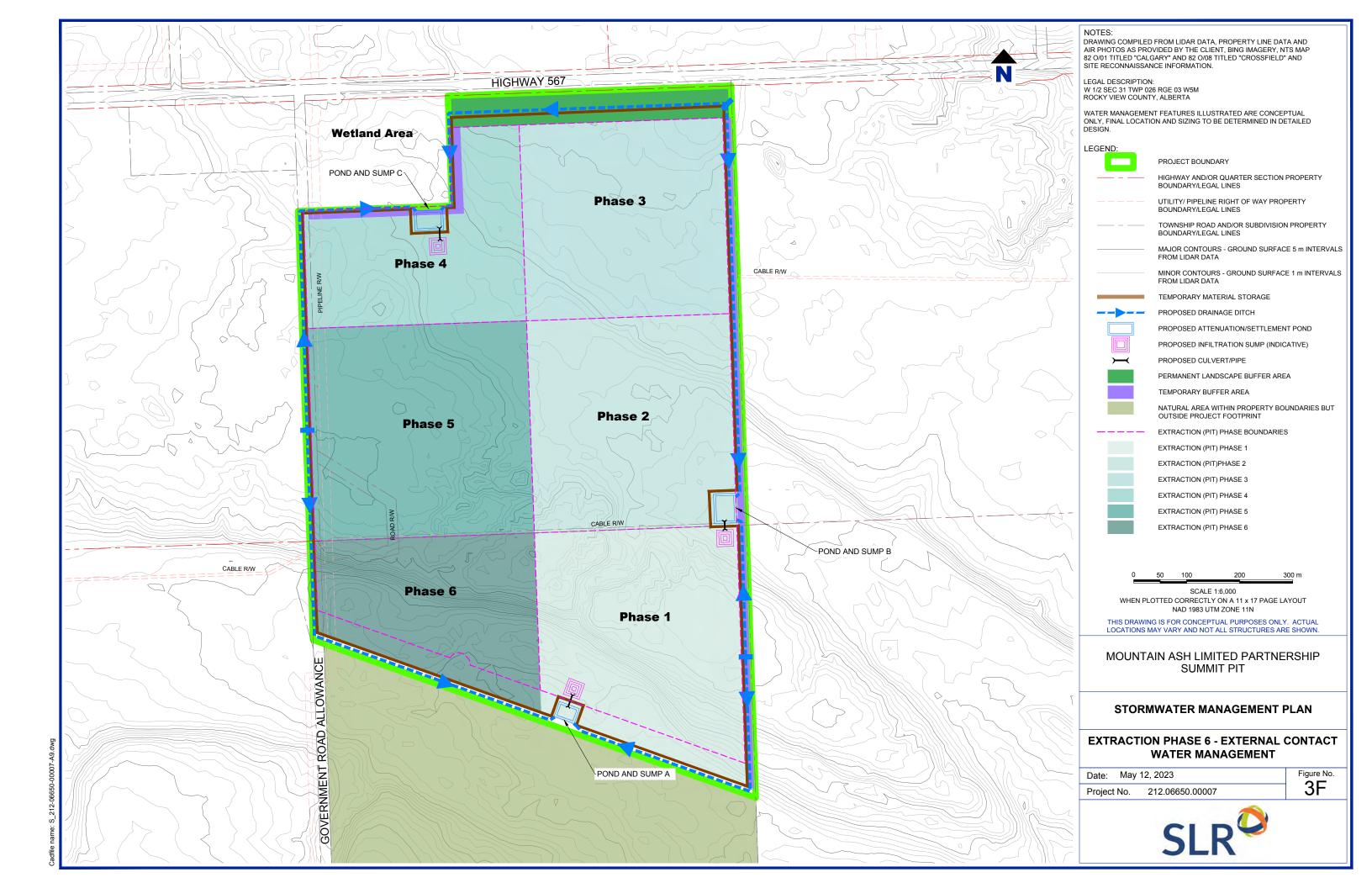

Stormwater Management Plan Mountain Ash Limited Partnership Summit Pit

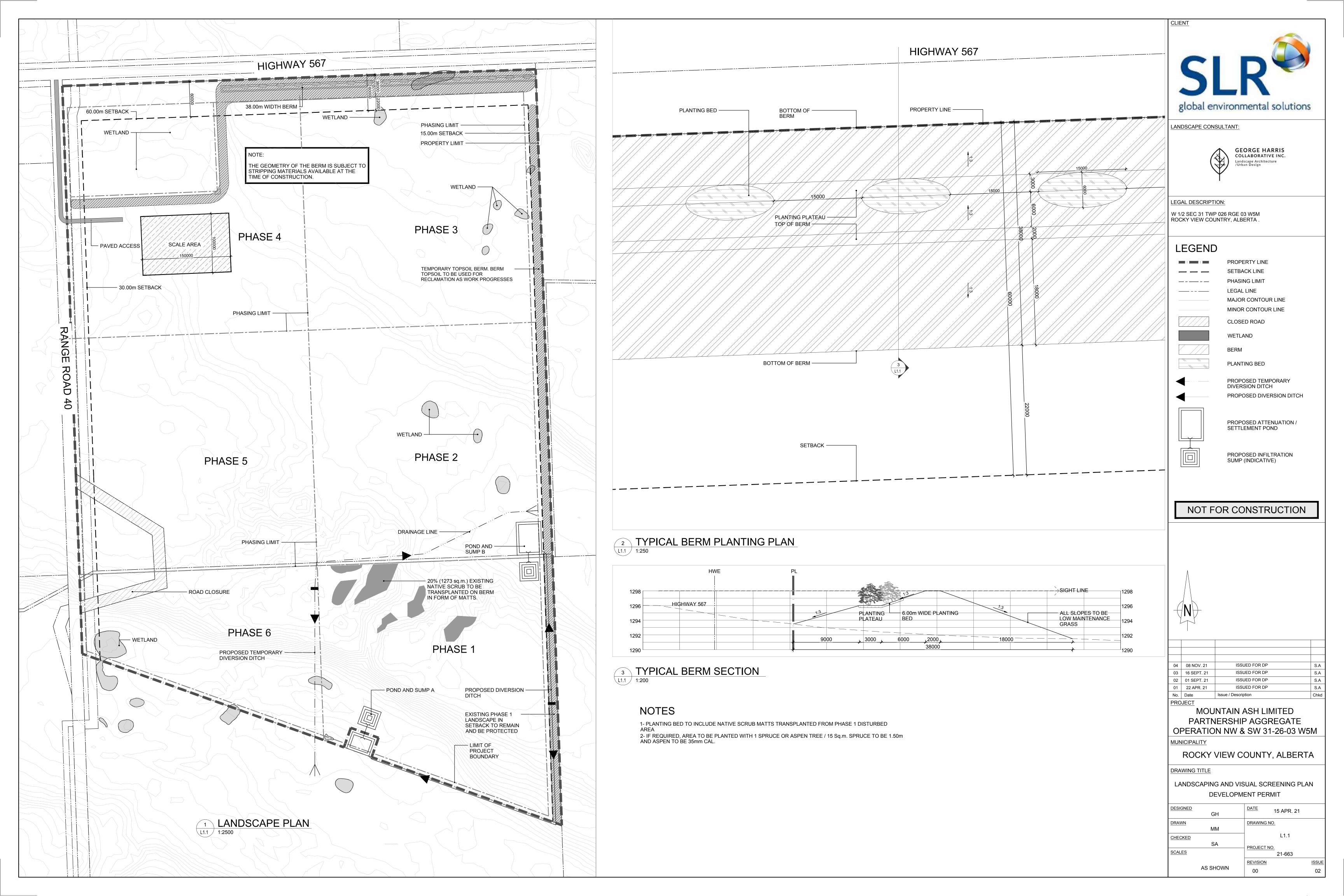

SLR Project No.: 212.06650.00006











Appendix K Landscape and Visual Screening Plan

Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership

SLR Project No: 212.06650.00007/8

Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership

SLR Project No: 212.06650.00007/8

Mountain Ash Limited Partnership Summit Pit

SLR Project No: 212.06650.00006

April 2021

Noise Monitoring Plan

Mountain Ash Limited Partnership Rocky View County, Alberta SLR Project No: 212.06650.00006

Prepared by: SLR Consulting (Canada) Ltd. 200 - 708 11th Ave SW Calgary, Alberta, T2R 0ER

for

Mountain Ash Ltd. Partnership 1945 Briar Crescent NW Calgary, AB, T2N 3V6

April 2021

This document has been prepared by SLR Canada. The material and data in this report were prepared under the supervision and direction of the undersigned.

Prepared by:

Reviewed by:

Dan Clayton, BSc. MIoA. Consultant (Acoustics)

Rick Lauzon, P.Biol., R.P.Bio. Principal Environmental Consultant

Distribution:

1 copy (PDF) – Mountain Ash Limited Partnership

1 copy - SLR Consulting (Canada) Ltd.

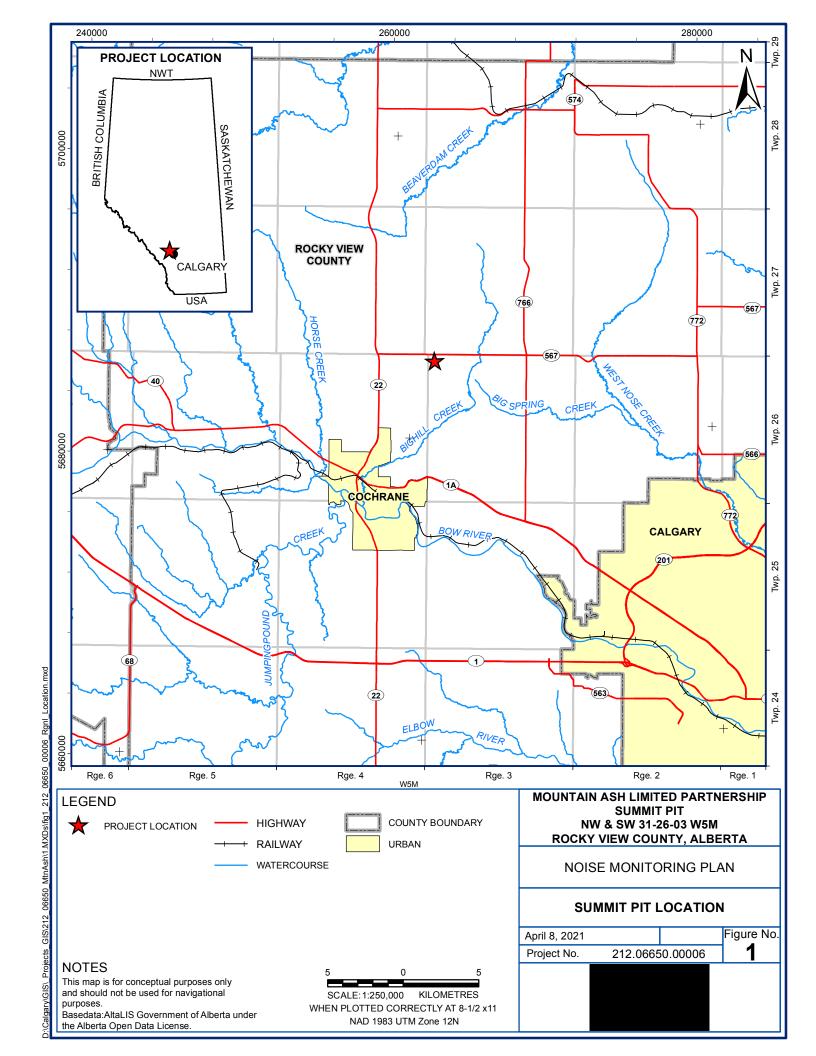
Table of Contents

1.0	INTRO	DDUCTION	1					
2.0	ACOU:	JSTICAL GLOSSARY	3					
3.0	OPERA	DPERATIONS AND EQUIPMENT DETAILS						
	3.1	Site Details						
	3.2	Equipment Details	7					
	3.3	Operating Times	7					
4.0	NOISE	E SENSITIVE RECEPTORS	8					
5.0	BASEL	LINE SOUND LEVEL DATA	10					
6.0	RELEV	VANT GUIDANCE AND CRITERIA METHODOLOGY	10					
7.0	SOUN	ID MONITORING PROGRAM	13					
	7.1	General Sound Monitoring Plan Requirements	13					
	7.2	Instrumentation and Measurement Parameters	13					
	7.3	Sound Monitoring						
	7.4	Monitoring Locations	14					
	7.5	Monitored Sound Level Criteria	14					
8.0	REPOF	RTING	15					
9.0	CONT	INGENCY PROTOCOL	15					
	9.1	Complaints Handling	15					
	9.2	Non-Compliance Response Procedure	15					
10.0	STATE	EMENT OF LIMITATIONS	17					
TA	BLES							
Table	e 1	Typical Sound Sources and Acoustic Environments	5					
Table	2	Equipment Sound Sources	7					
Table	e 3	Site Operating Times	8					
Table	e 4	Noise sensitive receptors	8					
Table	5	Baseline Acoustic Environment Summary	10					
Table	e 6	Sound Monitoring Criteria	14					

FIGURES

Figure 1	Summit Pit Location	2
Figure 2	Plan Overview of Summit Pit Site	
Figure 3	Noise Sensitive Receptor Locations	9
Figure 4	SLM Locations Plan View	. 11
Figure 5	Modelled Operational Compared to Baseline Sound Levels	. 12
Figure 6	Modelled Operational + Baseline Sound Levels Compared to Baseline	. 13
Figure 7	Proposed Contact Record Sheet	. 16
Figure 8	Proposed Complaints Log	. 17

1.0 INTRODUCTION


Mountain Ash Limited Partnership (Mountain Ash) is planning to develop the Summit Pit (the Project) along Highway 567 within NW and SW 31-026-03 W5M, northeast of the Town of Cochrane, in Rocky View County (RVC), Alberta (Figure 1). The Project will encompass approximately 208 acres (84 ha) excluding existing road rights-of-way. Mountain Ash is applying for Phase 1 of a six-phase mining plan. This land is currently owned by 1410266 Alberta Ltd. (a general partner of Mountain Ash). Summit Pit received land use and a master site development plan (MSDP) approval on March 2, 2021 (Land Use Bylaw C-8051-2020).

An acoustic assessment was undertaken as part of the MSDP application to assess the potential sound egress from the Project operations in relation to the nearest noise sensitive receptors. As a requirement for the Code of Practice (COP) for Pits and Development Permit (DP) applications, this report details the Noise Monitoring Plan (NMP) in relation to the operation of the Summit Pit. The objective of the NMP is to monitor, continuously validate and keep a record of sound from the operational Summit Pit and from off-site sources. This is also consistent with a condition required as part of the land re-designation and MSDP. Ongoing monitoring and assessment of overall levels will be crucial for effective management of sound from operations.

Although several pits have been proposed for the area, no additional pits have been approved with a development permit that have the potential to add to the sound contributions from Summit Pit operations at adjacent receptors. There is an agreement between future operators to ensure that a cumulative impacts mitigation management agreement is in place to minimize the sound from their respective operations with respect to cumulative effects. Mountain Ash will participate with those operations to address cumulative effects/impacts in the area prior to submitting future development permit applications.

Several noise sensitive receptors exist near the proposed Project area, which have the potential to be impacted by sound from operations. The NMP has adequate consideration for these receptors and the influence from the existing acoustic environment. This NMP provides a detailed description of:

- current acoustic environment
- pertinent sound sources during operations
- monitoring objectives
- parameters that will be monitored
- sound monitoring procedure including locations, frequency, and duration

2.0 **ACOUSTICAL GLOSSARY**

The primary acoustical metrics used to describe environmental sound in this monitoring plan were as follows:

 L_{eq} Often referred to as the "Equivalent Continuous Sound Level". The L_{eq} value is the sound energy average over the entire measurement time. It is defined as a calculated sound level over the measured time that has the same acoustic energy as the actual fluctuating sound levels that occurred during the same period. Leq is the single number descriptor commonly used for environmental sound measurements.

This parameter is often applied over 24 hours, or over distinct daytime and nighttime periods. For example, the daytime L_{eq} represents the cumulative effects of all sound occurring in the 15-hour daytime period from 07:00 hours to 22:00 hours. The nighttime L_{eq} represents the cumulative effects of all sound events occurring in the nighttime period from 22:00 hours to 07:00 hours.

 L_{max} The "Maximum Sound Level". The L_{max} is the maximum sound level observed. This metric is useful for quantifying the highest sound level expected during short duration events such as a vehicle pass by or dog barking.

 \textit{L}_{min} The "Minimum Sound Level". The L_{min} is the minimum sound level observed.

is the average annual equivalent outdoor sound pressure level associated with a particular type L_{night} of sound source during night-time (at least 8 hours).

The "Statistical Sound Level" equaled or exceeded 90% of the time. This level represents a good L90 indicator of the baseline sound of the overall acoustic environment. A statistical measure of sound over a period and is defined as the sound level exceeded for a certain percentage of the time; and

 L_{w} is the sound power level. It is a measure of the total sound energy radiated by a source of sound and is used to calculate sound pressure levels at a distant location. The LWA is the A-weighted sound power level.

The following descriptions may prove useful when reading the information contained within this report:

the sound with contribution from all sources, as modified by the current environment and Acoustic associated conditions; **Environment:**

Ambient Sound

the sound level that is a composite of different airborne sounds from many sources far away from and near the point of measurement. The ambient sound level does not include Level: sound from wind and must be determined without it and without sound from any source that is being assessed;

the effect of sound absorption by moisture in the air;

Atmospheric Attenuation:

A weighting:

the ear can recognize a sound depending on the pitch or frequencies found at the source. Microphones cannot differentiate sound in the same way as the ear and to counter this, the sound measuring instrument applies a correction to correspond more closely to the frequency response of the human ear by reducing the low and high frequencies. The correction factor is called 'A Weighting' and the resulting measurements are written as dBA, for broadband sound level. The dBA is internationally accepted and has been found to correspond well with subjective reaction to sound;

Comprehensive Sound Level (CSL):

defined in multiple Alberta Regulations as "The sound level that is a composite of different airborne sounds from many sources far away from near the point of measurement. The CSL does include industrial components and should be measured with them, but abnormal noise events are excluded. The CSL is used to determine whether a facility is consistent with this guideline".

C weighting:

the A weighting, this is a correction to account for the difference between the frequency response of a microphone and the human ear. However, the C weighting is tailored towards higher sound levels and has less attenuation in the low and high frequency regions. The C weighting is typically used to assess high sound levels in relation to human exposure and an indication of the low frequency content when compared to the A weighted sound level for the same situation. It is typically quoted as a broadband sound level;

dB Average Sound Level refers to the logarithmic average (acoustically referred to as the decibel average) of recorded data values for a sound level parameter over the entire monitoring survey;

Free Field Sound Field:

a sound field in which the effects of obstacles or boundaries on propagating sound are negligible;

Frequency:

the number of wave oscillations per second (hertz) of an acoustic pressure wave propagating through the air. This is linked to the subjective phenomenon pitch;

Sound Pressure Level: the physical measurement of sound, which utilizes a logarithmic scale and quantifies the amplitude or volume of acoustic pressure waves propagating through the air;

Mean Sound Level

refers to the arithmetic average (mean) of recorded data values for a sound level parameter over the entire monitoring survey;

Mode Sound Level

refers to the most repeated value (mode) of recorded data values for a sound level parameter over the entire monitoring survey;

One-third Octave Bands:

used to represent the frequency or content of a sound. Bass and Treble on a Hi-Fi system is a very basic representation of the frequency content of sound. One-third octave bands are derived by splitting the audio signal into discrete entities. A single octave band comprises 3 one-third octave bands. One-third octave and octave bands are usually presented without a weighting/filter such as A weighting, however such weightings can be applied to frequency spectra to then derive a weighted overall single result;

Sound Level Contribution:

the contribution of sound from one or more sources to the overall sound level from all sources affecting a location;

Spectrum:

the quantification of the components of a sound as a function of frequency.

Third-Octave: the interval in frequency between two sounds having a ratio of 2 to the one-third power,

or approximately 1.26;

Third-Octave Band Sound Pressure Level: the total sound pressure level of sound components in a specific one-third octave band;

Tonality: tonal sound contains a prominent frequency and is characterized by a definite pitch. A

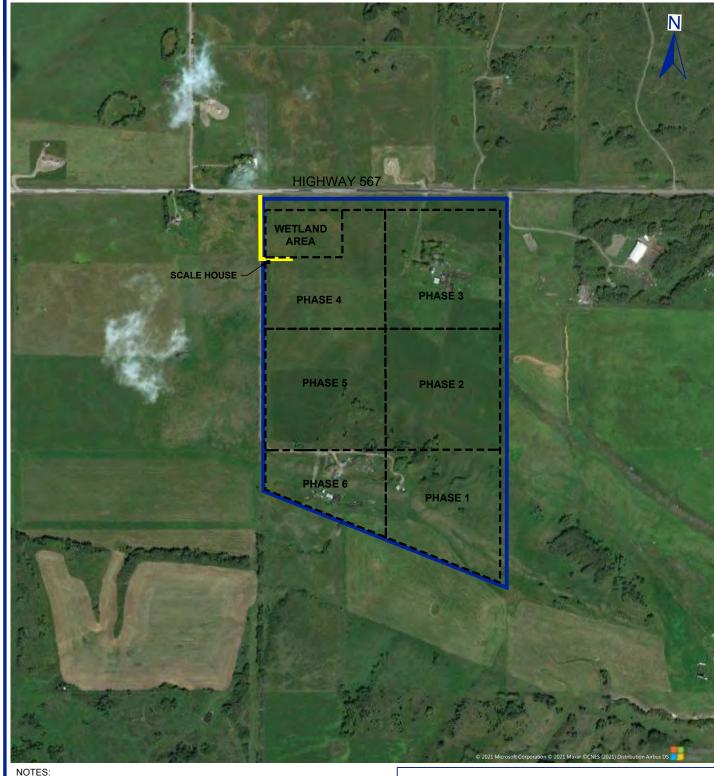
broadband sound such as white noise or television static has no tonality, whereas a guitar

string when plucked is a tonal sound; and

Z Weighting: Indicates that the sound level has no frequency weighting applied, representing the

unweighted levels from the microphone. This is typically used for frequency sound levels

such as one-third-octave/octave bands.


Table 1 Typical Sound Sources and Acoustic Environments

Sound Pressure Level dB(A)	Example
0	Threshold of hearing for normal young people
20	Recording studio, ambient level
40	Quiet residential neighborhood, ambient level
60	Department store, restaurant, speech levels
80	Next to busy highway, shouting
100	Textile mill; press room with presses running, punch press and wood planers, at operator's position
120	Ship's engine room, rock concert; in front and close to speakers
140	Moon launch at 100mm, artillery fire; gunner's position and threshold of pain

3.0 OPERATIONS AND EQUIPMENT DETAILS

3.1 Site Details

An overview of the Summit Pit is shown in Figure 2, indicating each phase of the mining plan. The mining plan will start at Phase 1 in the south-east portion of the site and go counter clockwise to Phase 6 in the south-west portion.

DRAWING COMPILED FROM DATA AS PROVIDED BY THE CLIENT.

LEGAL DESCRIPTION: W 1/2 SEC 31 TWP 026 RGE 03 W5M ROCKY VIEW COUNTY, ALBERTA

MOUNTAIN ASH PAVED ACCESS ROAD

LEGEND:

SITE LOCATION

EXTRACTION PHASE BOUNDARIES

200 400 600 800 n

SCALE 1:12,500 WHEN PLOTTED CORRECTLY ON A 8.5 x 11 PAGE LAYOUT NAD 1983 UTM ZONE 11N

THIS DRAWING IS FOR CONCEPTUAL PURPOSES ONLY. ACTUAL LOCATIONS MAY VARY AND NOT ALL STRUCTURES ARE SHOWN. MOUNTAIN ASH LIMITED PARTNERSHIP **SUMMIT PIT** NW & SW 31-26-03-W5M ROCKY VIEW COUNTY, ALBERTA

NOISE MONITORING PLAN

PLAN OVERVIEW OF SUMMIT PIT SITE

Date: April	12, 2021	Figure No.
Project No.	212.06650.00006	2

3.2 **Equipment Details**

The sound generating equipment to be used for each operation is identified in Table 2.

Table 2 Equipment Sound Sources

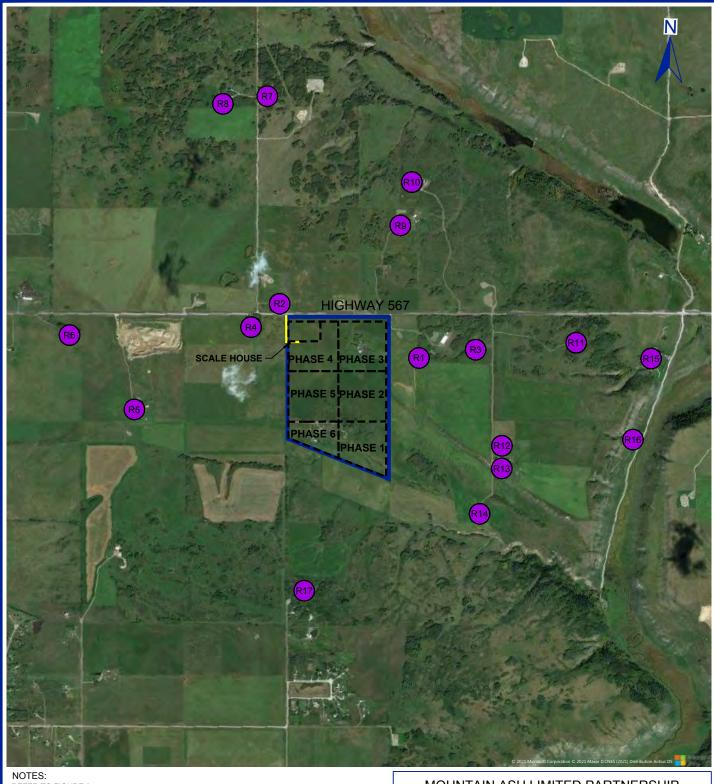
Equipment & Model	No.	Power Rating	Hrs/Day	Usage/Working Area	LWA, dB(A)
CAT 374F Excavator	1	472 HP	10	Mining Area, 80% Utilization	107
Twin Engine 657G Motor Scraper	2	600 HP	10	Stripping / Reclamation Areas, 100% Utilization	113
1 MW Crusher Generator	1	1 MW	10	Crusher Area	102
CAT 980M Wheel Loaders	2	425 HP	10	Feed Crusher, 100% Utilization	112
CAT966L Loader	1	207 kW	7	Sales, 6 days/week	111
CAT D-7E Dozer	1	238 HP	6	Remediation, 50% Runtime	110
CAT 14M Grader	1	275 HP	3	Remediation, Haul Road, 30% Runtime	110
Tandem Water Truck	1	550 HP	10	Various	109
Peterbit Quad Trailer - Haul Truck	1	500 HP	8 (7 trips along phase haul route per hour)	Sales, Haul Road	114
Elrus Jaw Crusher	2	450 HP	10	Crushing Area	124*

^{*}Raw LWA, approximately 5 dB attenuation accounted for by acoustic shrouds.

3.3 Operating Times

The site operating times are detailed in Table 3 for the Summit Pit.

Table 3 Site Operating Times


Days	Operating Periods
Monday - Friday	0700 hrs – 1900 hrs
Saturdays	0700 hrs – 1700 hrs
Sundays and Statutory Holidays	No Operations

4.0 NOISE SENSITIVE RECEPTORS

The noise sensitive receptors within the vicinity of the Project are identified in Table 4 and displayed in Figure 3.

Table 4 Noise sensitive receptors

Receptor	Distance from Property Line (m)	Direction from Site	Easting (m)	Northing (m)
R1	245	E	681019	5682785
R2	106	NW	679899	5683176
R3	695	Е	681466	5682866
R4	280	W	679679	5682983
R5	1195	W	678776	5682298
R6	1724	W	W 678241	
R7	1753	NW	679744	5684819
R8	1790	NW	679394	5684746
R9	731	NE	680835	5683831
R10	1066	NE	680914	5684178
R11	1488	Е	682262	5682949
R12	905	E	681701	5682111
R13	907	E	681706	5681931
R14	796	SE	681543	5681565
R15	2091	E	682861	5682844
R16	1945	E	682739	5682196
R17	1085	SW	680173	5680907

NOTES: REFER TO FIGURE 2. LEGEND:

SITE LOCATION

NOISE RECEPTOR

EXTRACTION PHASE BOUNDARIES

MOUNTAIN ASH PAVED ACCESS ROAD

0 0.25 0.5 1.0 1.5 km

SCALE 1:30,000 WHEN PLOTTED CORRECTLY ON A 8.5 x 11 PAGE LAYOUT NAD 1983 UTM ZONE 11N

THIS DRAWING IS FOR CONCEPTUAL PURPOSES ONLY. ACTUAL LOCATIONS MAY VARY AND NOT ALL STRUCTURES ARE SHOWN.

MOUNTAIN ASH LIMITED PARTNERSHIP SUMMIT PIT NW & SW 31-26-03-W5M ROCKY VIEW COUNTY, ALBERTA

NOISE MONITORING PLAN

NOISE SENSITIVE RECEPTOR LOCATIONS

 Date:
 April 12, 2021
 Figure No.

 Project No.
 212.06650.00006
 3

5.0 BASELINE SOUND LEVEL DATA

Baseline sound level data was collected at three locations at several noise sensitive receptors over multiple days during October 2019. The collections points were based on proximity to the proposed Project area with the intent to evaluate the existing sound levels in the acoustic environment to inform assessment criteria. Sound monitoring was undertaken at these locations to provide a good representation of the existing acoustic environment near the Project site.

Figure 4 shows the plan view of the sound monitoring locations (SML) used in the sound monitoring survey. A summary of the baseline sound level data for each location is provided in Table 5.

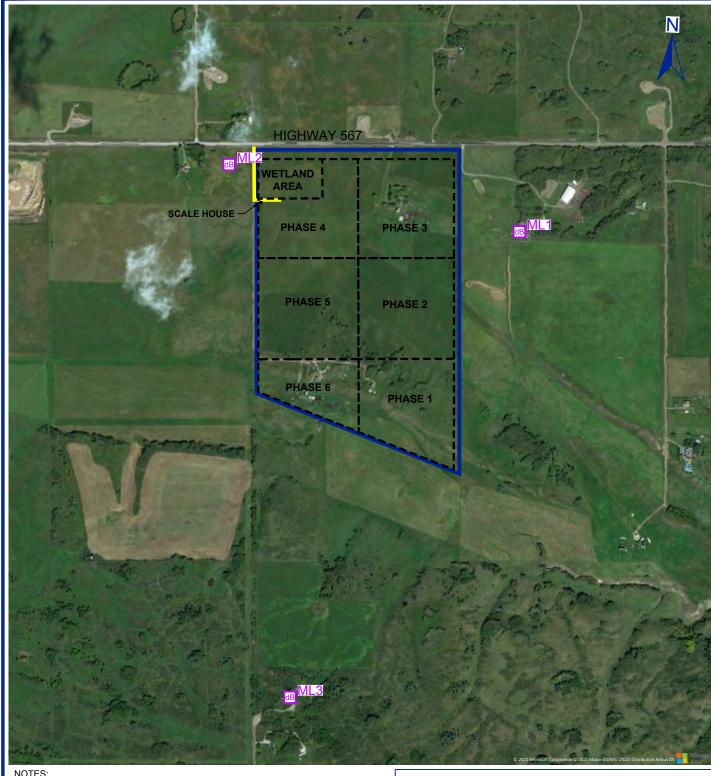

Monitoring **Environment** Descriptor Min Mean Max Location (ML) Description Acoustic environment 49* 39 63 L_{Aeq} comprised of road traffic on Big Hill Springs Road, occasional ML1 sound from existing aggregate 42 34 48 L_{A90} uses, birdsong, and aircraft overhead. Acoustic environment 59* 52 63 L_{Aeq} comprised of road traffic on Big Hill Springs Road, occasional ML2 sound from existing aggregate 44 30 53 L_{A90} uses, birdsong, aircraft overhead and livestock. 48* 59 L_{Aeq} 33 Acoustic environment is ML3 dominated by distant road traffic to the west and south. 29 56 41 L_{A90}

Table 5 Baseline Acoustic Environment Summary

6.0 RELEVANT GUIDANCE AND CRITERIA METHODOLOGY

The RVC regulates noise through the Noise Control Bylaw No. C-5772-2003. The bylaw states that no person shall "make, continue, cause, or allow to be made or continued any excessive, unnecessary, or unusual noise of any type." The bylaw also states that, if an activity "necessarily involves the creation of noise," the noise must be "minimized as much as practicable." This bylaw does not prescribe quantitative limits for noise emissions.

^{*}logarithmic average

NOTES: REFER TO FIGURE 2. LEGEND:

SITE LOCATION

SLM LOCATION

1.0 km

EXTRACTION PHASE BOUNDARIES

MOUNTAIN ASH PAVED ACCESS ROAD

0.25

SCALE 1:15,000

WHEN PLOTTED CORRECTLY ON A 8.5 x 11 PAGE LAYOUT NAD 1983 UTM ZONE 11N

0.5

THIS DRAWING IS FOR CONCEPTUAL PURPOSES ONLY. ACTUAL LOCATIONS MAY VARY AND NOT ALL STRUCTURES ARE SHOWN. MOUNTAIN ASH LIMITED PARTNERSHIP **SUMMIT PIT** NW & SW 31-26-03-W5M ROCKY VIEW COUNTY, ALBERTA

NOISE MONITORING PLAN

SLM LOCATIONS PLAN VIEW

Date: April	12, 2021	Figure No.
Project No.	212.06650.00006	4

The assessment criteria for each receptor were developed using methodology agreed to in consultation with RVC, based on what was proposed within the draft resource plan for aggregate industries. The RVC draft resource plan for aggregate industries states that daytime operations should not exceed the following for aggregate extraction and/or processing development:

- daytime (07:00 hrs to 22:00 hrs on weekdays, 09:00 hrs to 22:00 hrs on weekends):
 - o 55 dB L_{Aeq} (1 hour, free field) or 10 dB above recorded ambient sound levels (measured as L_{A90}), whichever is the lesser, at the nearest or most impacted dwellings.

SLR used measured sound levels to determine appropriate assessment criterion at each noise sensitive receptor. A proxy location was used in many instances due to the number of receptors.

The $L_{\rm eq}$ sound level from Summit Pit operations was modelled to be equal or below that of the existing sound levels at the assessed receptors. Figure 5 shows the sound level for each of the phases compared to the baseline. Figure 6 shows the modelled worst-case Summit Pit sound levels combined with existing sound levels then compared to the existing sound levels. This information has been used to assess appropriate sound level criteria for this NMP.

A guideline for determining sound criteria for monitored levels was based on 3dB above baseline. Measured levels may be above this due to variations in ambient sound level. However, this level is a reasonable basis to have from the outset of operations. Adjustments may be made to the monitoring criteria, if necessary.

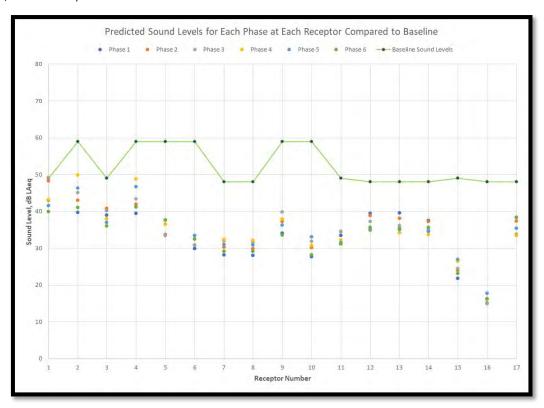


Figure 5 Modelled Operational Compared to Baseline Sound Levels

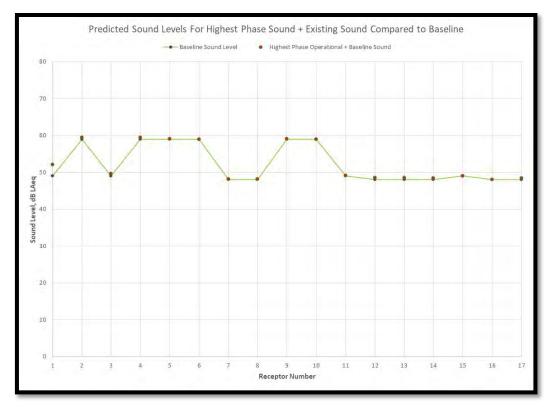


Figure 6 Modelled Operational + Baseline Sound Levels Compared to Baseline

7.0 SOUND MONITORING PROGRAM

The Sound Monitoring Program (SMP) is designed to ensure that sound is measured at representative locations in the vicinity of the Summit Pit. Data from the SMP will be used to assess the ongoing noise impact of the Summit Pit operations at the surrounding noise sensitive receptors.

7.1 General Sound Monitoring Plan Requirements

Sound measurements required in accordance with the SMP will be undertaken by a suitably qualified and experienced acoustic expert. The sound measurement procedures employed throughout the monitoring program will be guided by the requirements of American National Standard ANSI/ASA S12.9 (1992) Quantities and Procedures for Description and Measurement of Environmental Sound – Part 2: Measurement of Long-Term, Wide-Area Sound.

Noise monitoring reports will be reviewed by the Summit Pit site manager or designate. If monitoring reports or site activities indicate noise levels above SMP goals, Summit Pit will review site operations with the objective of understanding the causes and effectively managing sound egress.

Sound monitoring reports will also be made available to the public.

7.2 Instrumentation and Measurement Parameters

All acoustic instrumentation employed will be designed to comply with the requirements of IEC 61672.1 – 2013 (or latest version) *Electroacoustics—Sound level meters - Specifications* with appropriate calibration procedures in place.

7.3 Sound Monitoring

Attended, daytime, monthly sound monitoring will be undertaken to evaluate changes from the baseline sound levels and compliance with the NMP goals. Monitoring will be undertaken at three locations, as per the original acoustic assessment, which are close to residential properties. These provide good coverage for a variety of receptors and at different distances and acoustic screening from the operations. The monitoring will last approximately 2 hours at each location for each survey. Monitoring will be undertaken at 1.5 m above local ground.

7.4 Monitoring Locations

Figure 4 shows the plan view of the monitoring locations used in the sound monitoring survey.

Operator attended sound monitoring surveys may be conducted at other locations, if required, to enable investigation of sound emissions. All sound measurements shall be accompanied by both qualitative description and quantitative measurements of prevailing local weather conditions throughout the survey period. Mountain Ash shall obtain information regarding the relevant fixed plant and mobile equipment operating logs to be included in the monitoring report.

7.5 Monitored Sound Level Criteria

There was a variation in sound level observed at each monitoring location during the baseline evaluation stage. The criteria for each receptor were based on the long-term average, L_{A90} , sound level, considering all days. Monitored sound levels during operations will include the sound from the general acoustic environment and have the potential to be above the L_{Aeq} criteria used in the Summit Pit acoustic assessment, considering ambient sources only. Therefore, using the criteria from the Summit Pit acoustic assessment for any operational sound limits would not be appropriate for assessing compliance/non-compliance with noise management goals.

Table 6 details the criteria to be used as a basis of comparison for the operational sound monitoring. Reference should be made to the L_{Aeq} values in Table 5, with respect to the likely variance in ambient sound levels. There is also likely benefit in updating the baseline sound levels, throughout the operation of Summit Pit. This is to account for changes to sound sources in the area, especially with respect to fluctuations in road traffic volumes.

Nearest Receptor Existing Average Baseline, Sound Monitoring Level Monitoring Location Location L_{Aeq} Criteria, LAeq ML1 R1 49 52 ML2 R2/R4 59 62 ML3 R17 48 51

Table 6 Sound Monitoring Criteria

8.0 REPORTING

A monthly monitoring report will be produced detailing the sound monitoring procedure, sound level results, weather conditions, site activities, subjective observations, comparison against monitoring criteria and applicable action items after each survey. The monthly report will also provide details of any complaints relating to sound and their state of resolution. An annual monitoring report will collate the findings of the previous monitoring reports.

9.0 CONTINGENCY PROTOCOL

The sections below outline the contingency plan for managing noise impacts and complaints.

9.1 Complaints Handling

All complaints received regarding operational noise emissions from the Summit Pit will be responded to within 72 hours by appropriate personnel. Summit Pit will keep a record of any complaint made in relation to operational noise from the site. Records will include:

- date and time of complaint
- method by which the complaint was made
- identification of the complainant (if provided)
- nature of the complaint
- weather conditions corresponding to the time of the complaint
- action taken by Summit Pit Operatives and any follow up actions
- if no action was taken, the reason why no action was taken

Proposed contact record and complaint log sheets are shown in Figure 7 and Figure 8.

9.2 Non-Compliance Response Procedure

In the event of a measured exceedance of the relevant sound monitoring criteria or an increase in the baseline sound emissions (as appropriate) the following actions will be undertaken:

- Identify the sound source responsible for the issue. This would be completed by reviewing sound monitoring data. Additional methods such as attended or near field monitoring may be used to investigate Summit Pit sound emissions, or to determine compliance with the criteria, where potential non-compliances have been measured but are difficult to attribute to the Summit Pit.
- Reassess the sound reduction techniques employed at the site and evaluate and implement reasonable and feasible additional controls to reduce impacts.
- Conduct follow-up monitoring, after sound control implementation, to evaluate the effectiveness of the mitigation strategy.
- Communicate details of any non-compliance, the results of sound monitoring/investigations and follow-up noise management activities to the County.

Figure 7 Proposed Contact Record Sheet



Figure 8 Proposed Complaints Log

10.0 STATEMENT OF LIMITATIONS

This report has been prepared and the work referred to in this report has been undertaken by SLR for Mountain Ash Limited Partnership., hereafter referred to as the "Client". The report has been prepared in accordance with the Scope of Work and agreement between SLR and the Client. It is intended for the sole and exclusive use of the Client. Other than by the Client and as set out herein, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of SLR.

This report has been prepared for specific application to this site and site conditions existing at the time work for the report was completed. Any conclusions or recommendations made in this report reflect SLR's professional opinion.

Information contained within this report may have been provided to SLR from third party sources. This information may not have been verified by a third party and/or updated since the date of issuance of the external report and cannot be warranted by SLR. SLR is entitled to rely on the accuracy and completeness of the information provided from third party sources and no obligation to update such information.

Nothing in this report is intended to constitute or provide a legal opinion. SLR makes no representation as to the requirements of compliance with environmental laws, rules, regulations, or policies established by federal, provincial, or local government bodies. Revisions to the regulatory standards referred to in this report may be expected over time. As a result, modifications to the findings, conclusions, and recommendations in this report may be necessary.

Appendix M Stripping and Grading Plan

Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership

SLR Project No: 212.06650.00007/8

Mountain Ash Limited Partnership Summit Pit

SLR Project No: 212.06650.00007/8

October 2021

Revised May 2023

Stripping and Grading Plan

Mountain Ash Limited Partnership Rocky View County, Alberta

SLR Project No: 212.06650.00007/8

Prepared by: SLR Consulting (Canada) Ltd. 200 – 708 11th Ave SW Calgary, Alberta, T2R 0ER

for

Mountain Ash Ltd. Partnership 1945 Briar Crescent NW Calgary, AB, T2N 3V6

April 2021

Revised May 2023

This document has been prepared by SLR Canada. The administrative change to revision May 2023.

Administrative change Approved by:

Jason J. Cox, P.Eng

Global Technical Director – Mining Advisory

Distribution: 1 copy (PDF) – Mountain Ash Limited Partnership

1 copy - SLR Consulting (Canada) Ltd.

Table of Contents

1.0	INTRODUC	TION	. 1
2.0	STRIPPING	AND GRADING ACTIVITIES	. 1
3.0	QUANTITIE	S	. 1
4.0	STATEMEN	T OF LIMITATIONS	. 2
TAE	BLES		
Table	e 1	Quantities of Non-Mineral Materials to be Stripped	1
Table	2	Quantities of Materials used to Reclaim Site Post Mining	. 2

DRAWINGS

Drawing 1: Overall Working Progression

Drawing 2: Site Grading – Following Reclamation

Drawing 3: Cross Sections

1.0 INTRODUCTION

Mountain Ash Limited Partnership (Mountain Ash) is planning to develop the Summit Pit (the Project) along Highway 567 within NW and SW 31-026-03 W5M, northeast of the Town of Cochrane, in Rocky View County (RVC), Alberta (Figure 1). The Project will encompass approximately 208 acres (84 ha) excluding existing road rights-of-way. Mountain Ash is applying for Phase 1 of a six-phase mining plan. This land is currently owned by 1410266 Alberta Ltd. (a general partner of Mountain Ash). Summit Pit received land use and a master site development plan (MSDP) approval on March 2, 2021 (Land Use Bylaw C-8051-2020).

2.0 STRIPPING AND GRADING ACTIVITIES

The portion of the pit to be used shall be cleared and grubbed, and the area from which materials are to be taken shall be stripped of topsoil and overburden as provided in Section 3 and outlined in the soil conservation and reclamation plan. Stripping at the site shall consist of the removal, after clearing and grubbing, of the surface material and overburden which is unsuitable for the kind of material to be borrowed or produced for use. Materials from stripping, to be used later as provided on the site reclamation plan, shall be deposited within the pit at such a location as not to interfere with future development within the site.

Before placing aggregates upon the stockpile site, the site shall be cleared of vegetation, trees, stumps, brush, rocks, or other debris and the ground leveled to a smooth, firm, uniform surface. The debris resulting from clearing and preparing the site shall be disposed of according to the vegetation and soil management plan and outlined in Bylaw C-8051-2020.

All Stripping and grading activities will follow Bylaw C-8051-2020 as issued and commitments made under the visual screening plan, erosion and sedimentation control plan and the Soils Conservation plan.

3.0 QUANTITIES

Table 1 Quantities of Non-Mineral Materials to be Stripped

Phase	Surface Area	Topsoil	Subsoil	Overburden	Total	Average Overburden Thickness
1	128,424 m²	32,106 m ³	25,685 m ³	326,834 m ³	384,625 m ³	2.54 m
2	151,720 m ²	37,930 m ³	30,344 m ³	503,946 m ³	572,220 m ³	3.32 m
3	151,989 m ²	37,997 m ³	30,398 m ³	747,349 m ³	815,744 m ³	4.92 m
4	116,171 m ²	29,043 m ³	23,234 m³	396,560 m ³	448,837 m ³	3.41 m
5	158,236 m ²	39,559 m ³	31,647 m ³	419,431 m ³	490,637 m ³	2.65 m
6	83,430 m ²	20,857 m ³	16,686 m³	333,964 m ³	371,507 m ³	4.00 m
Total	789,970 m ²	197,492 m³	157,994 m³	2,728,085 m ³	3,083,571 m ³	3.45 m

1

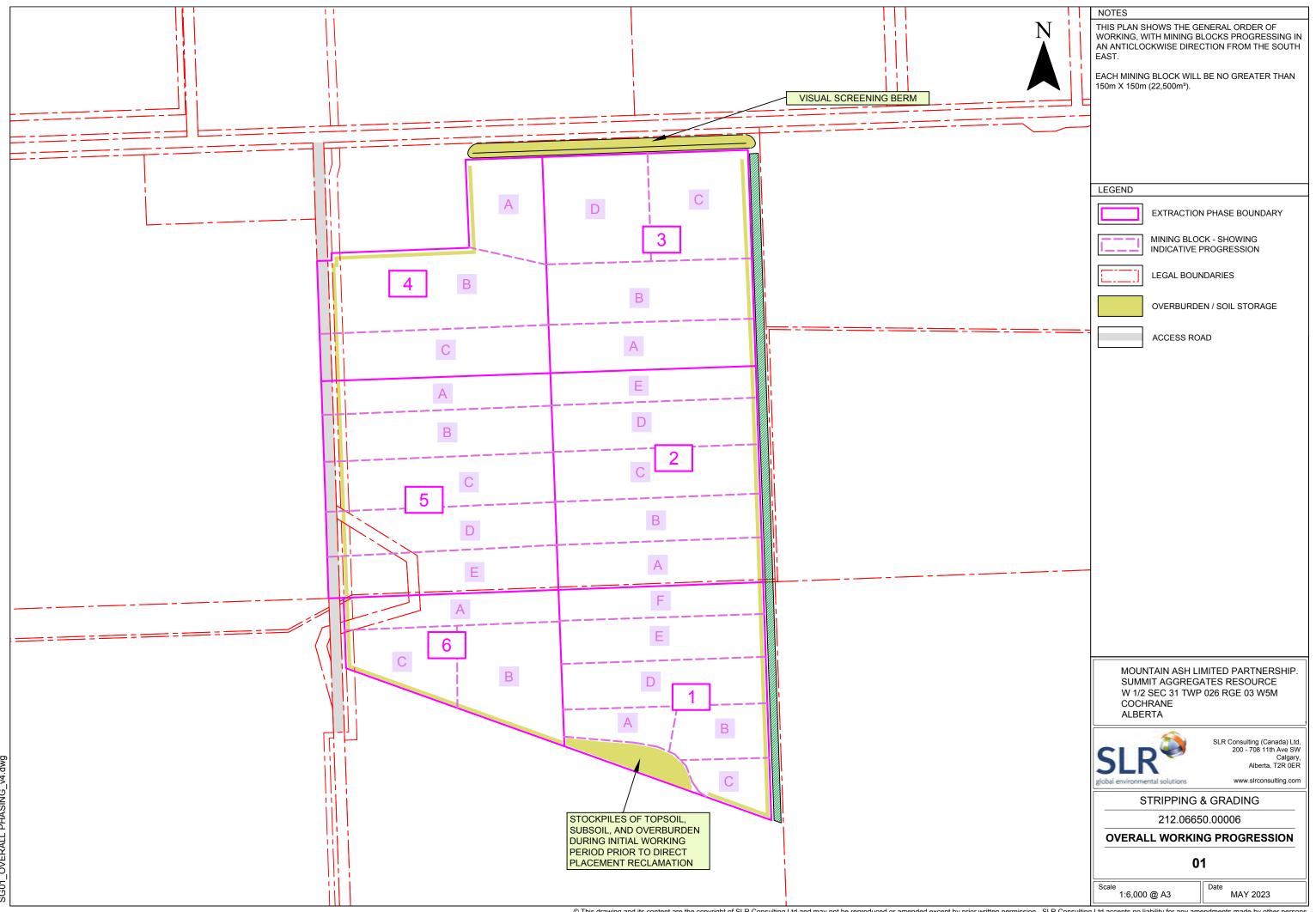
Table 2 Quantities of Materials used to Reclaim Site Post Mining

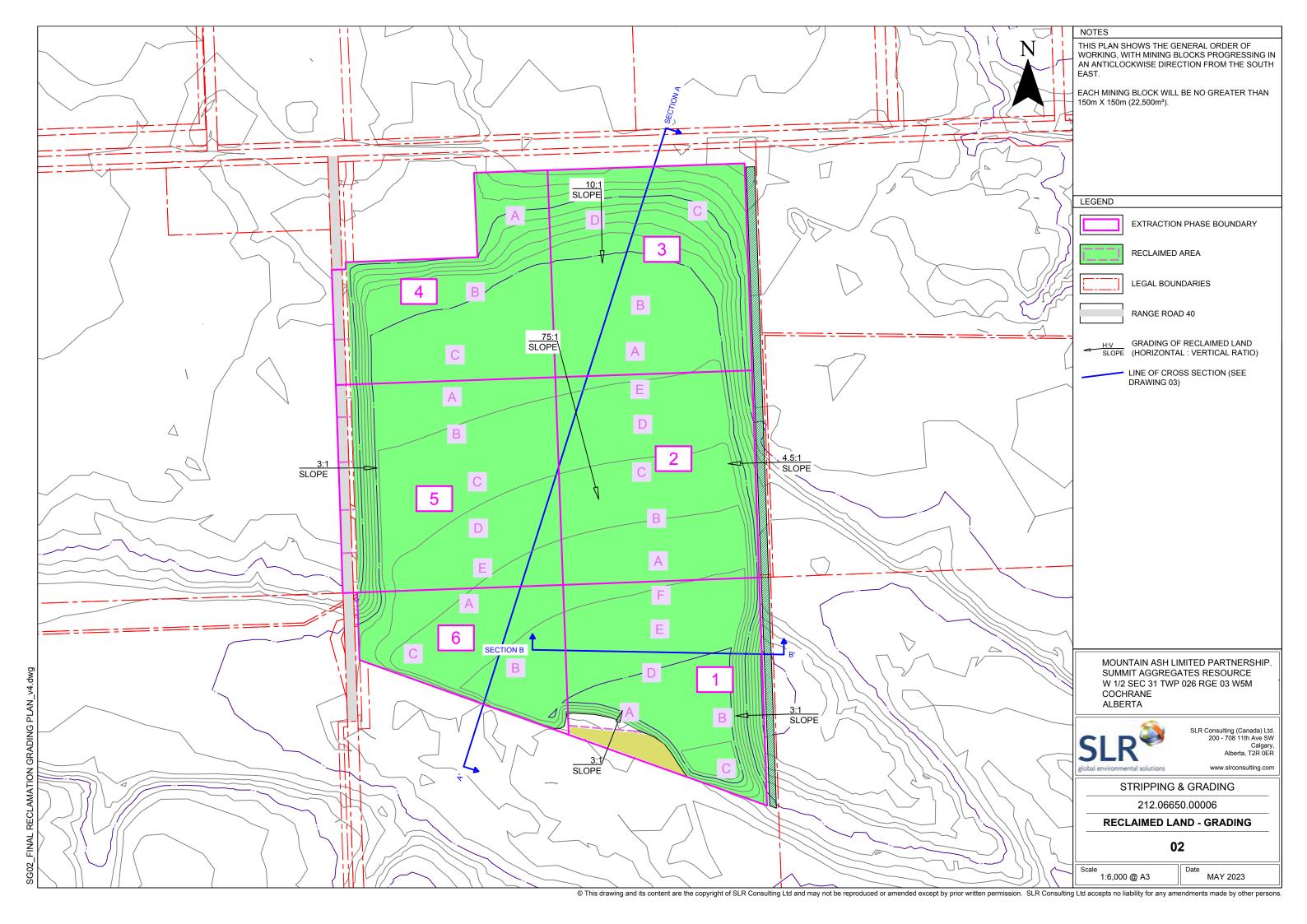
Phase	Surface Area	Topsoil	Subsoil	Overburden & Rejects (@15% Gravel)	Total	
1	128,424 m²	32,106 m ³	25,685 m ³	556,573 m ³	614,364 m ³	
2	151,720 m²	37,930 m³	30,344 m³	749,523 m³	817,797 m ³	
3	151,989 m²	37,997 m ³	30,398 m ³	1,093,980 m ³	1,162,375 m ³	
4	116,171 m²	29,043 m ³	23,234 m ³	675,215 m ³	727,492 m³	
5	158,236 m ²	39,559 m ³	31,647 m ³	770,145 m³	841,351 m ³	
6	83,430 m²	20,857 m ³	16,686 m ³	408,136 m ³	445,679 m³	
Total	789,970 m²	197,492 m³	157,994 m³	4,253,571 m³	4,609,058 m³	

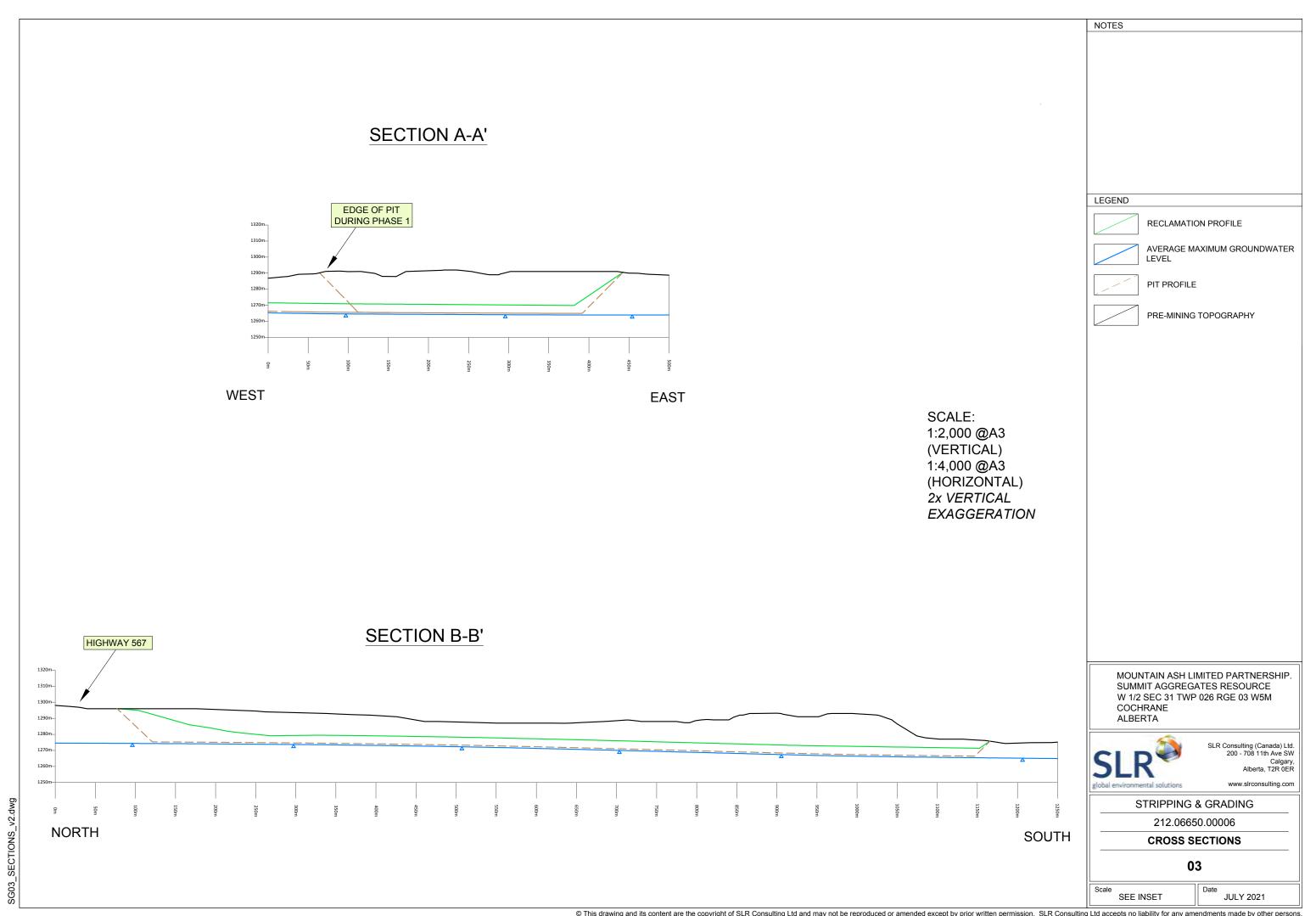
4.0 STATEMENT OF LIMITATIONS

This report has been prepared and the work referred to in this report has been undertaken by SLR for Mountain Ash Limited Partnership., hereafter referred to as the "Client". The report has been prepared in accordance with the Scope of Work and agreement between SLR and the Client. It is intended for the sole and exclusive use of the Client. Other than by the Client and as set out herein, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of SLR.

This report has been prepared for specific application to this site and site conditions existing at the time work for the report was completed. Any conclusions or recommendations made in this report reflect SLR's professional opinion.


Information contained within this report may have been provided to SLR from third party sources. This information may not have been verified by a third party and/or updated since the date of issuance of the external report and cannot be warranted by SLR. SLR is entitled to rely on the accuracy and completeness of the information provided from third party sources and no obligation to update such information.


Nothing in this report is intended to constitute or provide a legal opinion. SLR makes no representation as to the requirements of compliance with environmental laws, rules, regulations, or policies established by federal, provincial, or local government bodies. Revisions to the regulatory standards referred to in this report may be expected over time. As a result, modifications to the findings, conclusions, and recommendations in this report may be necessary.



Stripping and Grading Plan Mountain Ash Limited Partnership Summit Pit SLR Project No: 212.06650.00007/8

Appendix N Mining and Excavation Plan

Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership

SLR Project No: 212.06650.00007/8

Appendix O Security Estimate Deliverables

Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership

SLR Project No: 212.06650.00007/8

Full Cost Security Calculation

Summit Pit - West Half Sec. 31 Twp. 26 Rge.3 W5M

1. Cost of Replacing Reclamation Materials

	Volume	Cost/m3	Total	Notes
Surveyed Topsoil Volume		\$ 2.50	\$ -	NA until 5 Year Report
Surveyed Subsoil Volume				NA until 5 Year Report
Surveyed Overburden Volume		\$ 2.50	\$ -	NA until 5 Year Report
Surveyed Reject Sand Volume		\$ 2.50	\$ -	NA until 5 Year Report
		TOTAL	Ś -	

	Phase 1 Disturbed Area	Strata Depth	Reject	Volume				
	(m2)	(m)	Factor	(m3)	Cost/m3	Total		Notes
Estimated Topsoil Volume	76,026	0.25		19006.5	\$ 2.50	\$ 47,5	16.25	Area (m2) includes Mining Blocks A,B,C,and D
Estimated Subsoil Volume	76,026	0.25		19006.5	\$ 2.50	\$ 47,5	16.25	
Estimated Overburden Volume	76,026	3.11		236440.86	\$ 2.50	\$ 591,1	02.15	
Estimated Reject Sand Volume	0	0	15%	0	\$ 2.50	\$	-	
\ <u></u>	0	3.61		274453.86	Total	\$ 686,13	4.65	

 Total Stockpile Volume
 274,453.9
 m3

 Cost to Replace Stockpile Volume per m3
 \$ 25.0
 m3

 Total Cost
 \$ 686,134.65

2. Cost to Remove Stockpile Area, Crash Banks, De-compact and Final Grading

					Total Mobilization/			
	Equipment Type	Hours	Hourly Ra	ate	Demobilization		Total	Notes
Cost to Remove Stockpile Area and Stockpiles	John Deere 470 Excavator	20	\$ 26	1.00	\$ 4,000.00	\$	9,220.00	2018 Road Builders
	CAT 740 Dump Truck	20	\$ 23	5.00	\$ 1,500.00	\$	6,200.00	2018 Road Builders
	CAT 627G - Motor Scraper	20	\$ 40	1.00	\$ 3,500.00	\$	11,520.00	2018 Road Builders
Cost to Crash Banks	CAT D8 Crawler Tractor	20	\$ 27	3.00	\$ 1,800.00	\$	7,360.00	2018 Road Builders
Cost to De-Compact	CAT D8 Crawler Tractor	20	\$ 27	3.00	\$ -	\$	5,560.00	See MOB/DEMOB Above 2016 Road Builders
Final Grading	CAT 140M Grader	20	\$ 193	2.00	\$ 1,500.00	\$	5,340.00	2018 Road Builders
	Total	120						
			_		Total	Ś	45,200,00	

3. Cost of Re-Seeding, Fertilizing, Maintaining Area

	Equipment Type	Hours	Hourly Rate (Equipment or Labour)	Seeding Rate (per acre)	Registered Area (acres)	Fertilizer Application Rate (per acre)	Pesticide Application Rate (per acre)	Fertilizer Cost (per acre)	Herbicide Cost (per acre)		Total
Seed Bed Preparation	Wheel Tractor (Group 2) with Harrow	12	\$ 85.00		18.78					\$	1,020.00
Seeding Application	Air Seeder/Air Drill/Labour	12	\$ 40.00	\$ 35.00	18.78					\$	1,794.60
Fertilization	Granular Fertilizer Application - Floater Truck/Labour	4	\$ 40.00		18.78			\$ 11.75		\$	601.33
Maintenance (2 Years)	Granular Herbicide Application - Floater Truck/Labour		\$ 40.00		18.78				\$ 9.75	\$	366.21
Source : Custom Pates 2016 Seeding (Alberta Agric	cultura Mahaita)								Total	Ċ	2 792 1/

Source: Custom Rates 2016 - Seeding (Alberta Agriculture Website)

vww.agric.gov.ca

4. Cost of Contingencey/Administration and Removal of Pit Infrastructure (Scale, Scale House, Gates, Fuel Tanks)

Total Estimated Cost of Reclamation	\$ 735,116.79
Cost of Contingency	10%
Total Cost of Contingency	\$ 73,511.68
5. Total Security To Be Provided	\$ 808,628.47

201.39

Cost per Acre

Phase 1 Materials Calculations by Sub-Phase

Basis of calculation	Calculated from models	Calculated from models	=A x 0.25	=A × 0.25	= B - (C+D)	=8/A	=E/A	Calculated from models	= H * 0.15	= H - I	= J x 2	=K/A
Sub-Phase (parts of phase 1)	3D Surface Area	TOTAL Stripping Volume (Overburden & Soils)	Stripping	SUBSOIL Stripping Volume (@0.25m)	REMAINING OVERBURDEN Stripping Volume (to top of gravel)	Average TOTAL Stripping thickness (incl. Soils)	Average NET Stripping thickness (excl. Soils)	Gross Mining Volume	Rejects (@15%)	Net Mining Volume	Net Mining Tonnes (@ 2t/m³)	Average Mining Thickness (to 1m above maximum groundwater)
Α	12,970 m²	4,387 m³	3,242 m³	3,242 m³	0 m ³	0.34 m	0.00 m	118,236 m³	17,735 m³	100,500 m³	201,001 t	9.12 m
В	17,705 m²	80,241 m ³	4,426 m³	4,426 m³	71,388 m³	4.53 m	4.03 m	263,848 m³	39,577 m³	224,271 m³	448,542 t	14.90 m
С	12,864 m²	45,817 m³	3,216 m³	3,216 m³	39,385 m³	3.56 m	3.06 m	91,215 m³	13,682 m³	77,533 m³	155,066 t	7.09 m
D	32,487 m²	98,331 m³	8,122 m³	8,122 m³	82,087 m³	3.03 m	2.53 m	597,516 m ³	89,627 m³	507,889 m³	1,015,777 t	18.39 m
Е	30,366 m²	95,397 m³	7,592 m³	7,592 m³	80,214 m³	3.14 m	2.64 m	592,349 m³	88,852 m³	503,496 m³	1,006,993 t	19.51 m
F	22,032 m²	60,550 m ³	5,508 m³	5,508 m ³	49,535 m³	2.75 m	2.25 m	396,056 m³	59,408 m³	336,647 m³	673,294 t	17.98 m
Total	128,424 m²	384,723 m³	32,106 m³	32,106 m³	322,609 m³	3.00 m	2.51 m	2,059,219 m³	308,883 m³	1,750,336 m³	3,500,673 t	16.03 m

Appendix PGuide to COP Schedules/Development Permit Approval

Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership

SLR Project No: 212.06650.00007/8

Code of Practice for Pits Registration Application (Schedule 1)

Date:	<u> </u>				
Previous Environmental Protection and Enhancement Act Approval Number:					
Water Act authorization required? Yes No					
If Yes, application submitted or current Water Act Authorization Number:					
Name of Applicant (company or person in	whose name the pit will be registered):				
Address:					
Phone:	Facsimile:				
e-mail:					
Name of Person Submitting Application: _					
Company Name:					
Job Title:					
Address:					
	Facsimile:				
e-mail:					
Name of Primary Contact for Pit:					
Job Title:					
Address:					
	Facsimile:				
e-mail:					

Pit Location	Registered Owners	Occupants		
Municipal Address or LSD-Sec-Twp-Rge-Mer	Name, Address and Phone Number	Name, Address and Phone Number		

9.2 Activities Plan Checklist and Form

Items on the checklist that are indented are useful for preparing the application but are not required to be submitted.

Par	rt I
	The type of product that will be removed
	The current pit size – include access roads, stockpile sites and all other locations where infrastructure is present. If there is no pit indicate Not Applicable or No Pit Yet
	The average thickness (in centimetres or metres) of each of topsoil, subsoil, overburden, and aggregate
	The texture(s) of the topsoil - organic soil, mineral soil, clay loam, silty loam, sand, sandy loam, loam, clay, silt, or other (describe)
	The techniques that will be used to prevent wind and water erosion and control dust
	Involvement in local or regional air monitoring programs
	Inactive pit reclamation plans – for portions of the pit that will be inactive for more than two years
	Scale drawings of existing pit conditions and the proposed pit operations
	Cross-section drawings of the pit
	Aggregate and overburden inventory or testing reports
	Estimated percentage of the deposit that is reject material
	The texture of the subsoil – clay, heavy clay, silt, silty clay, sand, sandy clay, or other (describe)
Par	·t 2
	The maximum planned pit size – include access roads, stockpiles sites and all other locations where infrastructure will be present
	The depth to water in any test holes; indicate depth in each test hole where water was found
	The type of operation(s) at the pit - wet pit excavation, concrete production, salt mixing, asphalt mixing, spraying truck box liners, aggregate washing, use of other materials for reclamation
	Measures to prevent or mitigate adverse effects from the above activities
	The proposed end land uses and their percentage of the reclaimed landscape – cultivation, hayland, pasture, native range, grassland, forest, wildlife habitat, water body, proposed subdivision, other (describe)
	Information on the release of pit water - need for release, methods, location, timing
	Replacement thickness of topsoil and subsoil
	Scale drawings of the reclaimed pit

Cros	ss-section drawin	gs of the reclaimed pit					
Rec	laimed surface w	ater body information					
	The average depth of excavation including the removal of topsoil, subsoil, overburden and materials						
	The expected life of the deposit in years						
	The equipment that will be used for removing and replacing topsoil and subsoil – bulldozer, grader, scraper/ buggy, front end loader, other (describe)						
	How the property boundaries and buffers have been located and marked						
	The extraction setback – show calculation for each different setback						
	A detailed description of the quality, depth and variation of any groundwater encountered in test holes or identified from surveys, databases or reports						
	The CLI soil capability class for agriculture of the pre-disturbed landscape and the expected capability class in the reclaimed landscape – the relationship of slopes to soil capability classes are						
	Class 1, 2, 3 Class 4 Class 5 Class 6 Class 7	Level, nearly level or very gentle slopes no steeper than 20:1 Gentle slopes; no steeper than 10:1 Moderate slopes; no steeper than 6:1 Strong slopes; no steeper than 3:1 Very strong slopes; no steeper than 2:1					
	The seed mixtu	res or other forms of revegetation to be used.					
	Signature and t	itle of person who developed the Activities Plan					

Activities Plan (Schedule 2)

Part 1 Information Aggregate Type (check off all that apply): Gravel Sand Clay Marl Current Size of Pit: (hectares / acres) Average Thickness (indicate metres or centimetres for each one): Topsoil _____ Subsoil ____ Overburden ____ Aggregate _____ Topsoil Texture (check all that apply): organic soil mineral soil clay loam silty loam sand sandy loam loam clay silt other Description of techniques to prevent wind and water erosion, and to limit the movement of dust from the pit: Participation in local or regional air monitoring initiative: Inactive pit conservation and reclamation techniques: Scale drawings and cross-sections of existing pit conditions and planned sequence of operation attached. **Part 2 Information** Maximum planned size of pit: (hectares / acres) Depth to groundwater (metres) in test holes (indicate each depth if multiple holes): _____ Planned activities at the pit (check off all that apply): wet pit excavation concrete production mixing salt and aggregate mixing asphalt with aggregate spraying truck boxes aggregate washing use of alternative materials for reclamation Mitigative measures for all of the above activities: Proposed land uses for reclaimed pit (check all appropriate boxes): cultivation ______% hayland _____% pasture ______% grassland % forest % waterbody % proposed subdivision % native range _____% wildlife habitat _____% other (specify) _____% Pit water release (rationale for release, techniques and discharge points): Average topsoil replacement depth (cm): _____ A 15% loss due to soil handling techniques. Scale drawings and cross-sections of reclaimed pit conditions attached. Description of surface water bodies in the reclaimed pit: Design: Intended use:

9.3	Security Estimate Checklist and Form
	The area of land (in acres) secured at \$250/acre
	Calculation details for full-cost security on the remainder of the disturbed land
	The area (in acres or hectares) covered by the full-cost security above and the average cost per acre or hectare of the full-cost security
	Proposal for the amount of security (total of \$250/acre security plus full-cost security)
	Proposal for the form of security to be provided
	Signature and title of person submitting the security estimate

Security Estimate (Schedule 3)

Acres of land certified at \$250/acre:	Acres x \$250 =	. (a)
Detailed full-cost security calculation attached	Total full-cost =	(b)
Area of land at full-cost (hectares / acres)	Cost/hectare or acre =	
Total security to be provided ((a) + (b)):		
Proposed method of payment: Letter of Credit Cash	Other (explain)	
Signature and title of person submitting estimate:	Tige Brady	

9.	4	Five-Year	Report	Checklist and	l Form
----	---	-----------	--------	---------------	--------

the c	report is due five-years after the date of the registration and every five years afterwards until date of submission of the Final Reclamation Report or until the entire pit has been certified, chever comes first.
	The registration number – make sure it is for the correct pit
	The legal location of the pit $-$ include access roads, stockpiles sites and all other locations where infrastructure is present
	Total area of pit – all lands that have been disturbed by pit activities over the life of the pit (including lands disturbed by a previous operator whom transferred the registration to you)
	Active area – sum of the areas of the pit where aggregate is being extracted or processed, stockpiles are placed and infrastructure is located
	Reclaimed area – the area of a pit where the landscape has been re-established, the topsoil has been replaced and vegetation has been established, but does not include any certified area
	Certified area - the area of a pit that is the subject of a reclamation certificate
	Check to ensure that the values reported make sense in this report (e.g., Total Area = active + reclaimed + certified) and when compared to the previous report
	Scale drawing of pit attached
	Date pit size measured – must be less than 60 days prior to the report date
	Date scale drawing made - must be less than 60 days prior to the report date
	☐ Signature and title of person submitting the form

Five-Year Report (Schedule 4, Part 1)

Pit Registration Number:	Date:
Name of registration holder:	
Address:	
Phone:	Facsimile:
e-mail:	
Pit Location	
Municipal Address or	
LSD-Sec-Twp-Rge-Mer	
	·
Pit size:	
Total area (hectares / acres):	
Active area (hectares / acres):	
Reclaimed area (hectares / acres):	
Certified area (hectares / acres):	
Scale drawing of pit attached	
Date pit size measured:	
Date drawing made:	
Signature and title of person submitting fo	rm:

J.S I MALKEDOIL CHECKING AMA I OLI	9.5	Final 1	Report	Checklist	and F	orn
------------------------------------	-----	---------	--------	-----------	-------	-----

The report is due no later than 3 years after the entire pit has been revegetated. The report does not need to be sent in if the entire site has received a reclamation certificate.

The registration number – make sure it is for the correct pit
The legal location of the pit – include access roads, stockpiles sites and all other locations where infrastructure is present
The registered land owner's information – include all the names on each title
Total area of the pit - all lands that have been disturbed by pit activities over the life of the pit (including lands disturbed by a previous operator whom transferred the registration to you)
Scale and cross-section drawings of reclaimed pit
Written acknowledgement of all registered landowners that they received the report
Signature and title of person submitting the form

Final Reclamation Report (Schedule 4, Part 2)

Pit registration number:	Date:
Name of registration holder:	
Address:	
Phone:	Facsimile:
e-mail:	and the state of t
Pit Location	Registered Owners
Municipal Address or LSD-Sec-Twp-Rge-Mer	Name, Address and Phone Number
Pit size:	
Total area (hectares / acres):	
Scale and cross-section drawings of re	claimed pit attached
Written acknowledgement of all regist	ered landowners that they received this report attached
Signature and title of person submitting fo	orm:

File: PRDP20211744

This is not a development permit

Wednesday, July 21, 2020

B&A Planning Group (Ken Venner) #600, 215 - 9 Ave SW Calgary, AB T2P 1K3

RE: DEVELOPMENT PERMIT TRANSMITTAL OF DECISION

At its meeting on July 13, 2021, Rocky View County Council considered Administration's request to approve a Development Permit for Natural Resource Extraction/Processing (Phase 1).

Your development permit is **CONDITONALLY APPROVED**, as amended.

Description:

- That Natural Resource Extraction/Processing (Phase 1) may operate on the subject site as approved in accordance with the *Master Site Development Plan: The Summit Pit,* dated December 7, 2020 (MSDP), submitted application and supporting technical reports, and includes:
 - i. Field-testing facilities, including up to two temporary portable crushers;
 - ii. Portable Scale House, located on conjoining trailers (up to 2,690.98 sq. ft. in area);
 - iii. Portable Field Office/Maintenance building(s), (up to 2,690.98 sq. ft. in area);
 - iv. Outdoor Storage Area, as per the approved Mining & Extraction Plan, as prepared by SLR, Proj. No. 212.06650.00006, dated April 2021;
 - v. Temporary Stockpiling (of mineral and non-mineral materials);
 - vi. Signage; installation of three (3) freestanding signs;
 - a. That the minimum freestanding signage setback requirement from a roadway intersection is relaxed from 25.00 m (82.02 ft.) to 5.00 m (16.40 ft.).
 - b. Final signage details shall be submitted to the County, prior to installation on site.

This is not a development permit

Prior to Release:

- 2. That prior to release of this Development Permit, the Owner shall be required to enter into a Development Agreement with the County, in accordance with the County's Servicing Standards, for:
 - i. The upgrade of Range Road 40 to an industrial paved standard (400.6) from Highway 567 to the site access;
 - Upgrade of the intersection of Range Road 40 and Highway 567 to a Type IVa standard including all signage and any other roadside indicators to the satisfaction of Alberta Transportation (AT) and the County;
 - iii. Obtaining Roadside Development Permit and other necessary approvals from AT for the Highway Intersection improvements;
 - iv. Removal and reclamation of the existing access from Highway 567 to the satisfaction of AT;
 - v. Registration of necessary easement, right-of-ways, and/or restrictive covenants to the satisfaction of the AT and the County;
 - vi. Submission and implementation of the recommendations of the geotechnical report and pavement structure design;
 - vii. Submission and implementation of the recommendations of the stormwater management report for the intersection and road upgrades;
 - viii. Submission and implementation of the recommendations of the construction management plan; and
 - ix. Submission and implementation of the recommendations of the erosion & sedimentation control plan.
- 3. That prior to release of this Development Permit, the Applicant/Owner shall submit payment of the Transportation Offsite Levy, in accordance with Transportation Offsite Levy Bylaw C-8007-2020, for the total gross acreage of the gravel pit and areas associated for gravel extraction activities relating to Phase 1 operations.
- 4. That prior to release of this Development Permit, the Applicant/Owner shall submit an updated Erosion & Sedimentation Control Plan (ESC), prepared by a qualified professional in accordance with County's Servicing Standards.
- That prior to release of this Development Permit, the Applicant/Owner shall submit an updated Stormwater Management plan and Stripping & Grading Plan, prepared by a qualified professional in accordance with County's servicing standards.
- 6. That prior to release of this Development Permit, the Applicant/Owner shall submit an updated Landscape plan, confirming the proposed east berm, 15.00 m (49.21 ft.) in size, to be constructed and the relocation of the southern pond and sump A to be located within the Phase 1 boundary.

This is not a development permit

7. That prior to release of this development permit, the Good Neighbouring Plan as submitted shall be reviewed, amended and approved by the County to include a Complaint protocol requirement that includes a phone number and other forms of contact to be provided as per the Summit MSDP, and made available 24/7 to the area residents during the life of the pit. This plan will also be required to address assisting the neighbours should any groundwater wells be affected by the pit operations.

Upon Implementation & Site Occupancy:

- 8. That upon completion, that Applicant/Owner shall submit as-built drawings of the constructed onsite stormwater management facilities, prior to the issuance of additional Phase 1 development permits.
 - Once received, the County shall perform an inspection of the proposed stormwater management facilities ensuring the proposed facilities were constructed as per the approved Stormwater designs.
- 9. That upon completion, Construction Completion Certificates shall be issued on the constructed Type IVa intersection, upgrades to Range Road 40, and all work completed under the issued Development Agreement, prior to the issuance of additional Phase 1 development permits.

Permanent:

- 10. That any plan, technical submission, agreement, or other matter submitted and approved as part of the subject application, PL20200031 or PL20200034, prior to release or occupancy conditions, shall be implemented and adhered to in perpetuity, including but not limited to:
 - That Gravel operation shall construct and implement any necessary stormwater management facilities, in accordance with the approved site Stormwater Management Plan, in perpetuity.
 - ii. That the Gravel operation shall follow the recommendations of the Biophysical Impact Assessment, prepared by SLR, Proj. No 212.06650.00003, dated January 2020, in perpetuity.
 - iii. That the Gravel operation shall follow the recommendations of the Acoustic Assessment Report, prepared by SLR, Proj. No. 203.50207.00000, dated May 2020, and the Air Quality Assessment, prepared by SLR, Proj. No. 203.50207.00000, dated May 21, 2020 (including ongoing air quality monitoring detailing), in perpetuity. Quarterly reports are required to be submitted to the County for review.
- 11. The site shall operate in accordance with the Summit Pit MSDP, including the Joint Commitments, at all times.
- 12. That all activity and equipment associated with the Natural Processing Extraction operation shall be located in accordance with the approved Site plan for the Phase development permit.

This is not a development permit

- 13. That phase reclamation shall proceed behind extraction activities such that no more than 16.00 hectares (40.00 acres) shall be open at any time for Phase 1.
- 14. That there shall not be any storage of any materials or vehicles on the property that are not directly related to the operation of the gravel pit.
- 15. That no activity shall occur within the Habitat Preservation Area, located on SW-31-26-W5M, as identified under the Summit Pit MSDP, Figure 7, Development Concept.
- 16. That all portable buildings placed onsite shall comply with the minimum DC 170 setback requirements.
- 17. That all signage shall be kept in a safe, clean, and tidy condition at all times.
- 18. That any on-site wayfinding signage including for direction and information purposes shall be permitted, where in keeping with the design of the overall development, to the satisfaction of the County.
- 19. That no business temporary signage shall be place on the site at any time except any temporary signs required during development construction. No temporary signage shall be placed within the Highway Road Allowance at any time.
- 20. That no crushing, within Phase 1, shall occur within the restricted crushing buffer area, as identified on the Summit Pit Site Plan, as prepared by SLR, Proj. No. 21206650.00006, dated April 23, 2021, or as amended.
- 21. That only on-site extraction materials may be processed on-site, except on occasion whereby blend materials from off-site are required to bring products to specification.
- 22. That any gravel extraction and processing operation shall occur 1.00 m (3.28 ft.) above the highest recorded groundwater table, as approved with the updated groundwater table readings and includes:
 - i. That the Applicant/Owner shall implement or continue to implement a groundwater measurement program, for which the Applicant/Owner is to install piezometers within the open pit area to take monthly readings of the groundwater levels. The readings will ensure mining activities remain a minimum of 1.00 m (3.28 ft.) above the recorded groundwater levels at all times. The Applicant/Owner shall be required to keep a log to record the readings and submit any reporting to the County, upon request, and include the log and reporting in the Annual Report submissions.
 - a. That should any extraction operations negatively impact groundwater on adjacent parcels, further groundwater testing and corrective recommendations may be required, upon request from the County and/or Province, at the Applicant/Owner's expense.
- 23. That no topsoil shall be removed from the site and any soil materials will be salvaged in accordance with industry best practice to ensure their conservation.

This is not a development permit

- 24. That all topsoil & overburden excavated within the site may be stockpiled to be used to reclaim the excavated areas. Stockpiled topsoil & overburden will be placed in the depleted areas in the same order they were removed in accordance with the Code of Practice for Pits in Alberta.
 - Reclamation of mined areas shall consist of the replacement of salvaged overburden, subsoil, and topsoil with a 3:1 side slope around the mined areas.
- 25. That any overburdened stockpiles and/or similar earthworks shall be seeded and maintained using erosion control measures.
- 26. That all landscaping, including the perimeter berming along the east property line, shall be installed onsite within 24 months of permit approval, in accordance with the final approved Landscape Plan, as amended.
- 27. That dust control measures shall be utilized for all vehicles during mining and transport of material, and shall be applied to haul and access roads so that no visible dust is allowed on adjacent lands from the site.
- 28. That in the case of any spillage of hazardous materials, AEP and the County shall be notified immediately, and the appropriate clean-up procedures shall be implemented.
- 29. That the hours of operation, for any Natural Resource Extraction/Processing activities, shall be limited to the following:
 - i. Monday to Friday: 7:00 a.m. to 7:00 p.m.
 - ii. Saturday: 7:00 a.m. to 5:00 p.m.
 - iii. Sunday & Statutory Holidays: Closed
- 30. That recorded noise levels generated by aggregate operations shall not exceed 65 dba LAeq (one (1) hour) at the receptors' location, in accordance with the approved Noise Monitoring Plan, as prepared by SLR, Proj. No. 212.06650.00006, dated April 2021 and the Acoustic Assessment Report, as prepared by SLR, Proj. No. 203.50207.00000, dated May 2020.
- 31. That the existing dwelling units and accessory buildings onsite shall remain deemed non-conforming, under the Direct Control District and may remain as is, until otherwise significantly altered, relocated, removed or phase extraction activities are within 150.00 m (492.13 ft.). At that time, the units shall be brought into compliance with the Direct Control District.
- 32. That all on-site lighting, including private, site security, and parking area lighting, shall be designed to conserve energy, reduce glare, and reduce uplight. All lighting shall be full cut-off (shielded) and be located and arranged so that no direct rays of light are directed at any adjoining properties, which may interfere with the use and enjoyment of neighbouring lands, or interfere with the effectiveness of any traffic control devices or the vision/safety of motorists.

This is not a development permit

- 33. That the Applicant/Owner shall submit an Annual Report to the County, that includes all pertinent operation details, no later than six months after each operating year.
 - i. The report shall include but not be limited to Site Operations Manager contact information, site complaints/incident reports, groundwater elevations, all required quarterly monitoring summaries, all extraction details (tonnages and gradation exported, volumes of stockpiled onsite material), and onsite procedure updates.
- 34. That if this development permit is not issued by **MARCH 31, 2022**, or the approved extension date, then this approval is null and void and the development permit shall not be issued.
- 35. That this Development Permit, if and when issued, shall be valid for **five (5) years** from the date of issue or until the completion of Phase 1.

Advisory:

- 36. The Applicant/Owner shall submit payment of the Community Aggregate Payment Levy, annually, in accordance with Bylaw C-7748-2018, as amended, in the amount of \$0.40 per ton of aggregate extracted and removed.
- 37. That the County's Noise Bylaw C-8067-2020 shall be adhered to at all times, except as noted or approved as conditions of this approval.
- 38. That at renewal stage of Phase 1, the Applicant/Owner shall, in conjunction with the other gravel pit operators in the area, work collaboratively by sharing technical information and proportionally funding, if necessary to establish and implement operating practices with an objective of mitigating cumulative effects relative to the site operation, in accordance with the Summit MSDP.
- 39. That a Building Permit(s) shall be obtained for any proposed buildings on-site through Building Services, prior to placement on-site.
- 40. That the site shall remain free of restricted and noxious weeds and maintained in accordance with the approved Weed Management submissions and the *Alberta Weed Control Act* [Statutes of Alberta, 2008 Chapter W-5.1, December 2017].
- 41. That any other Federal, Provincial or Municipal approvals, regulations, or policies are the sole responsibility of the Applicant/Owner.
 - i. That an AEP Registration for Pit Operation and any approvals under the Water Act for any Wetland Disturbances shall be obtained, prior to extraction activity commencement.
 - ii. That the Applicant/Owner shall operate within the requirements of the Provincial Code of Practice for Pits at all times.
 - iii. That the Applicant/Owner shall submit confirmation that authorization and clearance have been obtained under the *Historical Resources Act*, for the onsite mining activities located on SW-31-26-03-W5M.

This is not a development permit

- iv. That the Applicant/Owner shall submit a copy to the County, of the Pit Registration and any other Activity Plan Registrations from AEP and a copy of the issued Roadside Development Permit (RSDP029840-1) from AT.
- 42. That the Applicant/Owner shall maintain the existing access/approach, off Highway 567, to the required standard, until the intersection upgrade is complete and the existing access is reclaimed.
- 43. That no water shall be used for washing of gravel unless and until written approval has been received from AEP. If washing is approved by AEP, the washing of gravel shall adhere to the approved days and hours of operation condition on the Development Permit.
- 44. That no wash water shall be discharged off of the site or into any water channel.
- 45. That all sanitary sewage and water services shall be supplied in accordance with AEP and the *Alberta Safety Codes Act*.
- 46. That any fire suppression and abatement measures shall be followed in accordance with the Alberta Fire Code.

Should you have any questions or concerns, please contact Jacqueline Targett for assistance and quote the file number as noted above.

Michelle Mitton

Legislative Coordinator

403-520-1290

mmitton@rockyview.ca

Appendix QSoils Survey & Profiles by AECOM2022

Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership

SLR Project No: 212.06650.00007/8

Technical Memorandum

Alberta Environment and Parks

To: Terrina Perley, CET From: SLR Consulting (Canada) Ltd.

Senior Land and Water Specialist

Mountain Ash Limited Partnership DAPP0001717 Project: **AEP File**

Summit Project ECM 00481044

EPEA 00478753 Date: January 11, 2023

RE: Response to Supplemental Information Request

D. Environmental Protection and Enhancement Act, Code of Practice Application

Requirements

SIRs No. D5 and D6

Section C of the Supplemental Information Request provided by AEPA on December 1, 2022, dealt with hydrology/hydrogeology. Comments 11 and 12 on Hydrology/Hydrogeology are related and specifically requested:

D5

No.

"Thank you for providing the locations showing soil sampling. The Table provided in the SIR identifies "topsoil" and "subsoil" but not complete depths, the depths stop at 30 cm, however the original applications states that soils were investigated to approximately 1 m. The table does not provide texture or any other data. The Appendices referenced in the SIR response does not reflect necessary soil data. The original application and the SIR response still do not provide a source of cohesive data for soils to inform conservation, operation and reclamation planning and support the security calculations. The results of soil inspection locations typically appear in a tabular format as shown below."

Response

The table provided by AEPA was noted. Attachment A provides the requested information produced by AECOM.

The soils field program completed by AECOM, December 29 and 30, 2022 concluded that average thickness of subsoil material is 0.25m (original was 0.20m). Table 5 from Section 4.15 from the Code of Practice for Pits (COP) reflects is presented below with new subsoil material and total material calculations.

Table 1: Quantities of Materials used to Reclaim Site Post Mining

Phase	Surface Area (m²)	Topsoil (m²)	Subsoil (m²)	Overburden & Rejects (@15% Gravel) (m²)	Total (m³)
1	128,424	32,106	<mark>32,106</mark>	556,573	<mark>620,785</mark>
2	151,720	37,930	<mark>37,930</mark>	749,523	<mark>825,383</mark>
3	151,989	37,997	<mark>37,997</mark>	1,093,980	1,169,974

Phase	Surface Area (m²)	Topsoil (m²)	Subsoil (m²)	Overburden & Rejects (@15% Gravel) (m²)	Total (m³)
4	116,171	29,043	<mark>29,043</mark>	675,215	<mark>733,301</mark>
5	158,236	39,559	<mark>39,559</mark>	770,145	<mark>849,263</mark>
6	83,430	20,857	<mark>20,857</mark>	408,136	449,850
Total	789,970	197,492	<mark>197,492</mark>	4,253,571	4,609,058

Due to a change in subsoil thickness, the security estimate changed. The security estimate was included as Appendix O in the COP. The updated security estimate is attached as Attachment B of this document.

Full cost security has been re-calculated based on the total lands disturbed and the total volume of material being stripped. The total estimated cost of reclamation has been re-calculated to be \$735,116.79. Mountain Ash has included a 10% contingency on top of this of \$73,511.68. The total security proposed to be provided is \$808,628.47.

D6

"Thank-you for the detail in the response, however, what is needed a drawing showing current drainage for the project site, with the proposed boundary visible, and at a scale comparable to the reclamation drawings. The level of detail, and scale should be similar to the drawing that was provided for the drainage proposed for the site when reclaimed. The image is shown below."

Response

The image provided by AEPA was noted. Attachment C provides the requested information produced by Badke Consulting Ltd.

Sincerely,

Carolyn Carruthers, B.Sc., PMP, EP

Project Manager

Attachments: Attachment A: AECOM SIR Response D5

Caroly Carnethers

Attachment B: Summit Pit Security Estimate

Attachment C: Badke Consulting Ltd. SIR 2 Response

Statement of Limitations

SLR, AECOM and Badke Consulting Ltd. are relaying information obtained during work conducted for Mountain Ash Limited Partnership. SLR accepts no responsibility or liability for the use of this information for any purpose by any other entity except provincial review agencies. The regulatory agency (or agencies) can rely on the information in this document for the purposes of review, comment, and regulatory approvals.

To: Terrina Perley, CET Senior Land and Water Specialist Alberta Environment and Protected Areas

Your files: DAPP0001717 ECM 00481044 EPEA 00478753 AECOM Canada Ltd. 48 Quarry Park Boulevard SE Suite 300 Calgary, AB T2C 5P2 Canada

T: 403.254.3301 F: 403.270.0399 aecom.com

Date: January 10, 2023

Project:

Mountain Ash Limited Partnership Summit Project

RE: Response to Supplemental Information Request – D. *Environmental Protection and Enhancement Act*, Code of Practice Application Requirements

SIR No. D5:

The depth and textures of reclamation material (topsoil and subsoil) have been provided; however, the locations and results for each location where soil inspections were completed were not supplied in the application to substantiate the information. Please show the soil inspection locations on a scale drawing and provide a table with the results, and borehole log testing information.

Thank you for providing the locations showing soil sampling. The Table provided in the SIR identifies "topsoil" and "subsoil" but not complete depths, the depths stop at 30 cm, however the original applications states that soils were investigated to approximately 1 m. The table does not provide texture or any other data. The Appendices referenced in the SIR response does not reflect necessary soil data. The original application and the SIR response still do not provide a source of cohesive data for soils to inform conservation, operation and reclamation planning and support the security calculations. The results of soil inspection locations typically appear in a tabular format as shown below.

3PS Coordina	ates	Easting:		629321		Northing:			5803439		Water Table:	Did n	ot intercept		
Site#		Series	eries Subgroup Parent Material Slope (%) Slope Position Aspect Surface St		Surface Stones	es Draina		Surface Expression							
		1 Misc.		Misc.	Undifferen	itiated soils	Flu	vial	0.5- 2	Toe	Southwest	Slightly stony	Moderate	ly well	Undulating
Horizon	Depth (cm)		Moist	Gleying	Mottles Ab /Size/Cont				Texture	Structure Gr./CL/K.	Consist	Coarse Fragments %-Type			Photos Taken
1 Ah		0-21	Moist	*		÷		Subangular blocky	Friable	0-2%			*		
C1	P	21-74	Moist	-			Sand	Granular	Friable	0-2%	Plentiful/ Fine		÷		
C2		74+	Moist	-	1-4		Clay	Amorphous	Friable	0-2%	- 12		L.		
IMENTS:										Vegetation:	The state of the s		me, alfalfa,		
	ite# 1 Horizon Ah C1 C2	1 Horizon De Ah C1 C2	1 Misc. Horizon Depth (cm) Ah 0-21 C1 21-74 C2 74+	1 Misc. Undifferer Horizon Depth (cm) Moist Ah 0-21 Moist C1 21-74 Moist C2 74+ Moist	Ite # Series Subgroup 1 Misc. Undifferentiated soils Horizon Depth (cm) Moist Gleying Ah 0-21 Moist - C1 21-74 Moist - C2 74+ Moist -	Ite # Series Subgroup Parent I 1 Misc. Undifferentiated soils Flux Horizon Depth (cm) Moist Gleying Mot Ah 0-21 Moist - - C1 21-74 Moist - - C2 74+ Moist - -	Ite # Series Subgroup Parent Material 1 Misc. Undifferentiated soils Fluvial Horizon Depth (cm) Moist Gleying Mottles Ab /Size/Cont Ab /Size/Cont C1 21-74 Moist - - C2 74+ Moist - -	Series Subgroup Parent Material Slope (%)	tite # Series Subgroup Parent Material Slope [%] Slope Position 1 Misc. Undifferentiated soils Fluvial 0.5-2 Toe Horizon Depth (cm) Moist Gieving Mottles Texture Gr./Cl./K. Ah 0-21 Moist Clay loam Subangular blocky C1 21-74 Moist Sand Granular C2 74+ Moist Clay Amorphous	tite # Series Subgroup Parent Material Slope (%) Stope Position 1 Misc. Undifferentiated soils Fluvial 0.5-2 Toe Southwest Horizon Depth (cm) Moist Gleying Mottles Texture Ab / Size/Cont Texture Gr./CL/K. Ah 0-21 Moist - Clay loam Subangular Friable C1 21-74 Moist - Sand Granular Friable C2 74+ Moist - Clay Amorphous Friable	Series Subgroup Parent Material Slope % Slope Aspect Surface Stones	Timothy, smo	Tenstrus month bear Series Subgroup Parent Material Slope [%] Slope Position Aspect Surface Stones Drainage 1 Misc. Undifferentiated soils Fluvial 0.5-2 Toe Southwest Slightly stony Moderately well Horizon Depth (cm) Moist Gleying Mottles Texture Ab_/Size/Cont Texture Gr_/CL/IX. Coarse Fragments Roots Ah 0-21 Moist Clay loarn blocky Friable 0-2% Abundant/ Medium-coarse C1 21-74 Moist Sand Granular Friable 0-2% Plentiful/ Fine C2 74+ Moist Clay Amorphous Friable 0-2% - Tenstrus month bear and the coarse of the c		

Response

Soils Field Assessment Methods

On December 29 and 30, 2022, AECOM Canada Ltd.'s soils scientist, accompanied by Mountain Ash Limited Partnership (MALP), conducted a soils assessment using a tracked excavator under frozen soil conditions within the Project Boundary in the NW and SW quarter sections 31-026-03 W5M (Figure 1). As indicated in the response to SIR1, there were 11 sites assessed for soils within the Project Boundary in 2019. New sites were selected for the 2022 soils survey to provide a broader understanding of soils conditions within the Project Boundary.

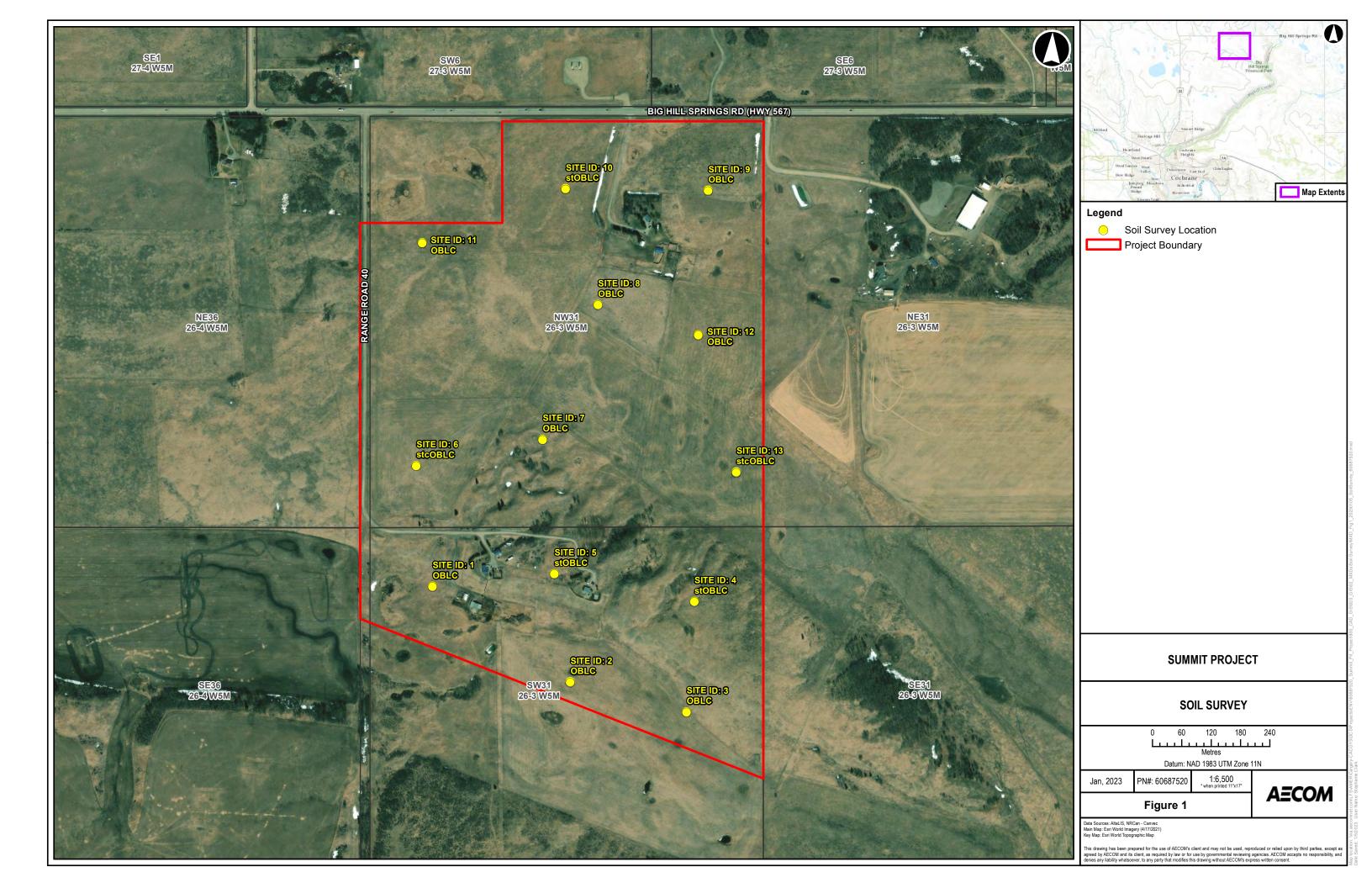
The soils field assessment comprised of 13 sites within the Project Boundary (Figure 1). Each location was classified and assessed to a 1.0 m depth as per the Canadian Soils Classification System methodology (Agriculture Canada 1998). For each soils assessment location, details on depths and texture of the A horizon (topsoils), B horizon (upper subsoil) and C horizon (lower subsoil) was collected. A soil profile description of each location was also described to a 1.0 m depth.

The soils were found to be frozen to a 15 cm depth at the time of the assessment and the shallow frozen condition was not found to be an issue for soil classification purposes as all soil characteristics and properties were readily discernable in the field (i.e., soil color, soil horizon thickness and soil structure). Soil properties for each horizon were collected from each of the 13 sites. In addition, 10 soil samples from 4 sites (i.e., sites 1, 5, 12 and 13) were selected and submitted for soil textural analysis to Element Labs in Edmonton and the laboratory results are attached in Appendix A. The remaining soil samples were hand textured in the office to confirm soil texture of the investigated soil horizons.

Soils Assessment Results

The detailed results of the soils assessment are provided in Table 1. Table 2 provides a summary of all the required information from all 13 sites and Appendix A provides the laboratory results for the 10 samples collected at 4 sites (i.e., sites 1, 5, 12 and 13).

All 13 soils assessment locations were located in upland pasture, meadow, or hayland. All soils were classified as Dunvargen soils series as per the Alberta Soils Names file (Generation 4.0) User's Handbook (Alberta Soil Information Centre 2016); which are described as being Orthic Black Chernozemic soils; five locations in the center and north central area of the proposed development contained stony and gravelly soil profiles.


The A horizon (topsoils) encountered were black in color and had good granular soil structure. The depth of the topsoils ranged from 18 to 40 cm, with the deeper topsoils associated with low lying areas. The average depth of topsoil within the Project Boundary was 25 cm.

The soil texture of the topsoils ranged from Silt loam, Loam, Silty Clay Loam and Clay Loam. There was good color definition between topsoils (black) over upper subsoils (B Horizons) which were Dark Yellow Brown or Yellow Brown in color.

Topsoils are recommended to be stripped to color change, Black over Dark Yellow Brown to Yellow Brown.

The B horizon (upper subsoils) observed during the soil investigation were Dark Yellow Brown to Yellow Brown in color and had weakly developed sub angular blocky structure to moderate sub angular blocky structure. The depths of the upper subsoils ranged from 15 to 32 cm. The average depth of upper subsoil was 25 cm in thickness within the Project Boundary and had different coloring from the underlying calcareous C horizon (lower subsoils).

The upper subsoils ranged in texture from Loam, Clay Loam to Silty Clay Loam.

Project Location	Sec.NW & SW 31-026-03 W5M	Assessor: Jim Burke	Date: December 29 & 30, 2022

Site 1 - SW31	GPS Coordi	nates: 51.2620	00 -114.41823				Land use: Pastu	ıre	
	Soil S	ubgroup	Parent Material	Slope	е		Stoniness	Drainage	Surface
	3011 3	ubgroup	Farent Material	%	Aspect	Position	Class	Diamage	Expression
	0	.BLC	Till	Till 5-9 South Upper				Well	Gently Und.
						Coarse			
Horizon	Depth (cm)	Colour	Texture	Structure	Consistence	Fragment %	C	Comments	Sample
Ah	0-30	10YR 3/2	Silt Loam	Granular	Friable	<2			Yes
Bm	30-55	10YR 4/4	Silty Clay Loam	w Subangular Blocky	Friable-Firm	<2	Site at the botto	m of a coulee	Yes
Ck	55-100	2.5Y 5/3	Clay	Massive	Firm	2-5			Yes

Site 2 - SW31	GPS Coord	nates: 51.2602	24 -114.41419				Land use: Pasture		
	Soil S	ubgroup	Parent Material	Slop	е		Stoniness	Drainage	Surface
	3011 3	ubgroup	Falelit Material	%	Aspect	Position	Class	Diamage	Expression
	O.BLC Till		Till	2-5	Southwest	Mid	S2	Moderately Well - Well	Gently Und.
						Coarse			
Horizon	Depth (cm)	Colour	Texture	Structure	Consistence	Fragment %		Comments	Sample
Ар	0-20	10YR 3/2	Loam- Clay Loam	Granular	Friable	2-5			Yes
Bm	20-40	10YR 5/4	Clay Loam	w Subangular Blocky	Firm	2-5			Yes
Ck	40-100	2.5Y 5/2	Clay Loam	Massive	Firm	2-5			Yes
							HCL Reaction in	n C Horizon	

Site 3 - SW31	GPS Coord	inates: 51.2596	69 -114.41078				Land use: Pasture			
	Soil S	Subgroup	Parent Material	Slop	е		Stoniness	Drainage	Surface	
	3011 3	ubgroup	Farent Material	%	Aspect	Position	Class	Dialilage	Expression	
	caO.BLC		caO.BLC Till 10-15 South west Mid		Mid	S0	Well	Und.		
						Coarse				
Horizon	Depth (cm)	Colour	Texture	Structure	Consistence	Fragment %	Comments		Sample	
Ар	0-40	10YR 3/2	Loam	Granular	Friable	<2			Yes	
Bm	40-68	10YR 4/3	Clay Loam- Loam	w Subangular Blocky	Friable	<2			Yes	
BCk	68-88	10Yr 4/4	Clay Loam	w Subangular Blocky	Firm	<2			Yes	
Ck	88-100	2.5Y 5/3-5/2	Clay Loam	Massive	Firm	<2			Yes	

Site 4 - SW31	GPS Coordi	nates: 51.2617	2 -114.41055				Land use: Pasture		
	Soil S	ubgroup	Parent Material	Slope	9		Stoniness	Drainage	Surface
	3011 3	ubgroup	Falent Material	%	Aspect	Position	Class	Drainage	Expression
	stc(D.BLC	Till	2-4	2-4 Level Up		S0	Well	Nearly level
						Coarse			
Horizon	Depth (cm)	Colour	Texture	Structure	Consistence	Fragment %	Comments		Sample
Ар	0-28	10YR 3/2	Loam	Granular	Friable	<5	Shrubs and Asp	en on the top of the hill	Yes
Bm	18-60	10YR 4/4	Loam	w Subangular Blocky	Friable -Firm	5			Yes
Ck	60-100	2.5Y 5/3	Clay Loam	Massive	Firm	5-15	Gravels and cob	bles in C Horizon	Yes

Project Location	Sec.NW & S	SW 31-026-03	W5M	Assessor: Jim Burke			Date: December 29 & 30, 2022			
Site 5 - SW 31	GPS Coordi	nates: 51.2622	23 -114.41465				Land use: Past	Land use: Pasture		
	Soil Subgroup Parent Material Slope						Stoniness	Drainage	Surface	
	3011 3	Soil Subgroup Parent Material %		Aspect	Position	Class	Drainage	Expression		
	stO.BLC Till 2-5 South Upper				S2	Well	Gently Und.			
						Coarse				
Horizon	Depth (cm)	Colour	Texture	Structure	Consistence	Fragment %		Comments	Sample	
Ар	0-20	10YR 3/2	Clay Loam	Granular	Friable	10-15			Yes	
Bm	20-38	10YR 4/4	Clay Loam	w Subangular Blocky	Friable	15-25			Yes	
Ck	38-95	2.5Y 5/3- 6/3	Clay Loam	Massive	Firm	15-20	gra	velly profile	Yes	

Site 6 - NW31	GPS Coordi	nates: 51.2642	22 -114.41870				Land use: Hayla	and	
	Soil S	ubgroup	Parent Material	Slope	9		Stoniness	Drainaga	Surface
	3011 3	ubgroup	Parent Material	%	Aspect	Position	Class	Drainage	Expression
	stc	stcO.BLC Stony Till 2-5 Northwest Upper				S2	Well	Gently Und.	
						Coarse			
Horizon	Depth (cm)	Colour	Texture	Structure	Consistence	Fragment %	C	Comments	Sample
Ар	0-18	10YR 3/2	Clay Loam	Granular	Friable	<5			Yes
Bm	18-40	10YR 4/3-3/3	Silty Clay Loam	w Subangular Blocky	Friable	10-15			Yes
st Ck	40-100	2.5Y 5/3-5/2	Clay Loam- Silty Clay Loam	Massive	Firm	15-25	Gravels in C Ho	rizon	Yes

Site 7 - NW31	GPS Coord	inates: 51.2647	703 -114.414999				Land use: Mea	dow	
	Soil S	Subgroup	Parent Material	Slop	е		Stoniness	Drainage	Surface
	3011 3	ubgroup	Parent Material	%	Aspect	Position	Class	Diamage	Expression
	O.BLC		Till	2-3	Level Lower		S0	Moderately Well	Level
						Coarse			
Horizon	Depth (cm)	Colour	Texture	Structure	Consistence	Fragment %	Comments		Sample
Ар	0-28	10YR 3/2	Clay Loam	w Subangular Blocky	Friable	0	Meadow soil		Yes
Bm	28-55	10YR 4/3	Clay Loam	w Subangular Blocky	Firm	0			Yes
Ck	40-90	10YR 5/3	Clay Loam	Massive	Firm	0			Yes
CK2	90-100	2.5Y 5/3-5/2	Clay Loam	Massive	Firm	0			Yes

Site 8 - NW31	GPS Coordi	nates: 51.2671	8 -114.41370				Land use: Pasture			
	Soil S	ubgroup	Parent Material	Slope	Э		Stoniness	Drainage	Surface	
	3011 3	ubgroup	Falent Material	%	Aspect	Position	Class	Dialilage	Expression	
	0	.BLC	Till	3-9	South west	Mid	S0	Moderately Well	Und.	
						Coarse				
Horizon	Depth (cm)	Colour	Texture	Structure	Consistence	Fragment %	С	omments	Sample	
Ap	0-30	10YR 2/2-3/2	Silty Loam- Silty Clay Loam	Granular	Friable	<1			Yes	
Bm	30-60	10YR 5/4	Silty Clay Loam	w Subangular Blocky	Friable- Firm	<1			Yes	
Ck	60-100	2.5Y 5/3	Silty Clay Loam - Clay	Massive	Firm	<1			Yes	

Project Location	Sec.NW & S	SW 31-026-03 \	W5M	Assessor: Jim Burke			Date: Decembe	Date: December 29 & 30, 2022		
Site 9 - NW31	GPS Coordi	nates: 51.2692	28 -114.41014				Land use: Hayla	Land use: Hayland		
	Soil S	ubaroup	Parent Material	Slope			Stoniness	Drainage	Surface	
	Soil Subgroup		Soli Subgroup Falerit iviaterial % Aspect		Aspect	Position	Class	Diamage	Expression	
	stC	stO.BLC Till		3-5	East	Mid	S1	Well	Gently Und.	
						Coarse				
Horizon	Depth (cm)	Colour	Texture	Structure	Consistence	Fragment %		Comments	Sample	
Ap	0-28	10YR 3/2-2/3	Silt Loam	w Subangular Blocky	Friable	<5			Yes	
Bm-Bt	28-49	10YR 4/5	Clay Loam-Silty Clay Loam	w Subangular Blocky	Firm- Friable	<5			Yes	
Ck	49-95	2.5Y 5/3	Clay Loam-Silty Clay Loam	Massive	Firm	<5			Yes	

Site 10 - NW31	GPS Coordi	inates: 51.2693	31 -114.41432				Land use: Pasture			
	Soil S	Subgroup	Parent Material	Slope	Э		Stoniness	Drainage	Surface	
	3011 3	ubgroup	Falent Material	%	Aspect	Position	Class	Diamage	Expression	
	stC	stO.BLC Stony Till 5-9 South west Mid				S2-S3	Well - Rapidly	Und.		
						Coarse				
Horizon	Depth (cm)	Colour	Texture	Structure	Consistence	Fragment %	С	omments	Sample	
Ар	0-20	10YR 3/2	Loam	Granular	Friable	25			Yes	
Bm	30-50	10YR 4/4	Clay Loam	w Subangular Blocky	Friable	25-50			Yes	
Ck	50-100	2.5Y 5/3	Clay Loam	Massive	Firm	25-50	Very stony and g	gravelly profile	Yes	

Site 11 - NW31	GPS Coordi	inates: 51.2683	32 -114.41852				Land use: Pasture			
	Soil S	Subgroup	Parent Material	Slop	е		Stoniness	Drainage	Surface	
	3011 3	oubgroup	Parent Material	%	Aspect	Position	Class	Drainage	Expression	
	O.BLC Till			5-9	North East	Mid	S2	Well	Und.	
						Coarse				
Horizon	Depth (cm)	Colour	Texture	Structure	Consistence	Fragment %	C	Comments	Sample	
Ар	0-25	10YR 3/2	Loam	w Subangular Blocky	Friable	<2	No stones in pro	ofile	Yes	
Bm	25-40	10YR 4/6	Clay Loam	w Subangular Blocky	Friable	<2			Yes	
Ck	40-120	2.5Y 5/3	Clay Loam	Massive	Firm	<2			Yes	

Site 12 - NW31	GPS Coord	inates: 51.2666	62 -114.41043	<u> </u>	•		Land use: Hayla	ind				
	Soil S	uharaun	Parent Material	Slope	9		Stoniness	Drainaga	Surface			
	3011 3	Subgroup	Parent Material	%	Aspect Position Class		Class	Drainage	Expression			
	O.BLC Till			2-5	South West	Mid	S0	Well	Gently Und.			
						Coarse						
Horizon	Depth (cm)	Colour	Texture	Structure Consistence Fragment % Comments		Comments	Sample					
Ap	0-28	10YR 3/2	Loam - Silt Loam	Granular	Friable	<2			Yes			
Bm	28-50	10YR 4/4	Silty Clay Loam	w Subangular Blocky	Friable	<2			Yes			
Ck	50-110	2.5Y 5/3	Silty Clay Loam	Massive	Firm	<2	No stones in pro	Yes				

Table 1: Detailed Soil Profile Description

Project Location	Sec.NW & S	SW 31-026-03	W5M	Assessor: Jim Burke			Date: December 29 & 30, 2022			
Site 13 - NW31	GPS Coordi	nates: 51.2641	0 -114.40932				Land use: Hayland			
	Soil S	uharoun	Parent Material	Slop	е	Stoniness	Drainage	Surface		
	Soil Subgroup		Parent Material	%	Aspect	Position	Class	Drainage	Expression	
	stcO.BLC Till			2-3	level	Mid	S1	Well - Moderately Well	Nearly level	
					Coarse					
Horizon	Depth (cm)	Colour	Texture	Structure	Consistence	Fragment %	(Comments	Sample	
Ар	0-18	10YR 3/2	Loam	Granular	Friable	<5			Yes	
Bmk	18-40	10YR 4/3-3/3	Clay Loam	w Subangular Blocky	Firm	10-15			Yes	
Ck	40-100	2.5Y 5/3-5/2	Clay Loam	Massive	Firm	>25	Stones and grav	vels in C Horizon	Yes	

Table 2 - Su	mmary of Soil	Profile Description	on																
		GPS			Ground	surface Genera	l Descriptio	n			Soil Classific	ation			Topsoil stripping R	ecommendations			
Site ID	Lab Analysis	Latitude	Longitude	Land Use	Vegetation	Surface Expression	Slope Position	Slope Class	Surface Stoniness	Soil Series	Soils classification	Parent Material	Drainage	A Horizon (cm) Top Soil Depth	Soil Handling Recommendation	Soil Construction Issues and Concerns	B Horizon Depth (cm)	A Horizon Texture/ B Horizon Texture	Comments
1	Yes	51.262	-114.41823	Pasture	Grasses	U	Lower	4	50	Dunvargen	OBLC	Till	Well	30	Strip topsoil to 30 cm depth	Good color change evident between topsoil and subsoil (Black over Yellow Brown) Deep Topsoils	25	Silt Loam/Silty clay loam	Site at bottom of a coulee
2	No	51.26024	-114.41419	Pasture	Grasses	GU	Mid`	3	S2	Dunvargen	OBLC	Till	Moderately Well - Well	20	Strip topsoil to 20 cm depth	Good color change evident between topsoil and subsoil (Black over Yellow Brown)	20	Loam to Clay loam/Clay loam	Strong rxn in C horizon lower area of the landscape
3	No	51.25969	-114.41078	Pasture	Grasses	U	Mid`	5	50	Dunvargen	OBLC	Till	Well	40	Strip topsoil to 40 cm depth	Deep topsoils in field Good color change evident between topsoil and subsoil	28	Loam/Clay Loam- Loam	Site is on the mid slope of a hill
4	No	51.26172	-114.41055	Treed	Aspen and shrubs	GU	Upper	2-3	S1	Dunvargen	stOBLC	Stony Till	Well	28	Strip topsoil to 30 cm depth	Deep topsoils in field Good color change evident between topsoil and subsoil	32	Loam / Loam	Stony and cobbly C horizon
5	Yes	51.26223	-114.41465	Pasture	Grasses	GU	Upper	3	S2	stDunvargen	stOBLC	Stony Till	Well	20	Strip topsoil to 20 cm depth	Color change evident between topsoil and subsoilvery gravelly and stony surface	20	Stony Clay Loam/gr Clay Loam	Stony and cobbly A,B and C horizon throughout the profile
6	No	51.26422	-114.4187	Hayland	Forage	GU	Upper	2-3	S2	stcDunvargen	stcOBLC	Till	Well	18	Strip topsoil to 20 cm depth	Good color change evident between topsoil and subsoil stony c horizon profile	22	Clay Loam/ Silty Clay Loam	Stony and cobbly C horizon
7	No	51.264703	-114.414999	Meadow	Grasses	L	Lower	2-3	S0	Dunvargen	OBLC	Till	Moderately Well	28	Strip topsoil to 30 cm depth	Good color change evident between topsoil and subsoil clay loam soils susceptible to compaction if moist	27	Clay Loam / Clay Loam	Meadow soil in low lying area
8	No	51.26718	-114.41337	Pasture	Grasses	U	Mid	3-4	SO	Dunvargen	OBLC	Till	Moderately Well	30	Strip topsoil to 30 cm depth	Good color change evident between topsoil and subsoil Clay Loam soils susceptible to compaction if moist	30	Silty Clay loam to Silt Loam/ Silty Clay Loam	Excellent pasture lands
9	No	51.26928	-114.41014	Hayland	Grasses	GU	Mid	3	S1	Dunvargen	OBLC	Till	Well	20	Strip topsoil to 20 cm depth	good color change evident between topsoil and subsoil clay loam soils susceptible to compaction if moist	21	Silt Loam/clay loam - Silty Clay Loam	Hayfield
10	No	51.26931	-114.41432	Pasture	Grasses	GU	Mid	3-4	\$2-\$3	stDunvargen	stOBLC	Stony till	Well	20	Strip topsoil to 20 cm depth	Good color change evident between topsoil and subsoil very stony profile difficult to strip clay Loam soils susceptible to compaction if moist	30	Loam/clay loam	Very stony soil profile
11	No	51.26832	-114.41852	Pasture	Grasses	U	Mid	3-4	SO	Dunvargen	OBLC	тін	Well	25	Strip topsoil to 25 cm depth	Good color change evident between topsoil and subsoil clay loam soils susceptible to compaction if moist	15	Loam / Clay Loam	Undulating pasture land no stones in profile
12	Yes	51.26662	-114.41043	Hayland	Grasses	GU	Mid	3	S0	Dunvargen	OBLC	Till	Well	28	Strip topsoil to 30 cm depth	Good color change evident between topsoil and subsoil clay loam soils susceptible to compaction if moist	22	Loam - silty loam / Silty Clay Loam	No stones in profile
13	Yes	51.2641	-114.40932	Hayland	Grasses	2	Lower	2	S1	stDunvargen	stcOBLC	Till	Well - Moderately Well	18	Strip topsoil to 20 cm depth	Good color change evident between topsoil and subsoil clay loam soils susceptible to compaction if moist	22	Loam / Clay Loam	Stones found in the C horizon

Yours sincerely,

Janes Ranke

Senior Environmental Scientist

AECOM Canada Ltd.

E: jim.burke1@aecom.com

Rick Lauzon; P.Biol, R.P.Bio Senior Wildlife Biologist AECOM Canada Ltd. E: rick.lauzon@aecom.com

References

Agriculture Canada. 1998. The Canadian System of Soil Classification. Soil Classification Working Group. NRC Research Press. Ottawa, Ont. Canada. 187 pp.

Alberta Soil Information Centre. 2016. Alberta Soil Names File (Generation 4) User's Handbook. M.D. Bock (ed.). Agriculture and Agri-Food Canada, Science and Technology Branch, Edmonton, AB.

Appendix A

aecom.com

T: +1 (780) 438-5522 F: +1 (780) 434-8586 E: info.Edmonton@element.com

W: www.element.com

Report Transmission Cover Page

Bill To: AECOM Canada Ltd

300-48 Quarry Prk Blvd SE

Calgary, AB, Canada

Attn: Jim Burke Sampled By: Jim Burke Company: AECOM Project ID:

Project Name: Summit

NW & SW 31-026-03

W5M

LSD: 31-026-03-W5M

P.O.:

Proj. Acct. code:

Project Location:

Lot ID: 1623790

Control Number:

Date Received: Dec 30, 2022 Date Reported: Jan 4, 2023

Report Number: 2831444

Contact Company **Address** Jim Burke AECOM Canada Ltd 300-48 Quarry Prk Blvd SE Calgary, AB Phone: (403) 660-0365 Fax: Email: jim.burke1@aecom.com **Delivery Deliverables Format** Email - Multiple Deliverables By Lot PDF COC / Test Report Email - Multiple Deliverables By Lot **PDF** Test Report

Notes To Clients:

The information contained on this and all other pages transmitted, is intended for the addressee only and is considered confidential.

If the reader is not the intended recipient, you are hereby notified that any use, dissemination, distribution or copy of this transmission is strictly prohibited.

If you receive this transmission by error, or if this transmission is not satisfactory, please notify us by telephone.

T: +1 (780) 438-5522 F: +1 (780) 434-8586

E: info.Edmonton@element.com

W: www.element.com

Analytical Report

Clay

Bill To: AECOM Canada Ltd

300-48 Quarry Prk Blvd SE

<2 µm

Calgary, AB, Canada

Attn: Jim Burke Sampled By: Jim Burke Company: AECOM

Project ID:

Project Name: Summit

NW & SW 31-026-03

W5M

LSD: 31-026-03-W5M

P.O.:

Proj. Acct. code:

Sample Location Sample Description

% by weight

Project Location:

Lot ID: 1623790

Control Number:

Date Received: Dec 30, 2022 Date Reported: Jan 4, 2023

2831444 Report Number:

Reference Number Sample Date Sample Time

Matrix

1623790-1 Dec 29, 2022 NA

Soil

22

1623790-2 Dec 29, 2022

1623790-3 Dec 29, 2022

Soil

49

0.1

NA

Soil

29

NA

Site 1 / Ah / 0-30 / Site 1 / Bm / 30-55 / Site 1 / Ck / 55-100 /

15.1°C 15.1°C

15.1°C

Nominal Detection Units Results Results Results Analyte Limit **Physical and Aggregate Properties** Texture Silt Loam Silty Clay Loam Clay Sand 50 μm - 2 mm % by weight 22 0.1 20 12 2 μm - 50 μm Silt % by weight 56 51 39 0.1

T: +1 (780) 438-5522 F: +1 (780) 434-8586

E: info.Edmonton@element.com

W: www.element.com

Analytical Report

Bill To: AECOM Canada Ltd

300-48 Quarry Prk Blvd SE

Calgary, AB, Canada

Attn: Jim Burke Sampled By: Jim Burke Company: AECOM

Project ID:

Project Name: Summit

NW & SW 31-026-03

W5M

LSD: 31-026-03-W5M

P.O.:

Proj. Acct. code:

Project Location:

Lot ID: 1623790

Control Number:

Date Received: Dec 30, 2022 Date Reported: Jan 4, 2023

2831444 Report Number:

Reference Number

1623790-5 1623790-4

Dec 29, 2022 NA

Dec 29, 2022

1623790-6 Dec 29, 2022

NA

NA

Sample Location

Sample Date

Sample Time

Sample Description Site 5 / Ap / 0-20 / Site 5 / Bm / 20-38 / 15.1°C

Site 5 / Ck / 38-95 /

15.1°C

15.1°C

Matrix

Soil

Soil

Soil

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Physical and Aggre	egate Properties					_
Texture			Clay Loam	Clay Loam	Clay Loam	
Sand	50 μm - 2 mm	% by weight	34	26	25	0.1
Silt	2 μm - 50 μm	% by weight	37	41	40	0.1
Clay	<2 μm	% by weight	29	33	35	0.1

T: +1 (780) 438-5522 F: +1 (780) 434-8586

E: info.Edmonton@element.com

W: www.element.com

Analytical Report

Bill To: AECOM Canada Ltd

300-48 Quarry Prk Blvd SE

Calgary, AB, Canada

Attn: Jim Burke Sampled By: Jim Burke Company: AECOM

Project ID:

Project Name: Summit

NW & SW 31-026-03

W5M

LSD: 31-026-03-W5M

P.O.:

Proj. Acct. code:

Project Location:

Lot ID: 1623790

Control Number:

Date Received: Dec 30, 2022 Date Reported: Jan 4, 2023

2831444 Report Number:

Reference Number Sample Date

1623790-7 Dec 30, 2022

1623790-8 Dec 30, 2022

1623790-9 Dec 30, 2022

NA NA NA

Sample Time **Sample Location**

Sample Description Site 12 / Bm / 28-50 / Site 12 / Ck / 50-110 Site 13 / Bm / 18-40 /

15.1°C

/ 15.1°C

15.1°C

Matrix Soil Soil Soil

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Physical and Aggr	egate Properties					<u>.</u>
Texture			Silty Clay Loam	Clay Loam	Clay Loam	
Sand	50 μm - 2 mm	% by weight	19	27	29	0.1
Silt	2 μm - 50 μm	% by weight	46	38	36	0.1
Clay	<2 μm	% by weight	35	35	35	0.1

T: +1 (780) 438-5522 F: +1 (780) 434-8586

E: info.Edmonton@element.com

W: www.element.com

Analytical Report

Bill To: AECOM Canada Ltd

300-48 Quarry Prk Blvd SE

Calgary, AB, Canada

Attn: Jim Burke
Sampled By: Jim Burke
Company: AECOM

Project ID:

Project Name: Summit

NW & SW 31-026-03

W5M

LSD: 31-026-03-W5M

P.O.:

Proj. Acct. code:

Project Location:

Control Number:

Date Received: Dec 30, 2022 Date Reported: Jan 4, 2023

Lot ID: 1623790

Report Number: 2831444

Reference Number Sample Date

1623790-10 Dec 30, 2022 NA

Sample Time
Sample Location

Sample Description Site 13 / Ck / 40-100 / 15.1°C

/ 13.1

Matrix Soil

Analyte		Units	Results	Results	Results	Nominal Detection Limit
Physical and Aggr	egate Properties					_
Texture			Clay Loam			
Sand	50 μm - 2 mm	% by weight	37			0.1
Silt	2 μm - 50 μm	% by weight	31			0.1
Clay	<2 μm	% by weight	32			0.1

Approved by:

Randy Neumann, BSc

RhDeunam

T: +1 (780) 438-5522 F: +1 (780) 434-8586

E: info.Edmonton@element.com

W: www.element.com

Quality Control

Bill To: AECOM Canada Ltd

300-48 Quarry Prk Blvd SE

Calgary, AB, Canada

Attn: Jim Burke Sampled By: Jim Burke Company: AECOM Project ID:

Project Name: Summit

NW & SW 31-026-03

W5M

LSD: 31-026-03-W5M

P.O.:

Proj. Acct. code:

Project Location:

Lot ID: 1623790

Control Number:

Date Received: Dec 30, 2022
Date Reported: Jan 4, 2023

Report Number: 2831444

Physical and Aggregate Properties

Control Sample	Units	Measured	Lower Limit	Upper Limit	Passed QC
Sand	% by weight	29	19	32	yes
Silt	% by weight	42	33	54	yes
Clay	% by weight	29	25	37	yes

Date Acquired: January 03, 2023

Client Sample Replicates	Units	Replicate 1	Replicate 2	% RSD Criteria	Absolute Criteria	Passed QC
Sand	% by weight	19	18	10	0	yes
Silt	% by weight	33	33	10	0	yes
Clay	% by weight	48	49	10	0	yes

Date Acquired: January 03, 2023

T: +1 (780) 438-5522 F: +1 (780) 434-8586

E: info.Edmonton@element.com

W: www.element.com

Methodology and Notes

Bill To: AECOM Canada Ltd

300-48 Quarry Prk Blvd SE

Calgary, AB, Canada

Attn: Jim Burke
Sampled By: Jim Burke
Company: AECOM

Project ID:

Project Name: Summit

Project Location: NW & SW 31-026-03

W5M

LSD: 31-026-03-W5M

P.O.:

Proj. Acct. code:

Lot ID: 1623790

Control Number:

Date Received: Dec 30, 2022
Date Reported: Jan 4, 2023
Report Number: 2831444

Method of Analysis

Particle Size Analysis - GS

Method Name

Reference

Carter

Method

Date Analysis Location Started

* Hydrometer Method, 55.3

Jan 3, 2023

Element Edmonton - Roper

Road

* Reference Method Modified

References

Carter Soil Sampling and Methods of Analysis.

Please direct any inquiries regarding this report to our Client Services group.

Results relate only to samples as submitted.

The test report shall not be reproduced except in full, without the written approval of the laboratory.

Full Cost Security Calculation

Summit Pit - West Half Sec. 31 Twp. 26 Rge.3 W5M

1. Cost of Replacing Reclamation Materials

	Volume	Cost/m3	Total	Notes
Surveyed Topsoil Volume		\$ 2.50	\$ -	NA until 5 Year Report
Surveyed Subsoil Volume				NA until 5 Year Report
Surveyed Overburden Volume		\$ 2.50	\$ -	NA until 5 Year Report
Surveyed Reject Sand Volume		\$ 2.50	\$ -	NA until 5 Year Report
		TOTAL	Ś -	

	Phase 1 Disturbed Area	Strata Depth	Reject	Volume			
	(m2)	(m)	Factor	(m3)	Cost/m3	Total	Notes
Estimated Topsoil Volume	76,026	0.25		19006.5	\$ 2.50	\$ 47,516.25	Area (m2) includes Mining Blocks A,B,C,and D
Estimated Subsoil Volume	76,026	0.25		19006.5	\$ 2.50	\$ 47,516.25	
Estimated Overburden Volume	76,026	3.11		236440.86	\$ 2.50	\$ 591,102.15	
Estimated Reject Sand Volume	0	0	15%	0	\$ 2.50	\$ -	
	0	3.61		274453.86	Total	\$ 686,134.65	

 Total Stockpile Volume
 274,453.9
 m3

 Cost to Replace Stockpile Volume per m3
 \$ 2.50
 m3

 Total Cost
 \$ 686,134.65

2. Cost to Remove Stockpile Area, Crash Banks, De-compact and Final Grading

					Total Mobilization/			
	Equipment Type	Hours	н	lourly Rate	Demobilization		Total	Notes
Cost to Remove Stockpile Area and Stockpiles	John Deere 470 Excavator	20	\$	261.00	\$ 4,000.00	\$	9,220.00	2018 Road Builders
	CAT 740 Dump Truck	20	\$	235.00	\$ 1,500.00	\$	6,200.00	2018 Road Builders
	CAT 627G - Motor Scraper	20	\$	401.00	\$ 3,500.00	\$	11,520.00	2018 Road Builders
Cost to Crash Banks	CAT D8 Crawler Tractor	20	\$	278.00	\$ 1,800.00	\$	7,360.00	2018 Road Builders
Cost to De-Compact	CAT D8 Crawler Tractor	20	\$	278.00	\$ -	\$	5,560.00	See MOB/DEMOB Above 2016 Road Builders
Final Grading	CAT 140M Grader	20	\$	192.00	\$ 1,500.00	\$	5,340.00	2018 Road Builders
	Total	120						
			_		Total	Ś	45,200,00	

3. Cost of Re-Seeding, Fertilizing, Maintaining Area

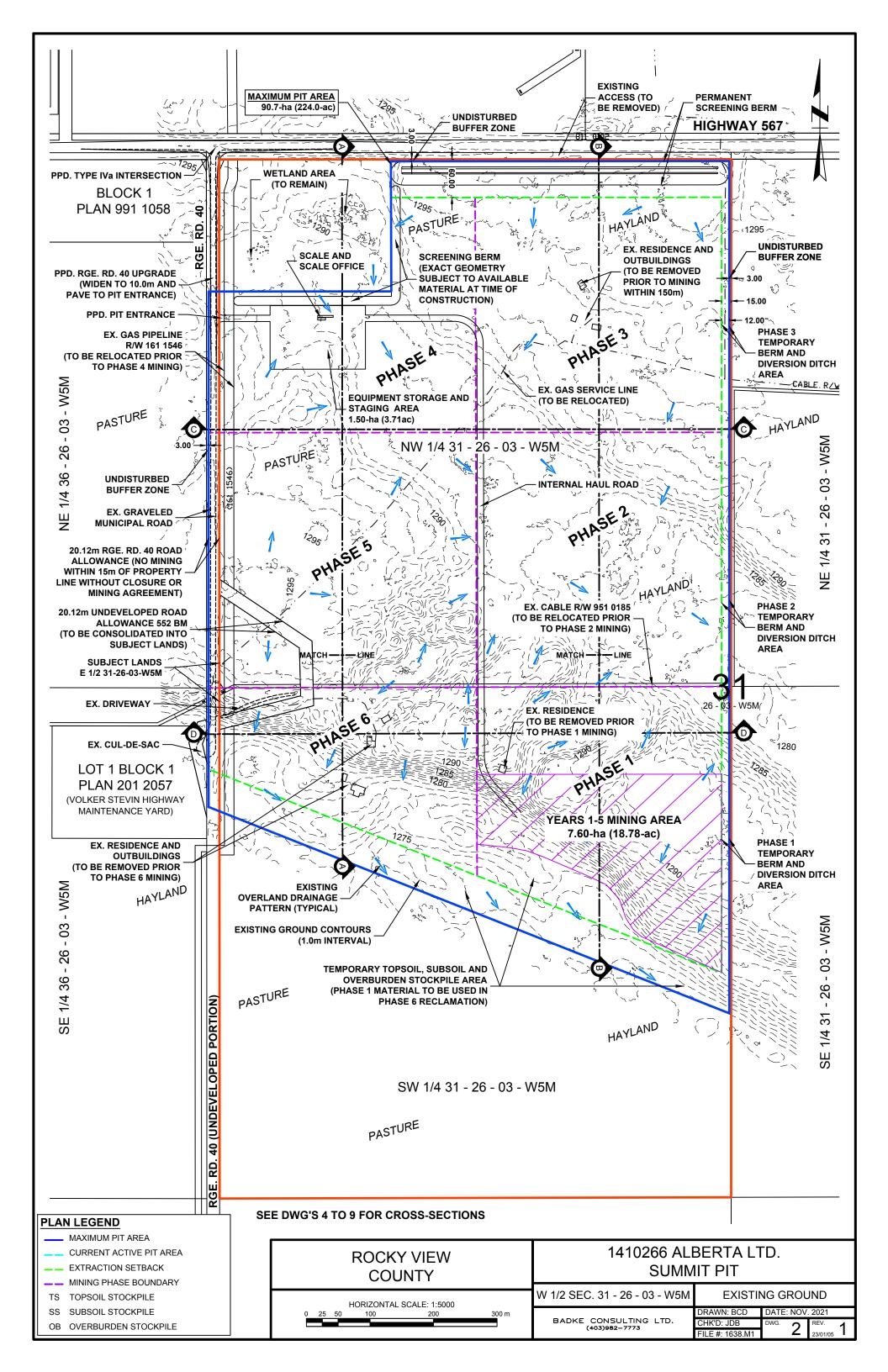
	Equipment Type	Hours	Hourly Rate (Equipment or Labour)	Seeding Rate (per acre)	Registered Area (acres)	Fertilizer Application Rate (per acre)	Pesticide Application Rate (per acre)	Fertilizer Cost (per acre)	Herbicide Cost (per acre)		Total
Seed Bed Preparation	Wheel Tractor (Group 2) with Harrow	12	\$ 85.00		18.78					\$	1,020.00
Seeding Application	Air Seeder/Air Drill/Labour	12	\$ 40.00	\$ 35.00	18.78					\$	1,794.60
Fertilization	Granular Fertilizer Application - Floater Truck/Labour	4	\$ 40.00		18.78			\$ 11.75		\$	601.33
Maintenance (2 Years)	Granular Herbicide Application - Floater Truck/Labour		\$ 40.00		18.78				\$ 9.75	\$	366.21
Source : Custom Pates 2016 - Seeding (Alberta Agriculture Website)											

Source: Custom Rates 2016 - Seeding (Alberta Agriculture Website)

vww.agric.gov.ca

4. Cost of Contingencey/Administration and Removal of Pit Infrastructure (Scale, Scale House, Gates, Fuel Tanks)

Total Estimated Cost of Reclamation	\$ 735,116.79		
Cost of Contingency	10%		
Total Cost of Contingency	\$ 73,511.68		
5. Total Security To Be Provided	\$ 808,628.47		


201.39

Cost per Acre

Phase 1 Materials Calculations by Sub-Phase

Basis of calculation	Calculated from models	Calculated from models	=A x 0.25	=A x 0.25	= B - (C+D)	=8/A	=E/A	Calculated from models	= H * 0.15	= H - I	=Jx2	=K/A
Sub-Phase (parts of phase 1)	3D Surface Area	TOTAL Stripping Volume (Overburden & Soils)	TOPSOIL Stripping Volume (@0.25m)	SUBSOIL Stripping Volume (@0.25m)	OVERBURDEN	Average TOTAL Stripping thickness (incl. Soils)	Average NET Stripping thickness (excl. Soils)	Gross Mining Volume	Rejects (@15%)	Net Mining Volume	Net Mining Tonnes (@ 2t/m³)	Average Mining Thickness (to 1m above maximum groundwater)
Α	12,970 m²	4,387 m³	3,242 m³	3,242 m ³	0 m ³	0.34 m	0.00 m	118,236 m³	17,735 m³	100,500 m³	201,001 t	9.12 m
В	17,705 m²	80,241 m ³	4,426 m³	4,426 m³	71,388 m³	4.53 m	4.03 m	263,848 m³	39,577 m³	224,271 m³	448,542 t	14.90 m
С	12,864 m²	45,817 m³	3,216 m³	3,216 m³	39,385 m³	3.56 m	3.06 m	91,215 m³	13,682 m³	77,533 m³	155,066 t	7.09 m
D	32,487 m²	98,331 m³	8,122 m³	8,122 m³	82,087 m³	3.03 m	2.53 m	597,516 m ³	89,627 m³	507,889 m³	1,015,777 t	18.39 m
E	30,366 m²	95,397 m ³	7,592 m³	7,592 m³	80,214 m³	3.14 m	2.64 m	592,349 m ³	88,852 m³	503,496 m³	1,006,993 t	19.51 m
F	22,032 m²	60,550 m ³	5,508 m³	5,508 m ³	49,535 m³	2.75 m	2.25 m	396,056 m³	59,408 m³	336,647 m³	673,294 t	17.98 m
Total	128,424 m²	384,723 m³	32,106 m³	32,106 m³	322,609 m³	3.00 m	2.51 m	2,059,219 m³	308,883 m³	1,750,336 m³	3,500,673 t	16.03 m

Appendix R Project Mitigation Measures

Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership

SLR Project No: 212.06650.00007/8

Technical Memorandum

Alberta Environment and Parks

To: Terrina Perley, CET From: SLR Consulting (Canada) Ltd.

Senior Land and Water Specialist

DAPP0001717 Project: Mountain Ash Limited Partnership

AEP File ECM 00481044 Summit Project. Summit Project

Re: Response to Supplemental Information Request – C. *Environmental Protection and Enhancement Act*, Code of Practice Application Requirements

SIR No. C1:

Nos:

Statements within the report "Code of Practice for Pits in Alberta Application, dated Dec 2021" (COP) indicate that impacts are mitigated by best management practices under the Code of Practice for Pits (Alberta 2004). Examples include, (not an exhaustive list) pg. 218, Section 5.3, pg. 18, pg. 195, pg. 218, Section 5.3. The Code of Practice for Pits was not designed as a best management practice tool. Any statement within the application that uses this reference requires revisiting. Mitigative measures are required to be site specific, definitive in relation to science (rather than opinion), provided within the application, and address potential impacts to all receptors. Monitoring can be part of the mitigative plan but are not considered adequate mitigative measures alone.

Response:

SLR referenced the COP, or the guide to the COP in five instances in the application documentation. The relevant sections are as follows (where the COP is referenced with respect to mitigation):

- Section 5.3 of the main document.
- Appendix I Hydrogeological Assessment Report¹
 - o Executive summary here the reference is general and SLR has stated that other mitigation measures including those contained in the following report are used in addition to the best management practices outlined in the code of practice for pits.
 - o Section 1.4 this refers to the objectives of the Hydrogeological assessment report and is specific to the requirements in the COP.
 - o Section 5.3 Potential Impacts on Groundwater and Surface Water Quality.

The intent in both Section 5.3 of the COP and Section 5.3 of Appendix I was to highlight that the COP has been used to develop the minimum requirements but that specific mitigation measures are outlined in the following reports:

- The Erosion and Sedimentation Control Plan (SLR 2021).
- The Stormwater Management Plan (SLR 2021).

¹ SLR 2020. Hydrogeological Assessment Report prepared for Mountain Ash Limited Partnership. SLR Consulting (Canada) Ltd. January 2020.

- The Groundwater Management Plan (SLR 2021).
- The Stripping and Grade Plan (SLR 2021).
- The Mining and Excavation Plan (SLR 2021).

Caroly Carnethers

Post Mining and Reclamation Plan (SLR 2021).

In general, SLR has not relied on the COP for its mitigation and monitoring requirements. The COP and the associated guide were however used to identify the minimum requirements associated with mitigation, monitoring and reclamation. SLR and Mountain Ash Limited Partnership (MALP) have developed unique mitigation, monitoring and reclamation measures that are Project specific and appended as Appendix A to this response.

Sincerely,

Carolyn Carruthers

SLR Project Manager

Statement of Limitations

SLR is relaying information obtained during work conducted for Mountain Ash Limited Partnership. SLR accepts no responsibility or liability for the use of this information for any purpose by any other entity except provincial review agencies. The regulatory agency (or agencies) can rely on the information in this document for the purposes of review, comment, and regulatory approvals.

Appendix A Mitigation Table

Discipline	Mitigation				
Wildlife	Project activities will develop in phases of 8 ha to 16 ha.				
	 Reclamation is progressive (meaning as portion of a phase are depleted, and other portions of the phase is opened or stripped, material from the new portion of the phase or stripping's from this phase, get placed in the previous excavation area which is being reclaimed). 				
	 Project clearing and site preparation activities are planned to occur outside the migratory breeding bird nesting period, which is April 14 to August 28 (Nesting Zone B4; ECCC 2018) in this area and the nesting period for raptors, which is March 1 to August 31 depending on the species. If site preparation and stripping activities occur within the migratory breeding bird period or nesting period for raptors, a nest sweep conducted by a qualified biologist will be conducted within seven days prior to these activities specifically pertaining to the portion of the phase to be disturbed or prepared. 				
	 Conduct a wildlife sweep before clearing and reclamation activities for each Project Phase or new disturbance to identify new wildlife habitat features (e.g., raptor nests) and update the mitigation plan as needed. Results of these surveys, with updated mitigation measures, as needed, will be provided to Alberta Environment and Parks (AEP) prior to any clearing activity. 				
	• If an active nest or den is observed during operations, a qualified biologist will be contacted to discuss setbacks and mitigation measures for the active nest or den. Results and mitigation strategy will be provided to AEP.				
	 Do not harass, hunt, trap, or feed wildlife or livestock on the Project site and surroundings. 				
	 Train workers to report wildlife incidents such as presence of wildlife on the construction site or during Project operation, or wildlife mortality via collision with a vehicle. 				
	 On-site garbage will be disposed of in appropriate storage containers to not attract wildlife. 				
	Maintain the perimeter fence to deter wildlife accessing the Project site.				
	Effective access control to restrict unauthorized traffic into the Project.				
	 Sloping of excavation will be done to minimize nesting by bank swallows. Stop excavation work if bank swallows colonize a slope in the excavation area. 				
	 Manage on site surface water to limit wildlife habitat, including shorebird and waterfowl nesting habitat. 				
	 Internal speed limit is reduced in the Project area to reduce wildlife/vehicle conflicts and fugitive dust emissions 				
	 Prohibit any unauthorized harvesting of any natural vegetation on the Project site by workers. 				
	• Manage dust and noise emissions (SLR 2021d) to minimize disturbance to wildlife around the Project site, see below.				

Re:

Discipline	Mitigation				
Traffic	Hauling activities will be monitored to minimize the impact on other road users, with no staging permitted along or immediately adjacent to Highway 567 or RR 40				
	 The site access intersection will be constructed as a Type IVa intersection to accommodate the acceleration and deceleration properties of large haul vehicles. It is important to note that previous studies indicate a Type II intersection would support site generated traffic on the opening day; however, MALP has committed to a Type IVa intersection to provide longer acceleration and deceleration lanes and turning lanes to maintain traffic operations along Hwy 567 for local traffic and passenger vehicles 				
	 Safety protocols provided by MALP to ensure driver behavior is acceptable to the given site context, with complaints regarding driver behavior investigated and mitigated in an appropriate manner. 				
	Track-out debris onto municipal and provincial will be monitored and inspected daily. If required, street sweeping will be completed.				
Erosion and Sediment	Permanent control				
	60 m Buffer from north property line/boundary containing a berm and landscaped buffer				
	15m buffer from east property line/boundary will containing a vegetated temporary berm.				
	Temporary control measures include:				
	Perimeter silt fence primarily along south and east boundaries of Phase 1				
	Silt fence along haul route adjacent to wetland preservation area				
	V-ditch/berm with check dams to provide some runoff storage in unprotected areas				
	Run-off control (diversion ditch) along west and north boundaries to intercept drainage from upslope areas				
	Scour matting will be used, if required				
	 Stormwater controls (conveyance ditches, sumps and settlement ponds) to convey surface runoff to ponds to allow sediments to settle adequately before re-entering the local groundwater system. 				
	Rolled erosion control product in diversion and conveyance ditches to prevent erosion and reduce potential for downslope sedimentation, as required				
	 Check dams in diversion and conveyance ditches to reduce runoff velocity, as required. 				
	Daily inspections of stormwater infrastructure during operating periods will be performed by site personnel				
	Hydro-mulch/tackifier on all overburden areas and other disturbed areas that need to be stabilized beyond the short-term				
	 Good housekeeping (gravel access pad) to reduce dirt/mud tracking onto adjacent paved roadways 				
	Halt operations during significant or severe rains/snowfall events.				
	• Conduct cleaning, fueling, and servicing of all equipment at a safe distance (preferably 100 m) on fine-grained glacial till, away from watercourses, wetlands or environmentally sensitive areas.				

Re:

Discipline	Mitigation				
	Ensure all vehicles and equipment brought onsite are free of debris, grease, oil, mud or leaks.				
	dust control applications, includes watering and the application of Calcium Chloride Calcium used on internal haul routes and other gravel surfaces that accommodate common vehicle movements and traffic during operations				
Weeds	 Environmental professionals supporting the site will assess and monitor vegetated area for invasive weeds. This includes the list of invasive species provided by RVC and species listed under the Weed Control Act. 				
	 Onsite staff during the initial stripping and grading phases will identify different types of weeds, no spray zones (i.e., water including a buffer area), and different control methods. 				
	 Weed control methods may include a combination of or any one of the following: 				
	Chemical (e.g., herbicides)				
	Mechanical (e.g., mowing prior to flowering)				
	Manual (e.g., hand pulling prior to seed set)				
	Grazing and/or cultivation (may be limited due to land use)				
	Phases will be reclaimed to equivalent land capability using only certified weed free seed mix where seeding is required.				
	Monitor re-vegetation of the Project site and re-seed where necessary.				
Surface Water Quality and Quantity	The site will be developed in phases to minimize the working area and allow for progressive site restoration, with each working area being between 8 to 16 ha in size. These factors will reduce the potential for suspended solid generation. Settlement ponds commissioned at the start of the development in combination with infiltration sumps will manage all surface runoff generated during operations offsite and collect the suspended solids before any water is infiltrated back into the ground.				
	 Incident rainfall onto the extraction areas within the glacial till horizon will be locally managed (due to limited permeability / infiltration capacity of the till) to convey rainfall to a temporary stormwater ponding areas. 				
	• The exposure of the till during excavations will be temporary until the underlying sands and gravels are reached. Once the excavation enters the sand and gravel, incident rainfall is readily infiltrated thus no management of precipitation within the extraction areas is required. Within the extraction area there will be very little fine particulate, as the site is clean sand and gravel.				
	 The overburden removal areas border on the active extraction area. Very fine particulate has the potential to contribute to turbidity of water; however, overburden removal areas will be separated from the extraction area by silt fencing to permit overburden removal. Should the occasional breach occur, which will be repaired based on daily inspections, calculations show that the slow movement of groundwater allows any fines to settle/filter in the order of a few tens of meters from the extraction (pit) area. 				
	 Progressive reclamation following exhaustion of each aggregate extraction phase will involve recontouring, soil placement and revegetation, and will promote the formation of a temporary low-lying wet area which intercepts surface water drainage during periods of heavy precipitation in the southeast corner of the Phase 1 extraction area. 				

Discipline	Mitigation				
	Surface runoff intercepted within the Project boundary will be managed through infiltration. There will not be surface discharge of stormwater, thus removing the risk of adverse effects to water quality in surface water bodies of the surrounding environment.				
	 Install perimeter (grassed / lightly vegetated) ditches (swales) at the outer foot of the screening berms / overburden stockpiles to route 'dirty' runoff (initial treatment) from the berms to appropriately sized settlement / attenuation ponds (secondary treatment). Shallower longitudinal gradients in the swales would encourage longer residence times, lower velocities and thus improve treatment effectiveness. 				
	• Interception ditches are proposed upslope of the Surface Water Management Phases to prevent stormwater runoff from the up-gradient catchment entering the extraction areas. This water is considered 'clean' and therefore does not require treatment; instead, it is routed around the Surface Water Management Phases via diversion ditches and allowed to disperse overland (via a series of shallow excavated diffusion channels). This provides hydrological continuity between the upslope and downslope of the relevant Surface Water Management Phases.				
	• A temporary locally created sump excavated within the extraction area to collect clean runoff upslope of the Surface Water Management Phases during the development of Phases 2, 3 and 4. The temporary sump will also collect water from Pond C during the Phase 3 extraction operation. The temporary sump is to be located in a low topographic spot within the extraction area and is required due to topographic constraints that impede gravity flow of clean water away from the extraction area. Water collected in the temporary sump will either infiltrate or be pumped to the temporary diversion ditch located east of Phase 1, which conveys clean water to the perimeter of the extraction area for direct release through infiltration. Surface water management features (i.e., swales / settlement ponds / sumps) have been designed to accommodate the design 1:100-year rainfall event.				
Groundwater Quality and Quantity	• Restrict the excavation to no less than 1 metre (m) above the high-water table. This ensures no stirring up of the groundwater. Progressive temporary groundwater monitors (piezometers) will be used to monitor actual water table position as excavation begins to encroach on the 1m above GWT.				
	• Use external settlement ponds for those stormwaters that cross the fine-grained overburden. The decant water is introduced to infiltration lagoons, which maintains and temporarily enhances groundwater recharge, thereby ensuring no adverse water quantity impacts (i.e., depletion).				
	• Equipment maintenance and refueling will be undertaken on existing overburden areas (4 m to 6 m of fine-grained till) and will be located by the scale on Phase 4. When equipment is not being used it will have drip trays located beneath it to prevent leakage to the ground.				
	• Fuel will be stored in Phase 4 in double-walled above ground storage tanks which are certified by the Petroleum Tank Management Association of Alberta (PTMAA).				
	• The operational area will be kept to a minimum to reduce potential impacts, so no more than 16 ha of disturbance, i.e., active mining or reclamation, will occur at any time as per the approved development authority.				

Re:

Discipline	Mitigation				
	As each phase of the planned excavation area is depleted, it will be progressively rehabilitated with the replacement of the overburden, subsoil and topsoil.				
	A Groundwater monitoring program will continue during the life of the Project				
Wetlands	 Wetland avoidance: MALP is avoiding 2 wetlands in the northwest corner of the Site Location, Water bodies 19 and 20, and the entire southern portion of the Property Boundary, as shown Figure 1. Water bodies 19 and 20, comprise 1.393ha of the total 1.880 ha wetland area, or 74%, within the Site Location and are B value wetlands. These wetlands comprise 5.572 ha of wetland replacement area within the Site Location. 				
	 Wetland minimization: Impacts to Water body 1 are minimized by removing a portion, 0.199 ha, of the wetland within the Site Location. Water body 1 is hydrologically isolated and the remaining 32% of the total wetland area retained is expected to function as a wetland post construction. In accordance with the Alberta Wetland Mitigation Directive7, the above proposed minimization is anticipated to maintain the natural conditions and function of the wetland. 				
	 Wetland replacement: In accordance with the Alberta Wetland Mitigation Directive7, an in-lieu replacement fee is proposed for the permanent impacts to Wetlands 1, 13, 17, and 18. 				
Landscape Plan	A permanent buffer and berm area will run along the north boundary of the Project. The buffer will run the length of the north boundary until reaching the NE corner of the wetland avoidance area. This permanent berm will be constructed entirely within the 60m buffer.				
	 A temporary wetland screening berm will be constructed around the wetland avoidance area in the NW corner of the Property boundary. Exact geometry subject to available material at time of construction. This berm will remain in place until Phase 4 mining, at which time the scale / laydown area will be relocated within a portion of the depleted Phase 3 				
	East side of the Project will include a temporary, vegetated topsoil berm.				
Air Quality / Dust Management	 Calcium Chloride (CaCl₂) will be applied to unpaved roads for dust suppression Project Access road and a portion of scale area will be paved 				
	 Conveyor drop heights will be reduced Crusher will be enclosed with a shroud 				
	Surface watering on active pit surfaces				
	 No crushing zone 190 m from the east boundary and 140 m from the north boundary of the Project during Phases 1,2, 3, and 4 				
	60 m buffer with a permanent screening berm along the north boundary of the Project.				
Noise	• Daytime operations only. Monday to Friday 7 am to 7 pm, Saturday 7 am to 5pm, and no activity on Sunday or statutory holidays.				
	 Excavation will occur below grade (18 – 26 m) and into the face of the aggregate deposit. This includes depth of the overburden. 				
	 Sight and sound berms will be constructed on the north and east boundaries of the Project. 				
	• The crusher will be offset by 190 m from the east boundary and 140 m from the north boundary.				

Discipline	Mitigation				
	An acoustic shroud will be utilized around the crusher to control sound.				
	Minimal conveyor drop heights used to minimize impulsive sound.				
	 Low sound level and broadband reverse alarms meeting applicable safety regulations will be used on all equipment. 				
	Staff will be trained on low sound generating techniques.				
	• Equipment will be maintained regularly to ensure that it does not increase in sound level due to wear and tear.				
	Regular and continuous sound monitoring will be conducted.				
	• There will be a variation in the direction that traffic arrives and leaves the Project site.				

Appendix S

Wetland Impact Assessment Report & Wetland Replacement Fee

Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership

SLR Project No: 212.06650.00007/8

Wetland Assessment and Impact Report

NW AND SW 31-026-3 W5M

Mountain Ash Limited Partnership

1945 Briar Crescent NW Calgary, AB T2N 3V6

Prepared by:

SLR Consulting (Canada) Ltd.

200, 708 – 11th Avenue SW Calgary, AB T2R 0E4

SLR Project No:

212.06650.00003

May 10, 2023

Table of Contents

1.0	Project Information	1
2.0	Wetland Assessment Overview and Results	1
3.0	Wetland Desktop Data Review	2
3.1	Natural Subregion	3
3.2	Soils	3
3.3	Alberta Conservation Information Management System	3
3.4	Wildlife and Wildlife Habitat	3
3.5	Watercourses	4
3.6	Historical Aerial Photograph Review	4
4.0	Field Surveys	7
4.1	Identified Wetlands	7
4.2	Alberta Wetland Rapid Evaluation Tool – Actual	7
4.3	Use of Wetlands by Wildlife	8
5.0	Wetland Mitigation Hierarchy	8
5.1	Wetland Mitigation Considerations	9
5.2	Wetland Avoidance and Minimization	9
5.3	Wetland Replacement	10
6.0	Wildlife Mitigations	10
7.0	Statement of Limitations	11
8.0	References	12
Table	es in Text	
Table 1		1
Table 2	· · · · · · · · · · · · · · · · · · ·	
Table 3		
Table 4		
Table 5	: Replacement Areas and Fees for Proposed Permanent Wetland Impacts	10

Appendices

Appendix A Figures

Appendix B Vegetation and Soil Data

Appendix C FWMIS Search Results

Appendix D ABWRET-A Results

Appendix E Photographs

1.0 Project Information

Mountain Ash Limited Partnership (MALP) is planning to develop the Summit Project (the Project) along Highway 567 within NW and SW 31-026-03 W5M, northeast of the Town of Cochrane, in Rocky View County, Alberta (Figure 1, Appendix A). The Project Boundary encompasses approximately 91 ha excluding existing road rights-of-way, with an extraction area of approximately 80 ha. This land is currently owned by 1410266 Alberta Ltd. (a general partner of MALP). MALP received land use and a master site development plan approval for the Project on March 2, 2021 (Land Use Bylaw C-8051-2020).

SLR Consulting (Canada) Ltd. (SLR) was retained by MALP to complete a Wetland Assessment and Impact Report (WAIR) for the Project.

2.0 Wetland Assessment Overview and Results

The wetlands were classified in accordance with the *Alberta Wetland Classification System* (GoA 2015a) and identified and delineated using methods provided in the *Alberta Wetland Identification and Delineation Directive* (GoA 2015b). This WAIR was prepared following the *Alberta Wetland Assessment and Impact Report Directive* (GoA 2017).

Since the original *Water Act* Application submission, the Project Boundary has been refined and Supplemental Information Requests (SIRs) from Alberta Environment and Protected Areas (EPA) have been provided. As a result, additional water bodies have been included, some have been reclassified, one has been re-delineated, and some water bodies are now outside of the Project Boundary, but within the Area Assessed.

A total of 23 water bodies were assessed as part of this WAIR. Nineteen water bodies were identified partially or fully within the Project Boundary, including 7 wetlands. Four water bodies fall outside of the Project Boundary but are within the Area Assessed, including 3 wetlands. MALP proposes to partially or fully remove 15 of these 23 water bodies, including 7 wetlands and avoid 8 of these 23 water bodies, including 3 wetlands. These 23 water bodies, and proposed impacts are described in Table 1 and

Table 2 below, and shown in Figure 2, Appendix A

The 19 water bodies identified within the Project Boundary are described in Table 1.

Table 1: Water Bodies Located within the Project Boundary

Water body ID	Classification Area (ha)		Permanent Impact (ha)	
Water body 1	Seasonal Graminoid Marsh	0.291	0.199	
Water body 4	Ephemeral Water body	0.028	0	
Water body 5	Dugout	0.067	0	
Water body 6	Ephemeral Water body	0.048	0.048	
Water body 7	Ephemeral Water body	0.055	0	
Water body 8	Ephemeral Water body	0.058	0.058	
Water body 9	Ephemeral Water body	0.028	0.028	
Water body 10	Ephemeral Water body	0.063	0.063	

1

Water body ID	Classification	Area (ha)	Permanent Impact (ha)
Water body 11 ¹	Temporary Graminoid Marsh	0.009	0.009
Water body 12	Ephemeral Water body	0.014	0.014
Water body 13	Temporary Graminoid Marsh	0.023	0.023
Water body 14 ¹	Temporary Graminoid Marsh	0.028	0.028
Water body 15	Ephemeral Water body	0.017	0.017
Water body 16 ^{1,2}	Temporary Graminoid Marsh	0.046	0.046
Water body 17	Temporary Graminoid Marsh	0.118	0.118
Water body 18	Temporary Graminoid Marsh	0.050	0.050
Water body 21 ³	Ephemeral Water body	0.020	0.020
Water body 22 ³	Ephemeral Water body	0.041	0.041
Water body 23 ³ Ephemeral Water body		0.143	0

Notes:

Table 2: Water Bodies Located outside of the Project Boundary

Water body ID	Classification	Area (ha) ¹
Water body 2	Ephemeral Water body	0.008
Water body 3	Temporary Graminoid Marsh	0.045
Water body 19	Temporary Graminoid Marsh	0.676
Water body 20	Temporary Graminoid Marsh	0.722
Mater		

Notes:

3.0 Wetland Desktop Data Review

A comprehensive desktop delineation with field verification (Pathway 5) was conducted due to the historical agricultural disturbance (GoA 2015b) within the Project Boundary since 1953.

¹ Water bodies reclassified to meet the requirements of the SIRs.

² Water body re-delineated to meet the requirements of the SIRs.

³ Water bodies added based on the refined Project Boundary and to meet the requirements of the SIRs.

¹ The water body area is proposed to be avoided.

A preliminary desktop review was conducted prior to field surveys in accordance with the *Alberta Wetland Identification and Delineation Directive* (GoA 2015a).

3.1 Natural Subregion

The Project is located within the Foothills Parkland Natural Subregion which is characterized by short, cool summers where hay or feed crops are the dominant main crops. Where seepage zones or low areas are present, aspen forests with understories of snowberry (*Symphoricarpos albus*), silverberry (*Elaeagnus commutata*), white meadowsweet (*Spiraea alba*), prickly rose (*Rosa acicularis*), saskatoon (*Amelanchier alnifolia*) and a diverse array of herbs on well to imperfectly drained Black and Dark Gray Chernozems can be found (Natural Resources Committee 2006).

3.2 Soils

The underlying parent material of the region is moderately to strongly calcareous, mixed Continental and Cordilleran till (Alberta Soil Information Centre 2016). Fertile loam to clay loam Orthic Black Chernozemic soils are extensive, with Gleysolic soils present in poorly drained and lower slope positions expected (Alberta Agriculture and Forestry 2016). The Dunvegan soil series, a fertile Orthic Black Chernozem formed on glacial till parent material, was identified across the Area Assessed, with the gleyed variant (Dunvegan-GL) identified in depressional areas.

3.3 Alberta Conservation Information Management System

The Alberta Environment and Parks (AEP) Alberta Conservation Information Management System (ACIMS; GoA 2019a) database was also used to determine if any sensitive species had been recorded in the area.

ACIMS was searched for parks or protected areas within the area of the Project. No Parks, Protected Areas or Crown Reservations were identified (GoA 2019a).

3.4 Wildlife and Wildlife Habitat

Wildlife composition within the Foothills Parkland Natural Region closely resembles species found in the Rocky Mountain Natural Region. Birds include dusky flycatcher, white crowned sparrow, clay-colored sparrow, blue grouse, yellow warbler, alder flycatcher, MacGillivray's warbler (Alberta Wilderness Association 2015). Habitat is excellent for elk and moose, and where watercourses are present, bull trout habitat can also be found (Alberta Wilderness Association 2015)

A review of the Committee on the Status of Endangered Wildlife in Canada (COSEWIC) and the *Species at Risk Act* (SARA; GoC 2021) was conducted to determine if any federally listed species at risk (SAR) may be present within or near the Project. The AEP Fisheries and Wildlife Management Information System (FWMIS) Fish and Wildlife Internet Mapping Tool (FWIMT; GoA 2019b) was accessed to determine if any provincially listed SAR and other inventory data were available for the area.

A review of the FWMIS database indicated that five provincially Sensitive species (GoA 2021) have been observed in the area of the Project (Appendix C) including:

- Great blue heron;
- Sora;
- Least flycatcher;

- Eastern kingbird; and
- Barn swallow.

Of these five bird SAR, the barn swallow is also federally listed as Threatened by COSEWIC and SARA (GoC 2021).

3.5 Watercourses

No mapped watercourses were identified within the Project Boundary (GoA 2019b).

3.6 Historical Aerial Photograph Review

Historical precipitation data was assessed to aid in selection of representative historical aerial images (Alberta Agriculture and Forestry 2019). The images provide historical information on water levels or wetland permanence across years and across variable climatic conditions. Precipitation trends are identified in Table 3. Air photos selected included:

- August 14, 1953
- September 19, 1962
- May 31, 1974
- April 26, 1980
- May 7, 1994
- September 28, 2008
- Mid-Summer 2016

Climate data was accessed using the *Interpolated Weather Data Since 1961 for Alberta Townships* (Alberta Agriculture and Forestry 2019) to determine monthly precipitation and the total annual precipitation for the corresponding years. This information was used to determine permanence by determining if a wetland only had evidence of water temporarily, seasonally, semi-permanently or permanently. Corresponding climate data is as follows:

- 1953 no data available
- 1964 473.68 mm
- 1974 387.42 mm
- 1980 471.41 mm
- 1994 506.88 mm
- 2008 662.5 mm
- 2016 441.54 mm

Rainfall was consistent over each decade with the 2000s being slightly wetter. Where drier years occurred, correlated historical air photos which were reviewed, showed no standing water, and in some cases, cultivation.

Review of the available air photos between 1954 and 2016 and corresponding climate data revealed that water bodies 1, 2, 3, 4, 11, 17, 18, 19, and 20 show historical seasonal water presence. Of note, wetland

5, which was assessed in 2019 as a dugout, may have previously been a temporary or seasonal graminoid marsh. The excavation of the wetland likely occurred between 2008 and 2016 as determined from the available air photos.

Temporary wetlands typically dry out by late spring and have a hydroperiod that is flooded every year for a short period of time (one to four weeks) after snowmelt or a heavy rainfall, but otherwise lacks surface water (GoA 2015a, 2015b, 2016). Seasonal wetlands typically dry out by the end of the summer and have a hydroperiod that is flooded every year for most of the growing season (GoA 2015a, 2015b, 2016). Temporary and seasonal wetlands may both be dry year-round during periods of drought and are sometimes tilled and seeded for agricultural purposes (GoA 2015a, 2016). This is consistent with what is observed in the historical arial images.

The shape, size, and permanence of the water bodies are largely inconsistent over time, except for Water bodies 1, 5, 19 and 20. Additionally, there is obvious drainage on the 1974 and 1980 aerial photographs. This feature is less obvious on the 1994 aerial photograph and appears to have an altered path. The drainage is not evident on the 2008 and 2016 aerial photographs. These inconsistencies are likely the result of the persistent agricultural activities since at least 1953. Changes to the hydrology within the Project Boundary is expected due to the persistent anthropogenic disturbances. Discing, tilling, and harvesting activities all lead to soil erosion and sediment deposit, which in turn changes the hydrology of the landscape.

Table 3: Precipitation Trends Associated with Available Air Photo Imagery

Photo Date ¹	Season	Yearly Precipitation (mm) ²	Monthly Precipitation (mm) ²	Daily Precipitation (mm) ²	Comments	
1953 Figure 3 ³	Late summer	No data	No data	No data	Water bodies 1-6, 11, 17-20, and 23 appear to contain water. Water body 7 is indistinct from the surrounding landscape. The remaining water bodies are distinct and/or slightly distinct from surrounding cultivation.	
1962 Figure 4	Late summer	473.68	August –wettest (89.61) November – driest (9.01)	Driest – 0 Wettest – 36.42	Water bodies 2, 3, 5, 12, and 17-20 appear to contain water. Water body 7 is indistinct from the surrounding landscape. The remaining water bodies are distinct and/or slightly distinct from surrounding cultivation.	
1974 Figure 5	Early spring	387.42	May –wettest (85.07) February – driest (6.86)	Driest – 0 Wettest – 39.16	Water bodies 1-5, 8 12-20, and 22-23 appear to contain water. Water body 7 is indistinct from the surrounding landscape. The remaining water bodies are distinct and/or slightly distinct from surrounding cultivation	
1980 Figure 6	Late spring	471.41	May –wettest (101.38) February – driest (12.85)	Driest – 0 Wettest – 46.24	All water bodies appear to contain water except for water bodies 6,7 18 and 21.	
1994 Figure 7	Mid-summer	506.88	June –wettest (123.69) December – driest (13.16)	Driest – 0 Wettest – 33.13	Water bodies 1-5, 8-11, 13-14, 17, 19-23 appear to contain water. Water bodies 6 and 7 are indistinct from the surrounding landscape. The remaining water bodies are distinct and/or slightly distinct from surrounding cultivation.	
2008 Figure 8	Early fall	662.5	May –wettest (183.41) March – driest (7.42)	Driest – 0 Wettest – 49.82	All water bodies appear dry, and most are indistinct from the surrounding landscape.	
2016 ⁴ Figure 9	Late summer	441.54	July –wettest (153.9) February – driest (1.58)	Driest – 0 Wettest – 28.28	All water bodies appear dry and most are indistinct from the surrounding landscape with the exception of water body 5, which has been excavated as a dugout.	

Notes:

¹ Air Photo Distribution Services (AEP 2019b) | ² Alberta Agriculture and Forestry (2019) | ³ Figures in Appendix A 4ESRI (2016)

4.0 Field Surveys

Field surveys were conducted on June 3-5, 2019, and August 16, 2022, to confirm the presence of water bodies identified within the Project Boundary during the desktop review. Wetland classification, identification, and delineation was completed in accordance with the *Alberta Wetland Classification System* (GoA 2015a) and the *Alberta Wetland Identification and Delineation Directive* (GoA 2015b). The boundaries of the wetlands were delineated on foot during field surveys through observing hydrophytic vegetation, wetland soil indicators, and hydrological indicators, in accordance with the *Alberta Wetland Identification and Delineation Directive* (GoA 2015b).

In addition to the wetland field surveys, incidental wildlife observations were recorded.

4.1 Identified Wetlands

A total of 23 water bodies were assessed for the Project, as described in Table 1 and

Table 2 above, and shown in Figure 2, Appendix A. Of these 23 water bodies, 10 are wetlands and 13 are non-wetlands, as follows:

- 1 was classified as a Seasonal Graminoid Marsh (M-G-III);
- 9 were classified as Temporary Graminoid Marshes (M-G-II);
- 12 were classified as Ephemeral Water bodies that do not meet the criteria to be considered wetlands; and,
- 1 was identified as a dugout.

The 10 wetlands are hydrologically isolated and receive water input from stormwater within their catchment areas (Figure 3, Appendix A). The wetlands have been directly modified by agricultural activities resulting in disturbed soil structure and modifications both to natural hydrology and vegetation.

Vegetation was utilized as the primary wetland indicator and were supplemented with soil indicators. No rare plants were found onsite. Results of vegetation and soil indicators for each of the wetlands are provided in Appendix B.

4.2 Alberta Wetland Rapid Evaluation Tool – Actual

The Alberta Wetland Rapid Evaluation Tool-Actual (ABWRET-A) functional value for wetlands was submitted to AEP on June 23, 2019. The evaluation form submission and assessment scores are provided in Appendix E.

The ABWRET-A values for each of the wetlands identified within the Assessed Area are described in Table 4.

Table 4: ABWRET-A Values

Water body ID	body ID Classification		Total Area (ha)	Replacement Area (ha)
Water body 1	Seasonal Graminoid Marsh	В	0.291	1.164
Water body 3	Temporary Graminoid Marsh	В	0.045	0.180
Water body 11	Temporary Graminoid Marsh	D	0.009	0.009
Water body 13	Temporary Graminoid Marsh	С	0.023	0.046
Water body 14	body 14 Temporary Graminoid Marsh		0.028	0.056
Water body 16	Temporary Graminoid Marsh	В	0.046	0.184
Water body 17	Temporary Graminoid Marsh	В	0.118	0.472
Water body 18	Temporary Graminoid Marsh	D	0.050	0.050
Water body 19	Temporary Graminoid Marsh	В	0.676	2.704
Water body 20 Temporary Graminoid Marsh B		В	0.722	2.888
		Total	2.008	7.753

4.3 Use of Wetlands by Wildlife

No obvious use of wetlands by larger wildlife was observed during field surveys. Cliff swallows and northern rough-winged swallows were observed around Water body 5, which is not a wetland. Cliff swallows were observed collecting mud from the dugout walls and transporting it back to mud nests under the eavestroughs of one of the dwellings onsite. Water bodies 19 and 20 have been heavily used by cattle and hoof shear was very prominent. No indication of other hoofed mammals was observed, although deer and elk scat and a red fox were observed in the Project Boundary. These mammals may be using water from water bodies when present. Four of the five SAR species identified in the desktop data review were observed. A single great blue heron was observed flying over the Project Boundary; however, no evidence of nesting was found. The least flycatcher and eastern kingbird were heard singing in aspen stands at a few locations in the Project Boundary. Two barn swallow nests were observed under the eavestroughs of two of the dwellings present in the Project Boundary.

5.0 Wetland Mitigation Hierarchy

The Alberta Wetland Mitigation Directive (GoA 2018) outlines a mitigation hierarchy where wetland avoidance must be a primary consideration for proposed development. If it is determined that wetlands cannot be avoided, options to minimize or reduce impacts to wetlands must be considered. If constraints imposed on the proposed development limit wetland avoidance and minimization options, replacement options for unavoidable wetland loss can be considered.

A total of 23 water bodies were assessed for the Project, of which 10 are wetlands. Wetland mitigation considerations for these 10 wetlands, Water bodies 1, 3, 11, 13, 14, 16, and 17-20 are discussed in the sections below.

5.1 Wetland Mitigation Considerations

Avoidance options considered for the wetlands are as follows:

- 1 Mine aggregate around wetlands and avoid temporary disturbances in wetlands from temporary disturbances (i.e., stockpiling).
- Avoid wetlands with the largest areas and highest values; minimize impacts due temporary disturbances (i.e., stockpiling), and permanently remove wetlands of smaller areas and lower values in areas of aggregate mining.
- 3 Do not mine aggregate.

Option 1 – Mining aggregate around the wetlands would create a drop in the landscape that would result in erosion due to exposed subsurface materials and create a safety hazard due to the high potential of subsurface instability. Minimizing impacts as the result of temporary disturbances (i.e., stockpiling) outside of the Extraction Phase Boundary would reduce indirect wetland impacts. Option 1 is not technically feasible for safety reasons. As such it was not chosen.

Option 2 – Wetlands 19 and 20 are B-value wetlands and the largest wetlands assessed as part of this WAIR. Avoiding these wetlands would result in reduced aggregate extraction but still meet the overall objectives of the Project. Minimizing impacts as the result of temporary disturbances (i.e., stockpiling) outside of the aggregate mining area would also reduce indirect wetland impacts. Option 2 was chosen as the preferable option. This meets the objectives of the *Alberta Wetland Policy* to minimize the loss of the wetlands while allowing for the Proposed Project to proceed, as the policy identifies the need for continued growth and economic development in the Province (GoA 2013). *Alberta Wetland Policy* outcomes include those wetlands of the highest value be protected, and the wetlands with permanent impacts be replaced via an in-lieu replacement fee as necessary (GoA 2013). In-lieu replacements fees are utilized by the Province to restore wetlands on the landscape. Further details are provided in the Avoidance, Minimization and Replacement sections below.

Option 3 – This option would not meet the objectives of the Project. As such it was not chosen.

5.2 Wetland Avoidance and Minimization

Impacts to Water body 1 are minimized by removing a portion, 0.199 ha, of the wetland within the Project Boundary. The area of wetland that will be retained is 0.093 ha, or 32% of the total wetland area. The total contributing catchment area to Water body 1 is 4.975 ha. The area of catchment that will be retained is 0.233 ha, or 5% of the total catchment area. The 95% reduction in overall catchment area preversus post-construction is anticipated to negatively impact wetland function. As such, wetland replacement for the retained portion of this wetland is proposed, as described in the section below.

MALP has proposed to avoid water bodies 3, 19 and 20. These B value wetlands comprise 5.772 ha of the of the 7.753 ha wetland replacement area, or 74%.

The total contributing catchment area to Water body 3 will be completely avoided.

The total contributing catchment area to Water body 19 is 5.631 ha. The area of catchment that will be retained is 4.655 ha, or 83% of the total catchment area. The 17% reduction in overall catchment area pre- versus post-construction is not anticipated to negatively impact wetland function, as the catchment area receives inputs from impervious road surfaces, which will contribute greater water inputs through reduced permeable surfaces.

The total contributing catchment area to Water body 20 is 2.755 ha. The area of catchment that will be retained is 2.044 ha, or 74% of the total catchment area. The 26% reduction in overall catchment area pre- versus post-construction is not anticipated to negatively impact wetland function, as the catchment area receives inputs from impervious road surfaces, which will contribute greater water inputs through reduced permeable surfaces.

Water bodies 19 and 20 will be protected by an earthen berm constructed at a distance of at least 10 m set back, between the wetlands and the Extraction Phase Boundary. This 10 m setback is identified in Provincial guidance as an effective width of vegetation (GoA 2012). Hydrology will be maintained through breaks and/or culverts in the berm as required. Additionally, there is a reclamation requirement for the Project, which will include the avoided areas.

A Wetland Monitoring Plan prepared in accordance with the *Alberta Wetland Mitigation Directive* (GoA 2018) will monitor natural conditions and function of the wetlands are maintained throughout the lifespan of the Project (SLR 2023).

5.3 Wetland Replacement

In accordance with the *Alberta Wetland Mitigation Directive* (GoA 2018), an in-lieu replacement fee is proposed for the permanent impacts to Wetlands 1, 11, 13, 14, 16, 17, and 18.

Table 5 below shows the total wetland replacement area of 1.981 ha for the proposed permanent wetland impacts for a total in lieu replacement fee of \$35,063.70 plus GST.

Water body ID	ABWRET-A Value	Area to be Removed (ha)	Replacement Ratio	Replacement Area (ha)	Replacement Fee
Water body 1	В	0.291	4:1	1.164	\$20,602.80
Water body 11	D	0.009	1:1	0.009	\$159.30
Water body 13	С	0.023	2:1	0.046	\$814.20
Waterbody 14	С	0.028	2:1	0.056	\$991.20
Water body 16	В	0.046	4:1	0.184	\$3,256.80
Water body 17	В	0.118	4:1	0.472	\$8,354.40
Water body 18	D	0.050	1:1	0.050	\$885.00
Wetland Replacement Fee (before GST)					\$35,063.70
GST					\$1,753.19
Total Wetland Replacement Fee (after GST)					\$36,816.89

Table 5: Replacement Areas and Fees for Proposed Permanent Wetland Impacts

6.0 Wildlife Mitigations

To comply with the *Migratory Birds Convention Act* and *Alberta Wildlife Act*, disturbance to migratory and/or breeding birds and their habitat during restricted activity periods (RAP) will be avoided or mitigated appropriately (GoC 1994; GoA 2000). The recommended RAP of April 1 – August 17 takes into

consideration the migratory bird Primary Nesting Period for nesting zone B4: April 14 to August 17 (GoC 2018) and the Alberta Provincial RAP for migratory birds: April 1 to July 15 (GoA 2011).

No Project activities within the Project Boundary will be completed during this period, if possible. If construction during this window is unavoidable, a qualified wildlife biologist will conduct nest searches, and species appropriate setback buffers will be placed around active nests until young have fledged.

7.0 Statement of Limitations

This report has been prepared and the work referred to in this report has been undertaken by SLR Consulting (Canada) Ltd. (SLR) for Mountain Ash Limited Partnership, hereafter referred to as the "Client". It is intended for the sole and exclusive use of Mountain Ash Limited Partnership. The report has been prepared in accordance with the Scope of Work and agreement between SLR and the Client. Other than by the Client and as set out herein, copying or distribution of this report or use of or reliance on the information contained herein, in whole or in part, is not permitted unless payment for the work has been made in full and express written permission has been obtained from SLR.

This report has been prepared in a manner generally accepted by professional consulting principles and practices for the same locality and under similar conditions. No other representations or warranties, expressed or implied, are made.

Opinions and recommendations contained in this report are based on conditions that existed at the time the services were performed and are intended only for the client, purposes, locations, time frames and project parameters as outlined in the Scope or Work and agreement between SLR and the Client. The data reported, findings, observations and conclusions expressed are limited by the Scope of Work. SLR is not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. SLR does not warranty the accuracy of information provided by third party sources.

Sincerely,

SLR Consulting (Canada) Ltd.

Alana-Rose Lynes, M.Sc., P.Biol., EP

Alana Lose Lynus

Senior Ecologist

Carolyn Carruthers, BSc., PMP., EP.

Caroly Carnethers

Project Manager

Distribution: 1 electronic copy – Mountain Ash Limited Partnership

1 electronic copy – SLR Consulting (Canada) Ltd.

8.0 References

- Alberta Agriculture and Forestry. 2016. AGRASID Alberta Soil Information Viewer. https://soil.agric.gov.ab.ca/agrasidviewer/
- Alberta Agriculture and Forestry. 2019. Current and Historical Alberta Weather Station Data Viewer. https://agriculture.alberta.ca/acis/alberta-weather-data-viewer.jsp
- Alberta Environment and Parks (AEP). 2019a. Alberta Merged Wetland Inventory. https://geodiscover.alberta.ca/geoportal/
- AEP. 2019b. Air Photo Distribution. https://www.alberta.ca/air-photos-overview.aspx#toc-0
- Alberta Soil Information Centre. 2016. Alberta Soil Names File (Generation 4) User's Handbook. M.D. Bock (ed.). Agriculture and Agri-Food Canada, Science and Technology Branch, Edmonton, AB.
- Alberta Wilderness Association. 2015. Parkland Natural Region. https://albertawilderness.ca/issues/wildlands/parkland/#parentHorizontalTab1
- Esri. 2016. DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community.
- Government of Alberta (GoA). 2012. Stepping Back from the Water: A Beneficial Management Practices Guide for New Development Near Water Bodies in Alberta's Settled Region.

 https://open.alberta.ca/dataset/1c70eb43-a211-4e9c-82c3-9ffd07f64932/resource/6e524f7c-0c19-4253-a0f6-62a0e2166b04/download/2012-SteppingBackFromWater-Guide-2012.pdf
- GoA. 2013. Alberta Wetland Policy. https://open.alberta.ca/dataset/5250f98b-2e1e-43e7-947f-62c14747e3b3/resource/43677a60-3503-4509-acfd-6918e8b8ec0a/download/6249018-2013-alberta-wetland-policy-2013-09.pdf
- GoA. 2015a. Alberta Wetland Classification System. https://open.alberta.ca/dataset/92fbfbf5-62e1-49c7-aa13-8970a099f97d/resource/1e4372ca-b99c-4990-b4f5-dbac23424e3a/download/2015-alberta-wetland-classification-system-june-01-2015.pdf
- GoA. 2015b Alberta Wetland Rapid Evaluation Tool- Actual (ABWRET-A) guide.

 https://open.alberta.ca/dataset/0fd47f30-d3ee-4b2f-83ac-e96a6499d7ce/resource/ea9e44bd-0ed4-4cdd-94cc-8f5b27f21c8a/download/2015-alberta-wetland-rapid-evaluation-tool-actual-abwret-a-guide-june-2015.pdf
- GoA. 2015c. Alberta Wetland Identification and Delineation Directive.

 https://open.alberta.ca/dataset/b2a69660-7f44-4c8c-9499-0da23946dafa/resource/3917b05d-7cf8-4d08-b3ae-74a15af625ce/download/2015-alberta-wetland-identification-delineation-directive-june-2015.pdf
- GoA. 2016. Guide for Assessing Permanence of Wetland Basins.

 https://open.alberta.ca/dataset/02b938d2-a26b-41e8-b343-602b4b6c0c57/resource/98b50b87
 6ffe-4c32-ae34-c49e2a3c706c/download/2016-assessingpermanencewetlandbasinsfeb2016a.pdf
- GoA. 2017. Professional responsibilities in completion and assurance of wetland science, design and engineering work in Alberta. https://open.alberta.ca/dataset/c86572a8-560d-4f2e-a751-2467021b074a/resource/48dd8c05-fb55-4893-9769-7159770229c6/download/practicestandardwetland-may01-2017.pdf

- GoA. 2018. Alberta Wetland Mitigation Directive. https://open.alberta.ca/dataset/2e6ebc5f-3172-4920-9cd5-0c472a22f0e8/resource/dfbea0b8-df23-4ddd-8038-a51f69fbfff7/download/albertawetlandmitigationdirective-june-2018.pdf
- GoA. 2019a. Alberta Conservation Information Management System (ACIMS).

 https://www.albertaparks.ca/albertaparksca/management-land-use/alberta-conservation-information-management-system-acims/
- GoA. 2019b. Fisheries and Wildlife Management Information System (Fish and Wildlife Internet Mapping Tool). https://maps.alberta.ca/FWIMT_Pub/Viewer/?TermsOfUseRequired=true&Viewer=FWIMT_Pub
- GoA. 2021. Alberta Wild Species Status Search. https://extranet.gov.ab.ca/env/wild-species-status/?utm_source=redirector
- Government of Canada. 2021. Committee on the Status of Endangered Wildlife in Canada (COSEWIC). https://species-registry.canada.ca/index-en.html#/species?sortBy=commonNameSort&sortDirection=asc&pageSize=10
- Natural Resources Committee. 2006. Natural Regions and Subregions of Alberta. Complied by D.J. Downing and W.W. Pettapiece for the Government of Alberta. https://open.alberta.ca/dataset/dd01aa27-2c64-46ca-bc93-ca7ab5a145a4/resource/98f6a93e-c629-46fc-a025-114d79a0250d/download/2006-nrsrcomplete-may.pdf
- SLR Consulting (Canada) Ltd. 2020. Biophysical Impact Assessment Report. Mountain Ash Limited Partnership Aggregate Operation, NW 31-026-3 W5M, Rocky View, Alberta. 212.06650.00003.
- SLR Consulting (Canada) Ltd. 2023. Wetland Monitoring Plan. Summit Pit. Mountain Ash Limited Partnership. 212.06650.00006.

Appendix A Figures

Wetland Assessment and Impact Report

NW AND SW 31-026-3 W5M

Mountain Ash Limited Partnership

SLR Project No. 212.06650.00003

May 10, 2023

DATE: May 8, 2023

PROJECT NO: 212.06650.00007

Appendix B Vegetation and Soil Data

Wetland Assessment and Impact Report

NW AND SW 31-026-3 W5M

Mountain Ash Limited Partnership

SLR Project No. 212.06650.00003

May 10, 2023

SLR Project No.: 212.06650.00003

May 2023

	Water Body Assessments - Vegetation and Soil Indicators								
Water body ID	Classification	Predominant species present	Scientific Names and Indicator Status ¹	Soil Indicators					
1	Seasonal Graminiod Marsh (M-G-III)	mint , smooth brome, western dock and hair grass	Eleocharis acicularis (OBL), Carex aquatilis (OBL), Mentha arvensis (FACW), Rumex occidentalis (OBL), Deschampsia cespitosa (FAWC)	Topsoil 0-25cm. Subsoil 25-30+ cm. Clay loam, gleyed with mottles. Surface water cracks. Snails.					
2	Ephemeral Water body	Dandelion, silverweed and common plantain	Taraxacum officinale (FACU), Potentilla anseria (FACW), Plantago major (FAC)	No soil pit.					
3	Temporay Graminiod Marsh (M-G-II)	Dandelion, silverweed, common plantain, hair grass, kentucky bluegrass and clover sp.	Taraxacum officinale (FACU), Potentilla anseria (FACW), Plantago major (FAC), Deschampsia cespitosa (FACW), Poa pratensis (FACU), Trifolium sp.	No soil pit.					
4	Ephemeral Water body	Dandelion, silverweed and common plantain	Taraxacum officinale (FACU), Potentilla anseria (FACW), Plantago major (FAC)	No soil pit.					
5	Ephemeral Water body	Smooth brome and slender wheatgrass	Bromus inermis (UPL) and Elymus trachycaulum (FACU)	No soil pit.					
6	Ephemeral Water body	Kentucky bluegrass, smooth brome, Canada thistle and western dock	Poa pratensis (FACU), Bromus inermis (UPL), Cirsium arvense (FACU), Rumex occidentalis (OBL)	Topsoil 0-27 cm. Subsoil 27+ cm. No gleying, no mottles.					
7	Ephemeral Water body	Hay crop	N/A	Topsoil 0-30+ cm. No gleying, no mottles.					
8	Ephemeral Water body	Hay crop, dandelion	Taraxacum officinale (FACU)	Topsoil 0-30+ cm. No gleying, no mottles.					
9	Ephemeral Water body	Hay crop	N/A	No soil pit.					
10	Ephemeral Water body	Hay crop	N/A	No soil pit.					
11	Temporay Graminiod Marsh (M-G-II)	Hay crop, western dock	Rumex occidentalis (OBL)	No soil pit.					
12	Ephemeral Water body	Hay crop	N/A	No soil pit.					
13	Temporay Graminiod Marsh (M-G-II)	Tame pasture - fowl bluegrass, slender wheatgrass, smooth brome, timothy grass, common plantain	Poa palustris (FACW), Rumex occidentalis (OBL), Bromus inermis (UPL), Phleum pratense (FACU), Plantago major (FAC)	Topsoil 0-25 cm. Subsoil 25-30+ cm. Clay loam, mottles.					
14	Temporay Graminiod Marsh (M-G-II)	Kentucky bluegrass, smooth brome, Canada thistle, western dock	Poa pratensis (FACW), Bromus inermis (UPL), Cirsium arvense (FACU), Rumex occidentalis (OBL)	No soil pit.					
15	Ephemeral Water body	Kentucky bluegrass, smooth brome, Canada thistle, western dock	Poa pratensis (FACU), Bromus inermis (UPL), Cirsium arvense (FACU), Rumex occidentalis (OBL)	No soil pit.					
16	Temporay Graminiod Marsh (M-G-II)	Smooth brome, slender wheatgrasss, water sedge	Bromus inermis (UPL), Elymus trachycaulum (FACU), Carex aquatilis (OBL)	No soil pit.					
17	Temporay Graminiod Marsh (M-G-II)	Hay crop, dandelion, western dock, water sedge	Taraxacum officinale (FACU), Rumex occidentalis (OBL), Carex aquatilis (OBL)	No soil pit.					
18	Temporay Graminiod Marsh (M-G-II)	Hay crop, dandelion, sedge	Taraxacum officinale (FACU), Carex aquatilis (OBL)	Topsoil 0-27 cm. Subsoil 27-30+ cm. Clay loam, mottles. Snail.					
19	Temporay Graminiod Marsh (M-G-II)	Tame pasture - clover, dandelion, water sedge, western dock	Trifolium sp., Taraxacum officinale (FACU), Carex aquatilis (OBL), Rumex occidentalis (OBL)	Topsoil 0-25 cm. Subsoil 25-30+ cm. Mottles.					
20	Temporay Graminiod Marsh (M-G-II)	Tame pasture - clover, dandelion, water sedge, western dock	Trifolium sp., Taraxacum officinale (FACU), Carex aquatilis (OBL), Rumex occidentalis (OBL)	No soil pit.					
21	Ephemeral Water body	Hay crop	N/A	No soil pit.					
22	Ephemeral Water body	Clover sp., dandelion, Canada thistle	Trifolium sp., Taraxacum officinale (FACU), Cirsium arvense (FACU)	No soil pit.					
23	Ephemeral Water body	No observations, desktop delineation only.	N/A	No soil pit.					
Indicator s	tatus from the 2021 Alb	erta Wetland Plant List produced by t	the Alberta Native Plant Council.	-					

SLR 1 of 1

Appendix C FWMIS Search Results

Wetland Assessment and Impact Report

NW AND SW 31-026-3 W5M

Mountain Ash Limited Partnership

SLR Project No. 212.06650.00003

May 10, 2023

Fish and Wildlife Internet Mapping Tool (FWIMT)

(source database: Fish and Wildlife Management Information System (FWMIS))

Species Summary Report

Report Created: 29-May-2019 08:03

Species present within the current extent:

Fish Inventory

Wildlife Inventory

SORA

BARN SWALLOW EASTERN KINGBIRD GREAT BLUE HERON LEAST FLYCATCHER **Stocked Inventory**

No Species Found in Search Extent

Map Extent

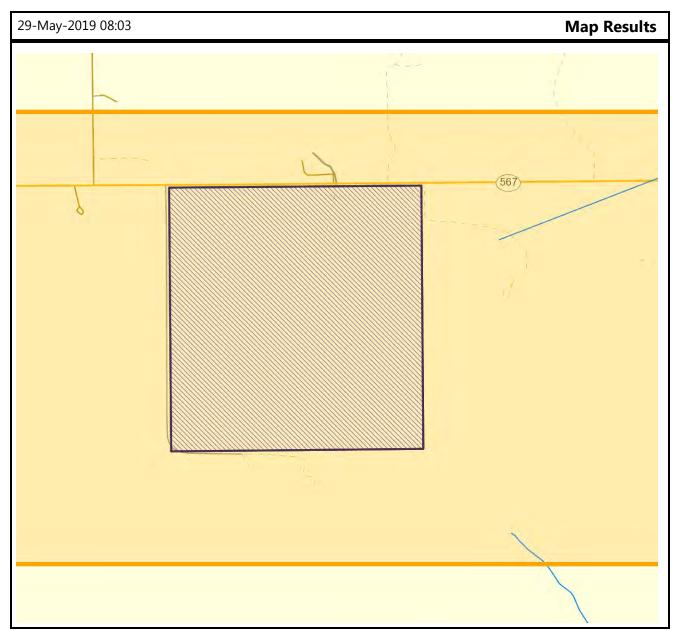
Northwest (X,Y)

Projection
10-TM AEP Forest

539826, 5678051 542126, 5678051

Centroid (X,Y)

540976, 5677330


 Southwest (X,Y)
 Southeast (X,Y)

 539826, 5676608
 542126, 5676608

Contact Information

For contact information, please visit:

http://aep.alberta.ca/about-us/contact-us/fisheries-wild life-management-area-contacts.aspx

Display may contain: Base Map Data provided by the Government of Alberta under the Alberta Open Government Licence. Cadastral and Dispositions Data provided by Alberta Data Partnerships. ©GeoEye, all rights reserved. Information as depicted is subject to change, therefore the Government of Alberta assumes no responsibility for discrepancies at time of use.

© 2019 Government of Alberta

Appendix D ABWRET-A Results

Wetland Assessment and Impact Report

NW AND SW 31-026-3 W5M

Mountain Ash Limited Partnership

SLR Project No. 212.06650.00003

May 10, 2023

Function (ABWRET-A Raw Score)	Wetland 19	Wetland 20 We	tland 18	Wetland 17	Wetland 16 W	etland 15	Wetland 14	Wetland 13	Wetland 12	Wetland 10	Wetland 9	Wetland 8	Wetland 4	Wetland 3	Wetland 2	Wetland 11	Wetland 1	Wetland 6	Wetland 7	Wetland 5
Surface Water Storage (WS)	6.12	6.11	2.75	6.20	6.20	2.75	2.74	2.74	2.74	5.85	5.84	5.84		6.16	6.16	2.64	6.17	5.84	5.82	5.47
Stream Flow Support (SFS)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Streamwater Cooling (WC)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sediment & Toxicant Retention & Stabilization (SR)	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Phosphorus Retention (PR)	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Nitrate Removal & Retention (NR)	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00	10.00
Organic Nutrient Export (OE)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fish Habitat (FH)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Aquatic Invertebrate Habitat (INV)	5.35	5.36	4.26	4.76	4.78	4.31	4.36	4.31	4.35	4.76	4.73	4.77	4.92	4.89	4.83	4.22	5.20	4.80	4.94	
Amphibian Habitat (AM)	2.74	2.76	2.28	2.52	2.47	2.29	2.29	2.29	2.29	2.50	2.46	2.52	4.15	4.13	2.94	2.31	2.98	2.47	2.59	3.79
Waterbird Habitat (WB)	4.83	4.85	3.94	4.68	4.28	3.93	3.59	3.93	3.59	4.55	4.18	4.59	5.30	5.34	4.89	3.93	5.04	4.29	4.26	
Songbird, Raptor, & Mammal Habitat (SBM)	3.39	3.30	2.70	2.95	2.91	2.75	2.76	2.75	2.75	2.90	2.90	2.93	3.56	3.46	3.32	2.60	3.51	2.55	2.89	
Pollinator & Native Plant Habitat (PH)	3.14	3.11	1.75		3.09	1.83	1.83	1.83	1.82	2.27	2.81	2.75			2.89	1.72	3.11		2.80	
Human Use & Recognition (HU)	3.20	3.28	2.54	3.01	3.01	2.74	2.74	2.74	2.74	2.52	3.02	3.02	3.64	3.56	3.56	2.97	3.65	3.72	3.27	2.97
Function (ABWRET-A Normalized Score)	Wetland 19	Wetland 20 Wet	tland 18	Wetland 17	Wetland 16 W	etland 15	Wetland 14	Wetland 13	Wetland 12	Wetland 10	Wetland 9	Wetland 8	Wetland 4	Wetland 3	Wetland 2	Wetland 11	Wetland 1	Wetland 6	Wetland 7	Wetland 5
Surface Water Storage (WS)	0.84	0.84	0.25	0.86	0.86	0.25	0.25	0.25	0.25	0.79	0.79	0.79	0.85	0.85	0.85	0.23	0.85	0.79	0.79	0.73
Stream Flow Support (SFS)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Streamwater Cooling (WC)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Sediment & Toxicant Retention & Stabilization (SR)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Phosphorus Retention (PR)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
Nitrate Removal & Retention (NR)	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00		1.00	1.00	1.00	1.00	1.00	1.00	
Organic Nutrient Export (OE)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Fish Habitat (FH)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00		0.00	0.00	0.00	0.00	0.00	0.00	
Aquatic Invertebrate Habitat (INV)	0.54	0.54	0.40	0.46	0.47	0.41	0.41	0.41	0.41	0.47	0.46	0.47	0.49	0.48	0.47	0.39	0.52	0.47	0.49	0.43
Amphibian Habitat (AM)	0.35	0.35	0.28	0.32	0.31	0.28	0.28	0.28	0.28	0.31	0.31	0.32	0.00	0.58	0.38	0.28	0.39	0.31	0.33	0.00
Waterbird Habitat (WB)	0.36	0.36	0.25	0.34	0.29	0.25	0.21	0.25	0.21	0.33	0.28	0.33		0.42	0.37	0.25	0.39	0.29	0.29	
Songbird, Raptor, & Mammal Habitat (SBM)	0.34	0.32	0.21	0.26	0.25	0.22	0.22	0.22	0.22	0.25	0.25	0.25		0.35	0.32	0.19	0.36	0.18	0.24	
Pollinator & Native Plant Habitat (PH)	0.25	0.24	0.00	0.20	0.24	0.02	0.02	0.02	0.02	0.10	0.19	0.18		0.22	0.20	0.00	0.24	0.12	0.19	0.23
Human Use & Recognition (HU)	0.42	0.44	0.29	0.39	0.39	0.33	0.33	0.33	0.33	0.29	0.39	0.39	0.51	0.49	0.49	0.38	0.51	0.53	0.44	0.38
	***								***	***	***			***	***		***	***		***
Normalized Score (ABWRET_A) Based on Wetlands in RWVAU		Wetland 20 Wet						<u> </u>					1							
Normalized Hydrological Health (HH)	0.84	0.84 0.25		0.00	0.86 0.2		0.25	0.25	**	0.79	0.77).79	0.85	0.85		0.23	0.85	0.79	0.79	0.73
Normalized Water Quality (WQ)	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00		1.00	1		1.00	1.00	1.00		1.00	
Normalized Ecological Health (EH)	0.54	0.54	0.40	0.46	0.47	0.41	0.41	0.41	0.41	0.47	0.46	0.47		0.58	0.47	0.39	0.52	0.47	0.49	0.00
Normalized Human Use (HU)	0.42	0.44	0.29	0.39	0.39	0.33	0.33	0.33	0.33	0.29	-	0.39		0.49	0.49	0.38	0.51	0.53	0.44	0.38
RWVAU #	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13
Normalized Value Score (ABWRET_a)	0.76	0.76	0.52	0.73	0.74	0.53	0.53	0.53	0.53	0.71	0.72	0.72	0.78	0.78	0.75	0.53	0.76	0.73	0.73	0.71
Value Category (a, b, c, d)	C	C	d	C	C	d	d	d	d	d	C	C	C 1	C 1	C 1	d	C	C	C	C
Abundance Factor	I D	l R	1	l D	I D	1	C	1 C	1 C	C	l D	1 D	1 D	l l	I D	1	l D	l D	l D	l D
Final Score(A, B, C, D)	В	R	D	В	В	C	C	C	C	C	В	В	В	В	В	D	В	В	В	В

Appendix E Photographs

Wetland Assessment and Impact Report

NW AND SW 31-026-3 W5M

Mountain Ash Limited Partnership

SLR Project No. 212.06650.00003

May 10, 2023

Photo 1: Water body 1 – Southwest corner of Project Area (June 3, 2019).

Photo 2: Water body 3 – Southwest corner of Project Area (June 3, 2019)

Photo 3: Water body 17 – North end of Project Area (June 4, 2019).

Photo 4: Water body 19 – Northwest corner of Project Area (June 4, 2019).

Photo 5: Water body 20 – Northwest corner of Project Area (June 4, 2019).

Photo 6: Water body 19 – Hoof sheer within wetland (June 4, 2019).

Photo 7: Water body 20 – Hoof sheer within wetland (June 4, 2019).

Photo 8: Water body 7 – South end of Project Area (June 3, 2019).

Photo 9: Water body 11 – South end of Project site (June 3, 2019)

Photo 10: Water body 18 – North end of Project Area (June 4, 2019).

Photo 11: Water body 5 – Excavated dugout (June 4, 2019).

Photo 12: Water body 8 – Located with Water bodies 9 and 10 within hay field (June 5, 2019).

Photo 13: Water body 21 – Middle of Project Area (August 2, 2022).

Photo 14 Water body 22 – Middle of Project Area (August 2, 2022).

global **environmental** and **advisory** solutions **www.slrconsulting.com**

Wetland Replacement Fee Form								
*Alberta Environment and Parks (AEP) and Alberta Energy Regulator (AER)								
A. Water Act Applicant Information								
After payment has been received a receipt will be sent to the applicant's email below.								
Contact Name	Company Name (If applicable)							
Tige Brady	Mountain Ash Limited Partnership	\neg						
	Mailing Address							
Contact Email		\neg						
tige.brady@telus.net	City Prov. Postal							
<u>agentially elemented</u>	1.01.							
B. Project Information								
Municipality	Legal Land Description							
Rocky View County								
	Qtr SW Sec 31 Twp 26 Rg 3 Mer 5							
Name Authenticating Professional	Authenticating Company							
Alana-Rose Lynes	SLR Consulting (Canada) Ltd.							
Name of Lead Reviewer (AER or AEP)	Administrative Region							
	Calgary							
D. Woter Act Application Information								
D. Water Act Application Information	A of Application Number							
Please fill the applicable Water	Act Application Number							
AEP Water Act or DRAS Case Number	DAPP0001717 (Leave blank if AER)							
	(200.10 0.0							
AER Water Act Application Number	(Leave blank if AEP)							
C. Fees for Wetland Loss								
Please complete "Wetland Replacement Detail	ils" sheet to auto-populate this section.							
Sum of Wetland Area Removed (ha	0.56500000							
Wetland Replacement Area Owed (ha) 1.98100000							
Wetland Replacement Fe	•							
GST	•							
Total Wetland Replacement Fe	<u> </u>							
Total Wetland Replacement Fed	ε φ 30,010.09							
E. Wetland Replacement Payment Methods								
See complete instructions on making the Replacement Fee payment on the yellow tab below								
Payment Re	ceipt Stamped by							
Alberta Environment and Parks - Finance and Administration								
Receipt Number:	Date:							

					DO NOT FILL					
Wetland ID	Public Land In Green Area (Y or N)*	RWVAU	Lost Wetland Area (ha)	ABWRET Relative Value	Replacement Ratio	Replacement Area (ha)	Replacement Rate (\$/ha)		Replacement Cost	
1	N	13	0.291	В	4	1.164	17700	\$	20,602.80	
11	Ν	13	0.009	D	1	0.009	17700	\$	159.30	
13	Ν	13	0.023	С	2	0.046	17700	\$	814.20	
14	Ν	13	0.028	С	2	0.056	17700	\$	991.20	
16	N	13	0.046	В	4	0.184	17700	\$	3,256.80	
17	N	13	0.118	В	4	0.472	17700	\$	8,354.40	
18	N	13	0.05	D	1	0.05	17700	\$	885.00	

Appendix T Wetland Monitoring Program

Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership

SLR Project No: 212.06650.00007/8

Wetland Monitoring Plan

Summit Pit

Mountain Ash Limited Partnership

1945 Briar Crescent NW Calgary, AB T2N 3V6

Prepared by:

SLR Consulting (Canada) Ltd.

200, 708 – 11th Avenue SW Calgary, AB T2R 0E4

SLR Project No: 212.06650.00006

May 10, 2023

Table of Contents

1.0	Project Information	. 1
2.0	Wetland Protection	. 1
3.0	Wetland Monitoring Plan	. 2
3.1	Wetland Monitoring Timeframe	. 2
3.2	Wetland Evaluation	. 2
3.3	Reporting and Adaptive Management	. 3
4.0	Closure	. 4
5.0	References	. 5

1.0 Project Information

Mountain Ash Limited Partnership (MALP) is planning to develop the Summit Pit (the Project) along Highway 567 within NW and SW 31-026-03 W5M, northeast of the Town of Cochrane, in Rocky View County, Alberta (Figure 1, Appendix A).

SLR Consulting (Canada) Ltd. (SLR) was retained by MALP to complete a Wetland Assessment and Impact Report (WAIR) for the Project. A total of 23 water bodies were assessed as part of the WAIR, of which MALP has proposed to avoid two wetlands, Water bodies 19 and 20 (SLR 2023). These wetlands are described in Table 1 below and shown in Figure 1 (attached).

Alberta Environment and Protected Areas (EPA) has requested this monitoring plan include Water body 54, which is outside of the Project Boundary but within the Property Boundary, as shown in Figure 1. This wetland is described in Table 1 below and shown in Figure 1 (attached).

In addition, EPA has requested the wetland monitoring plan include two offsite wetlands, Water bodies 61 and 75, which will be monitored using remote desktop methods. These wetlands are described in Table 1 below and shown in Figure 1 (attached).

Table 1:	Summary of Water Bodies included in the Wetland Mon	itoring Plan

Water Body ID	Wetland Classification	Wetland Classification Delineated Area (ha)	
Water Body 19	Temporary Graminoid Marsh	0.676	Onsite field assessment
Water Body 20	Temporary Graminoid Marsh	0.722	Onsite field assessment
Water Body 54	Temporary Graminoid Marsh	0.132 ¹	Onsite field assessment
Water Body 61	Temporary Graminoid Marsh	0.294 ¹	Offsite remote assessment
Water Body 75	Temporary Graminoid Marsh	0.054 ¹	Offsite remote assessment

Wetland areas based on desktop delineation only (i.e., no field surveys conducted).

2.0 Wetland Protection

Water bodies 19 and 20 are located adjacent to the Phase 4 extraction boundary of the Project, as shown in Figure 1. The material within Phase 4 is expected to be extracted over a period of five to seven years. These wetlands will be protected by an earthen berm constructed at a distance of at least 10 m set back, between the wetlands and the extraction boundary (SLR 2023). This 10 m setback is identified in Provincial guidance as an effective width of vegetation (Government of Alberta (GoA) 2012), and as such no indirect effects are anticipated. Hydrology will be maintained through breaks and/or culverts in the berm as required (SLR 2023).

Water body 54 is located approximately 100 m south of the Phase 6 extraction boundary of the Project as shown in the Figure 1. The material within Phase 6 is expected to be extracted over a period of five to seven years. This setback far exceeds the 10 m effective width of vegetation identified in Provincial quidance (GoA 2012), and as such no indirect effects are anticipated.

Water body 61 is located is located approximately 250 m east of the Phase 1 extraction boundary of the Project as shown in Figure 1. The material within Phase 1 is expected to be extracted over a period of five to seven years. This setback far exceeds the 10 m effective width of vegetation identified in Provincial quidance (GoA 2012), and as such no indirect effects are anticipated.

Water body 75 is located is located approximately 50 m east of the Phase 3 extraction boundary of the Project as shown in Figure 1. The material within Phase 3 is expected to be extracted over a period of five to seven years. This setback far exceeds the 10 m effective width of vegetation identified in Provincial guidance (GoA 2012), and as such no indirect effects are anticipated.

3.0 Wetland Monitoring Plan

In accordance with the Alberta Wetland Mitigation Directive (GoA 2018), this Wetland Monitoring Plan (the Plan) ensures that the natural conditions and function of the wetlands are maintained throughout the lifespan of the Project. Specifically, the Plan provides a comparison of pre-Project and post-reclamation characteristics, including wetland area, class, vegetation, soils, hydrology, and habitat. These characteristics will be evaluated prior to Project activities (i.e., excavation) within the wetland catchment areas, in accordance with the Alberta Wetland Identification and Delineation Directive (GoA 2015a). This evaluation will provide the baseline conditions in which to compare the post-reclamation characteristics throughout the monitoring period.

3.1 Wetland Monitoring Timeframe

A pre-Project evaluation will be conducted during the growing season within one year prior to the commencement of Project activities (i.e., excavation) the wetland catchment areas. The wetland boundaries for Water bodies 19, 20 and 54 will be delineated and flagged during this evaluation. The wetland boundaries for the offsite wetlands, Water bodies 61 and 75, will be determined using drone imagery.

The post-excavation evaluations will be conducted during the growing season for Water bodies 19, 20, 54, 61 and 75 as follows:

- One year post-excavation within the wetland catchment areas;
- Three years post-excavation within the wetland catchment areas;
- Five years post-excavation within the wetland catchment areas;
- Seven years post-excavation within the wetland catchment areas, if Project activities continue past six years; and
- Two years post-reclamation activities within the wetland catchment areas.

Note: Post-reclamation activities means the work to recontour, replace materials, including topsoil and subsoil, and revegetate has been complete. This does not mean that there is a 'reclamation certificate'.

3.2 Wetland Evaluation

Wetland area and classification: The wetland area will be classified and delineated in accordance with the Alberta Wetland Classification System (GoA 2015b) and the Alberta Wetland Identification and Delineation Directive (GoA 2015a). For all post-excavation evaluations, any changes in wetland area and/or class compared to pre-Project will be identified.

Wetland vegetation function: Wetland vegetation function for Water bodies 19, 20 and 54 will be evaluated by locating and marking five 1 m x 1 m vegetation plots distributed throughout each wetland. The plots will be photographed, and geo-referenced with GPS to ensure the same plots are sampled in each evaluation. The results will be recorded on the Field form for wetland delineation procedures in Alberta (wetland field form) provided in the Alberta Wetland Identification and Delineation Directive (GoA 2015a).

The wetland vegetation function for the offsite wetlands, Water bodies 61 and 75, will be assessed using drone imagery. The total area of vegetation in the wetland versus bare soil will be documented. An assessment regarding the presence of non-native versus native vegetation will be provided. Offsite disturbances to the wetlands that may impact vegetation function (e.g., agriculture) will be documented.

Wetland soil function: Wetland soil function for Water bodies 19, 20 and 54 will be evaluated by locating and digging one soil plot in the centre of each wetland. Plots will be geo-referenced with GPS to ensure the same plots are sampled in each evaluation. The results will be recorded on the wetland field form.

The wetland soil function for the offsite wetlands, Water bodies 61 and 75, will be assessed using drone imagery. The area of vegetation versus bare soil will be documented. Offsite disturbances to the wetlands that may impact soil function (e.g., agriculture) will be documented.

Wetland hydrological function: Wetland hydrological function for Water bodies 19, 20 and 54 will be evaluated by surveying hydrological features as described in the wetland field form throughout the entirety of each wetland. Results will be recorded on the wetland field form.

The wetland hydrological function for the offsite wetlands, Water bodies 61 and 75, will be assessed using drone imagery. Hydrological indicators (e.g., standing water) will be documented. Offsite disturbances to the wetlands that may impact hydrological function (e.g., agriculture) will be documented.

Wetland habitat: Wetland vegetation, soils, and hydrology are all important aspects of wetland habitat; therefore, a change in wetland vegetation, soils, or hydrological function are expected to impact habitat. In addition to the information collected for these functions, all incidental wildlife and invertebrate observations will be recorded.

3.3 Reporting and Adaptive Management

Results of the evaluations will be provided to EPA in a letter report within one month of field sampling. Post-excavation evaluations will compare the results to the pre-Project evaluation and identify any changes that indicate unexpected negative wetland impacts or a trajectory for wetland loss. If there are any unexpected negative wetland impacts or wetland loss, the reports will provide a management plan to address these impacts (e.g., weed control, vegetation planting, etc.) in consultation with the EPA Wetland Specialist.

4.0 Closure

If you should have any questions, please contact Alana-Rose Lynes at <u>alynes@slrconsulting.com</u>. Sincerely,

SLR Consulting (Canada) Ltd.

Alana-Rose Lynes, M.Sc., P. Biol.

Senior Wetland Ecologist

Attachment: Figure 1: Waterbody Catchment

Alana Rose Lynus

5.0 References

- Government of Alberta (GoA). 2012. Stepping Back from the Water: A Beneficial Management Practices Guide for New Development Near Water Bodies in Alberta's Settled Region. Environment and Sustainable Resource Development.
- Government of Alberta (GoA). 2015a. Alberta Wetland Identification and Delineation Directive. Edmonton AB: Water Policy Branch, Alberta Environment and Parks.
- Government of Alberta (GoA). 2015b. Alberta Wetland Classification System. Edmonton AB: Water Policy Branch, Alberta Environment and Parks.
- Government of Alberta (GoA). 2018. Alberta Wetland Mitigation Directive. Edmonton AB: Water Policy Branch, Alberta Environment and Parks.
- SLR. 2023. Wetland Assessment and Impact Report. Mountain Ash Limited Partnership Summit Pit. NW and SW 31-026-03 W5M. Rocky View County, Alberta

global **environmental** and **advisory** solutions **www.slrconsulting.com**

Appendix U Wildlife Protection Plan

Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership

SLR Project No: 212.06650.00007/8

Technical Memorandum

Alberta Environment and Parks

To: Terrina Perley, CET From: SLR Consulting (Canada) Ltd.

Senior Land and Water Specialist

DAPP0001717 Project: Mountain Ash Limited Partnership

ECM 00481044 Summit Project

Re: Response to Supplemental Information Request – D. Wildlife Act (Alberta) and Wildlife

Regulations

SIR No. D3:

AEP File

Nos:

As this project will occur over a long period of time, it is recommended the development include a Wildlife Protection plan, as the phase are developed. Wildlife features may be determined over time and developing a set of strategies on how wildlife will be managed as phases are developed, would more adequately manage that risk. For example, how will habitat such as a den or nest be dealt with as the project moves to a next phase.

Response:

The Wildlife Protection Plan described in this response collates the various Mountain Ash Limited Partnership (MALP) mitigation measures regarding their ongoing commitment to best management practices and strategies pertaining to the Summit Project (the Project). The Project will be developed in six phases of eight to 16 ha over a period of 30 to 40 years. Once a phase has been completed (approximately six to eight years), it will be reclaimed as the next phase is developed. MALP will reclaim each phase in accordance with the best industry practices to ensure equivalent land capability can be achieved. Appropriate vegetation species mix, seeding rates, and composition will be based on reclamation criteria/requirements, seed availability, and landowner specifications likely consistent with current land use at the time which currently is primarily tame pasture and hay. Reclamation of mined areas will occur concurrently with mining operations. This will limit the inactive excavation (pit) area at any given time. Concurrent excavation (pit) area reclamation will also limit any additional soil handling and placement.

A full description of the biophysical environment is provided in the Biophysical Impact Assessment (SLR 2020). As stated in the response to SIR D1, there were no sensitive wildlife habitat features identified in 2019 or 2022 that require additional mitigation measures. Barn swallows were nesting on the residences in 2019 and no nesting was observed in 2022. As the clearing activities are expected to occur outside the migratory breeding bird period, no additional mitigation for barn swallows, or other migratory bird species, is required. If site preparation and stripping activities must occur within the migratory breeding bird period or nesting period for raptors, a nest sweep conducted by a qualified biologist will be conducted within seven days prior to construction activities. MALP will conduct wildlife sweeps for each new phase of development to identify new wildlife habitat features that may require additional mitigation.

The following mitigation measures will be implemented during the development and operation of the Project. Industrial standards, guidelines, recommendations, and best management practices will be followed to ensure impacts on wildlife are reduced or eliminated (GOA 2021, 2018, 2017, 2015, 2013, 2012, 2010; GOC 2021a, and 2021b).

- Limit the area of disturbance as far as practically possible.
- Conduct a wildlife sweep before clearing and reclamation activities for each Project Phase to identify new wildlife habitat features (e.g., raptor nests) and update the mitigation plan as needed. Results of these surveys, with updated mitigation measures, as needed, will be provided to Alberta Environment and Parks (AEP) prior to any clearing activity.
- Site preparation and stripping activities will avoid the migratory breeding bird period which is April 14 to August 28 in this area (Nesting Zone B4; ECCC 2018), and the nesting period for raptors March 1 to August 31 (GOA 2021).
- If site preparation and stripping activities must occur within the migratory breeding bird period or nesting period for raptors, a nest sweep conducted by a qualified biologist will be conducted within seven days prior to construction activities.
 - o If nests are observed during the nest sweep, a setback distance and mitigation measures will be provided based on the species.
 - o Mitigation measures will be provided, and strategies will be discussed with AEP as needed.
- Comply with federal and provincial legislation relating to migratory birds and designated species at risk (if presence is identified onsite) during Project construction.
- If an active nest or den is observed during operations, a qualified biologist will be contacted to discuss setbacks and mitigation measures for the active nest or den.
- Do not harass, hunt, trap, or feed wildlife or livestock on the Project site and surroundings.
- Train workers to report wildlife incidents such as presence of wildlife on the construction site or during Project operation, or wildlife mortality via collision with a vehicle.
- On-site garbage will be disposed of in appropriate storage containers to not attract wildlife.
- Maintain the perimeter fence to deter wildlife accessing the Project site.
- Effective access control to restrict unauthorized traffic into the Project.
- MALP will implement a weed control plan to comply with the requirements of the *Alberta Weed Control Act* as part of their regular operating practices that will cover construction, operation and reclamation (SLR 2021a).
- Disturbed areas will be progressively reclaimed.
- Phases will be reclaimed to equivalent land capability using only certified weed free seed mix where seeding is required.
- Monitor re-vegetation of the Project area and re-seed where necessary.
- Sloping of excavation (SLR 2021b) will be done to minimize nesting by bank swallows. Stop excavation work if bank swallows colonize a slope in the excavation (pit) area.
- Manage on site surface water (SLR 2021c) to limit wildlife habitat, including shorebird and waterfowl nesting habitat.

SIR No.: D3

- Prevent vegetation from becoming established around the edges and perimeter of the stormwater ponds. This will prevent the development of suitable habitat for birds and other wildlife.
- Internal speed limit is reduced in the Project area to reduce wildlife/vehicle conflicts and fugitive dust emissions.
- Prohibit the harvesting of any natural vegetation in the Project area by workers.
- Manage dust and noise emissions (SLR 2021d) to minimize disturbance to wildlife around the Project area.

Sincerely,

Tessa Giroux, P.Biol., R.P.Bio.

Environmental Scientist

Rick Lauzon, P.Biol., R.P.Bio.

Senior Wildlife Biologist

Statement of Limitations

SLR and AECOM are relaying information obtained during work conducted for Mountain Ash Limited Partnership. SLR and AECOM accept no responsibility or liability for the use of this information for any purpose by any other entity except provincial review agencies. The regulatory agency (or agencies) can rely on the information in this document for the purposes of review, comment, and regulatory approvals.

References

ECCC. 2018. General Nesting Periods of Migratory Birds in Canada.

Available at: https://www.canada.ca/en/environment-climate-change/services/avoiding-harm-migratory-birds/general-nesting-periods.html. Environment and Climate Change Canada

GOA. 2021. Master Schedule of Standards and Conditions.

Available at: https://open.alberta.ca/dataset/133e9297-430a-4f29-b5d9-4fea3e0a30c2/resource/37d91717-08ab-4998-a13f-ce5c103c0735/download/aep-master-schedule-of-standards-and-conditions-2021-04.pdf. Government of Alberta.

GOA. 2018. Wildlife Directive for Alberta Wind Energy Projects.

Available at: https://open.alberta.ca/dataset/2d992aec-2437-4269-9545-cd433ee0d19a/resource/e77d2f25-19dc-4c9e-8b87-99d86cd875f1/download/wildlifewindenergydirective-sep17-2018.pdf. Government of Alberta.

GOA. 2017. Wildlife Directive for Alberta Solar Energy Projects.

Available at: https://open.alberta.ca/dataset/6a71e752-8d72-4126-a347-e9f328279904/resource/527c6a99-4004-440c-8033-07872cb8adb0/download/wildlifedirective-albertasolarenergyprojects-oct4-2017.pdf. Government of Alberta.

GOA. 2015. Recommended Land Use Guidelines: Key Wildlife and Biodiversity Zones.

Available at: https://open.alberta.ca/dataset/5c6e2826-50ab-4d2a-a673-9d703d6b5c52/resource/d8d1b2e9-3a72-471d-9479-56db5ee68210/download/keywildlifebiodiversityzones-apr08-2015.pdf. Government of Alberta.

GOA. 2013. Sensitive species inventory guidelines. Environment and Sustainable Resource Development. Available online at: https://open.alberta.ca/dataset/93d8a251-4a9a-428f-ad99-7484c6ebabe0/resource/f4024e81-b835-4a50-8fb1-5b31d9726b84/download/2013-sensitivespeciesinventoryguidelines-apr18.pdf. Government of Alberta.

GOA. 2012. Supplemental Guidelines for Aggregate Operations. Available at:

https://open.alberta.ca/dataset/5b1686bd-98d3-49e2-b7ab-be2f45960c53/resource/2ef51d37-6d41-4423-9378-93c06ae8e7c7/download/supplementguidelineaggregatewoodlands.pdf. Government of Alberta.

GOA. 2010. Best Management Practices User Manual For Aggregate Operators on Public Land.

Available at: https://open.alberta.ca/dataset/b6521493-24f8-4c09-892b-9c48f1604f9b/resource/25a87a55-6db3-4046-8569-1cfb46527003/download/2010-bestmgmtpracticesmanualaggregateoppl-2010.pdf. Government of Alberta.

GOC. 2021a. Bank Swallow (Riparia riparia): in sandpits and quarries.

Available at: https://www.canada.ca/en/environment-climate-change/services/species-risk-public-registry/related-information/bank-swallow-sandpits-quarries.html. Government of Alberta.

GOC. 2021b. Guidelines to reduce risk to migratory birds.

Available at: https://www.canada.ca/en/environment-climate-change/services/avoiding-harm-migratory-birds/reduce-risk-migratory-birds.html. Government of Alberta.

SLR. 2021a. Soil and Weed Management Plan, Appendix A of the COP for pits.

SLR Consulting (Canada) Ltd.

SLR. 2021b. Mining and Excavation Plan, Appendix M of the COP for pits.

SLR Consulting (Canada) Ltd.

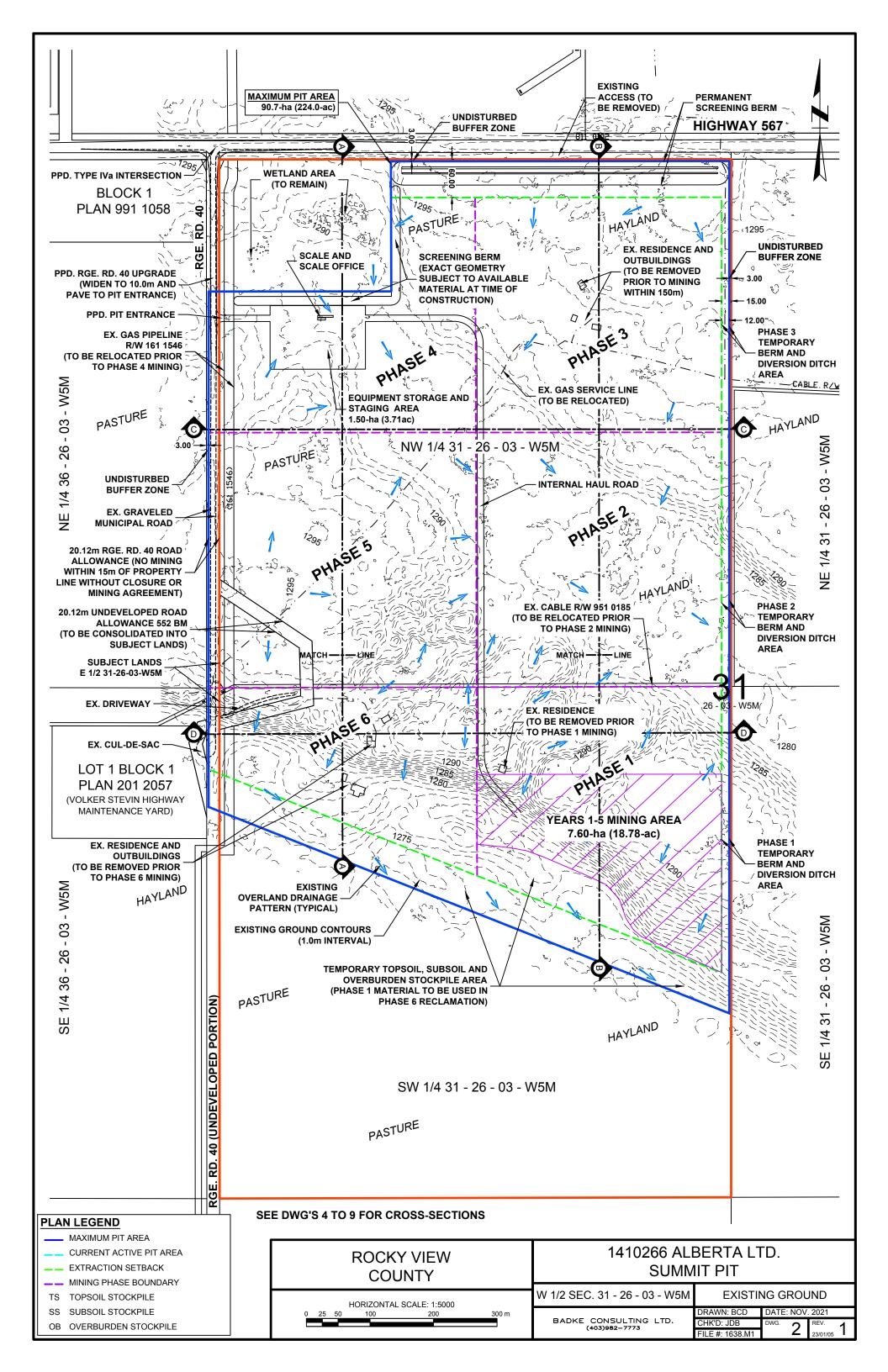
SLR. 2021c. Stormwater Management Plan, Appendix I of the COP for pits.

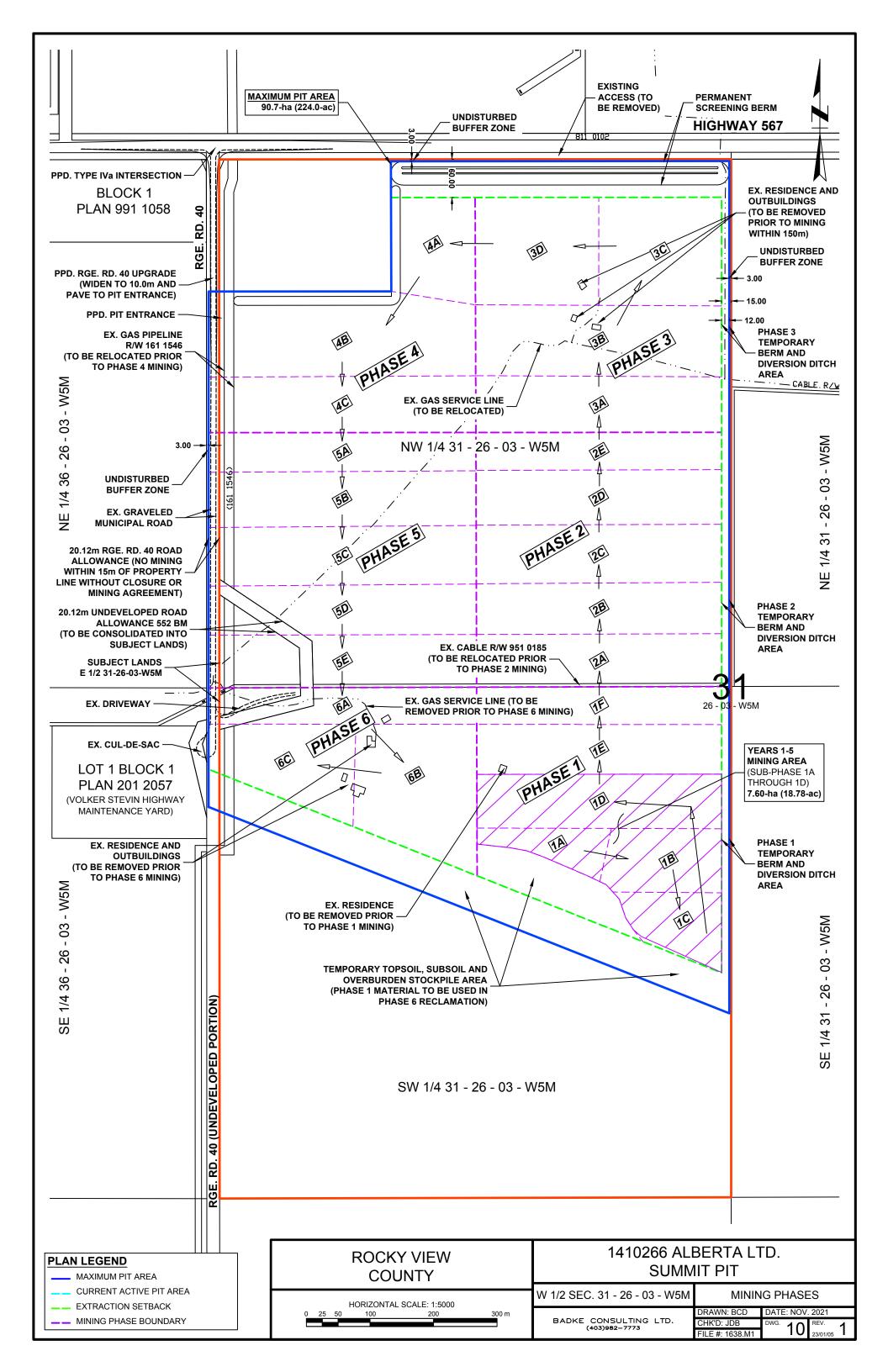
SLR Consulting (Canada) Ltd.

SIR No.: D3 September 22, 2022

SLR. 2021d. Dust Control Plan and Noise Report, Appendix C of the COP for pits. SLR Consulting (Canada) Ltd.

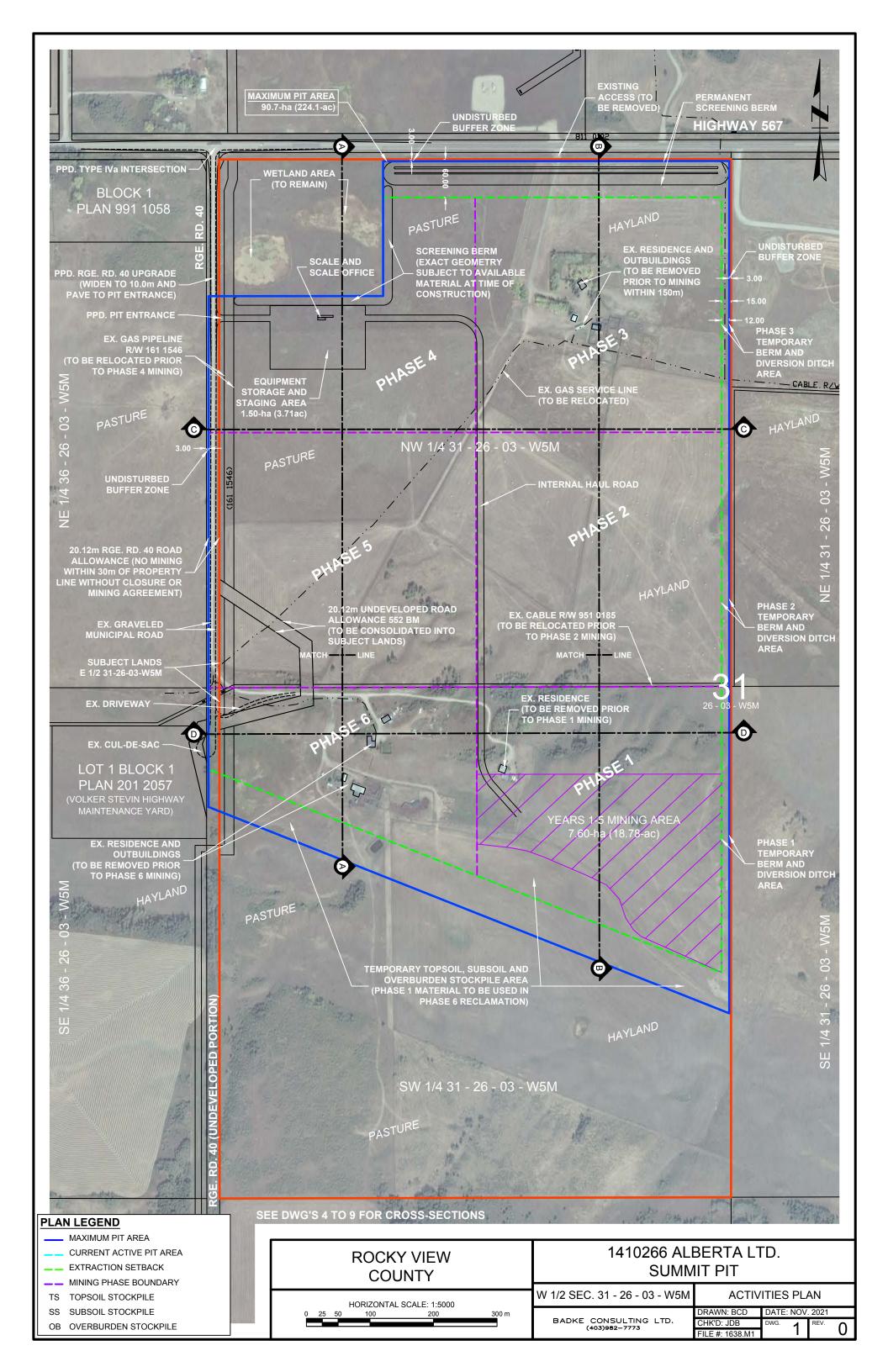
SLR. 2020. Biophysical Impact Assessment Report prepared for Mountain Ash Limited Partnership. SLR Consulting (Canada) Ltd. January 2020.

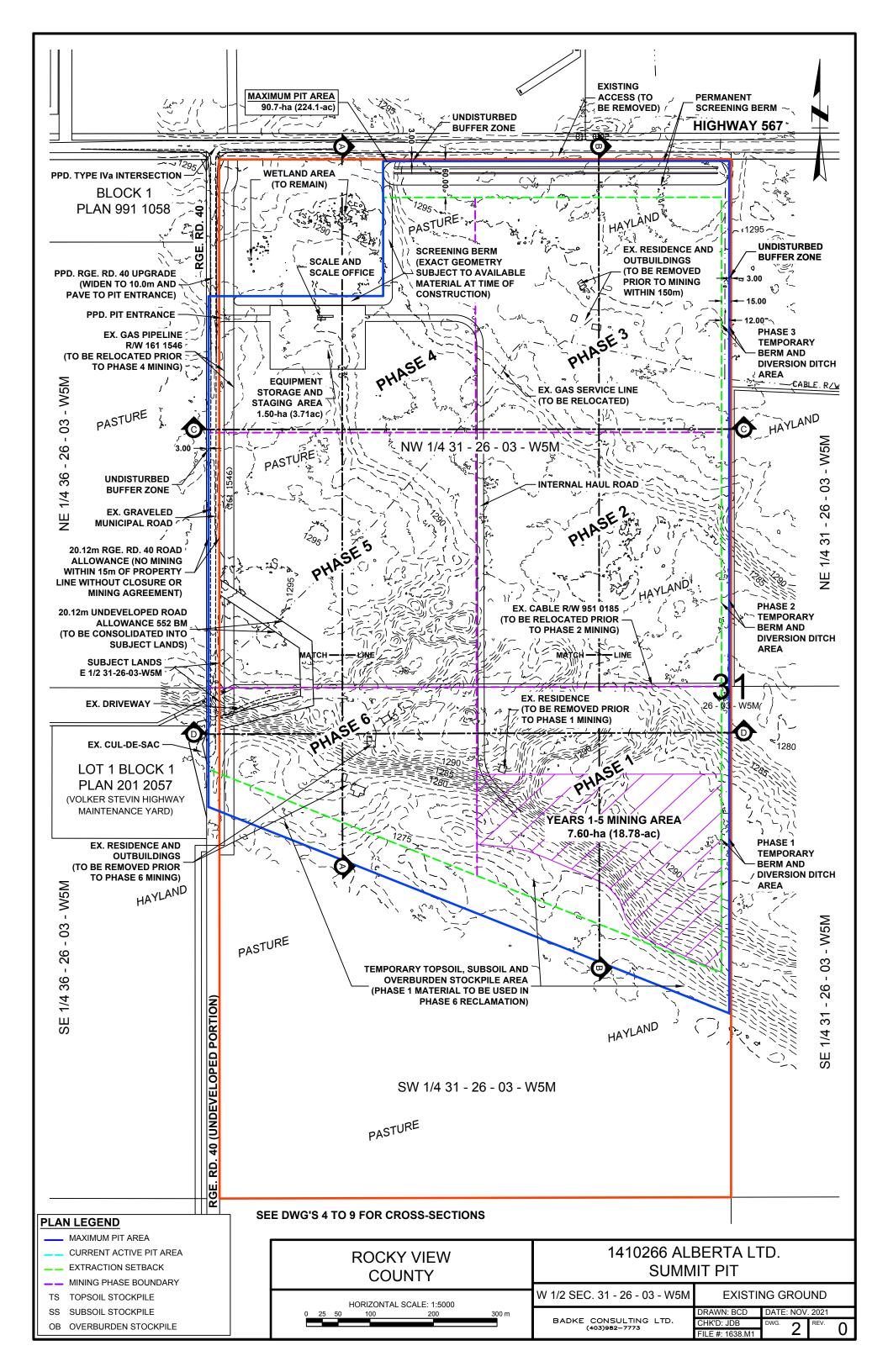

5

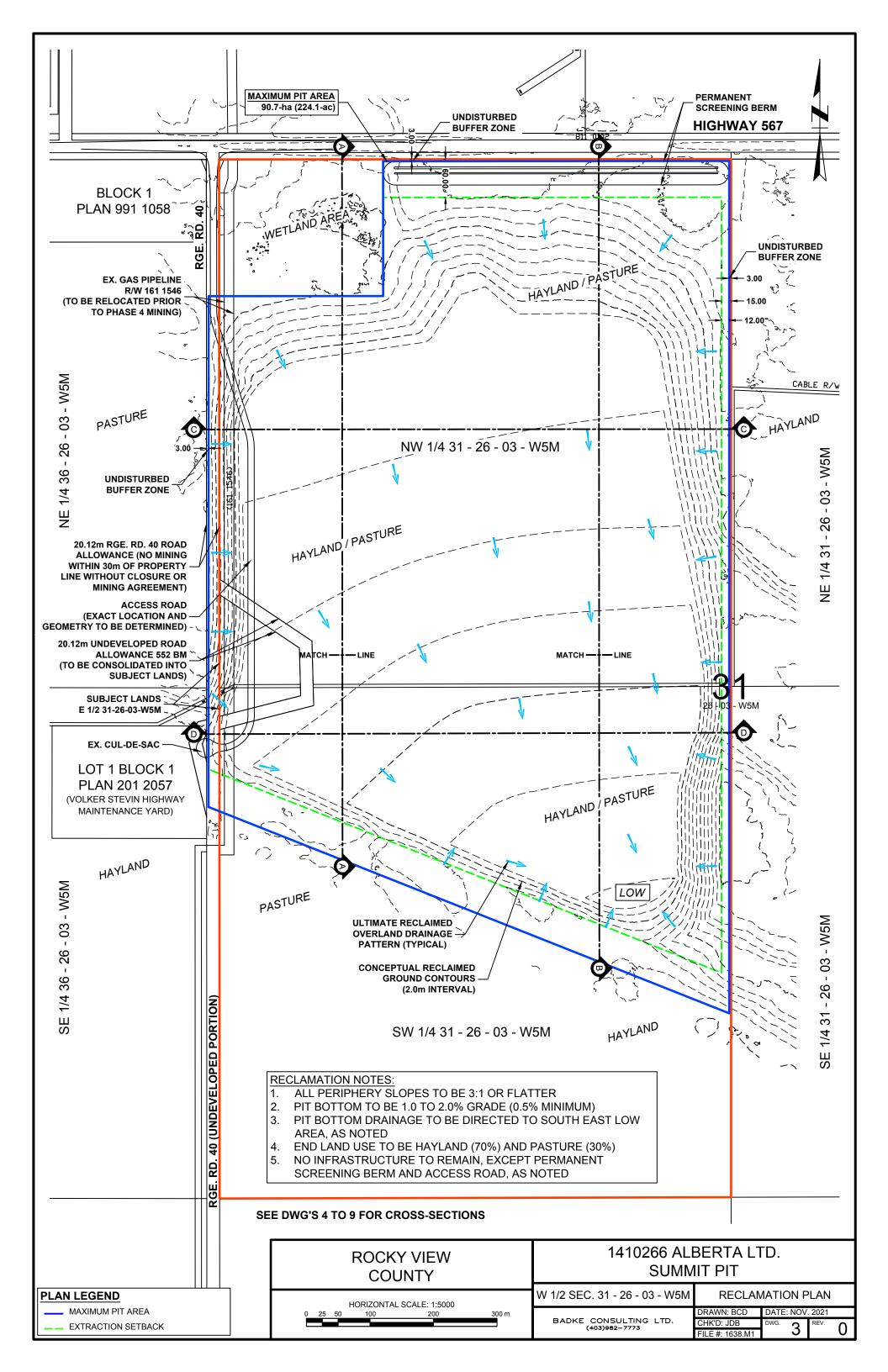

Appendix V Supplemental Drawings

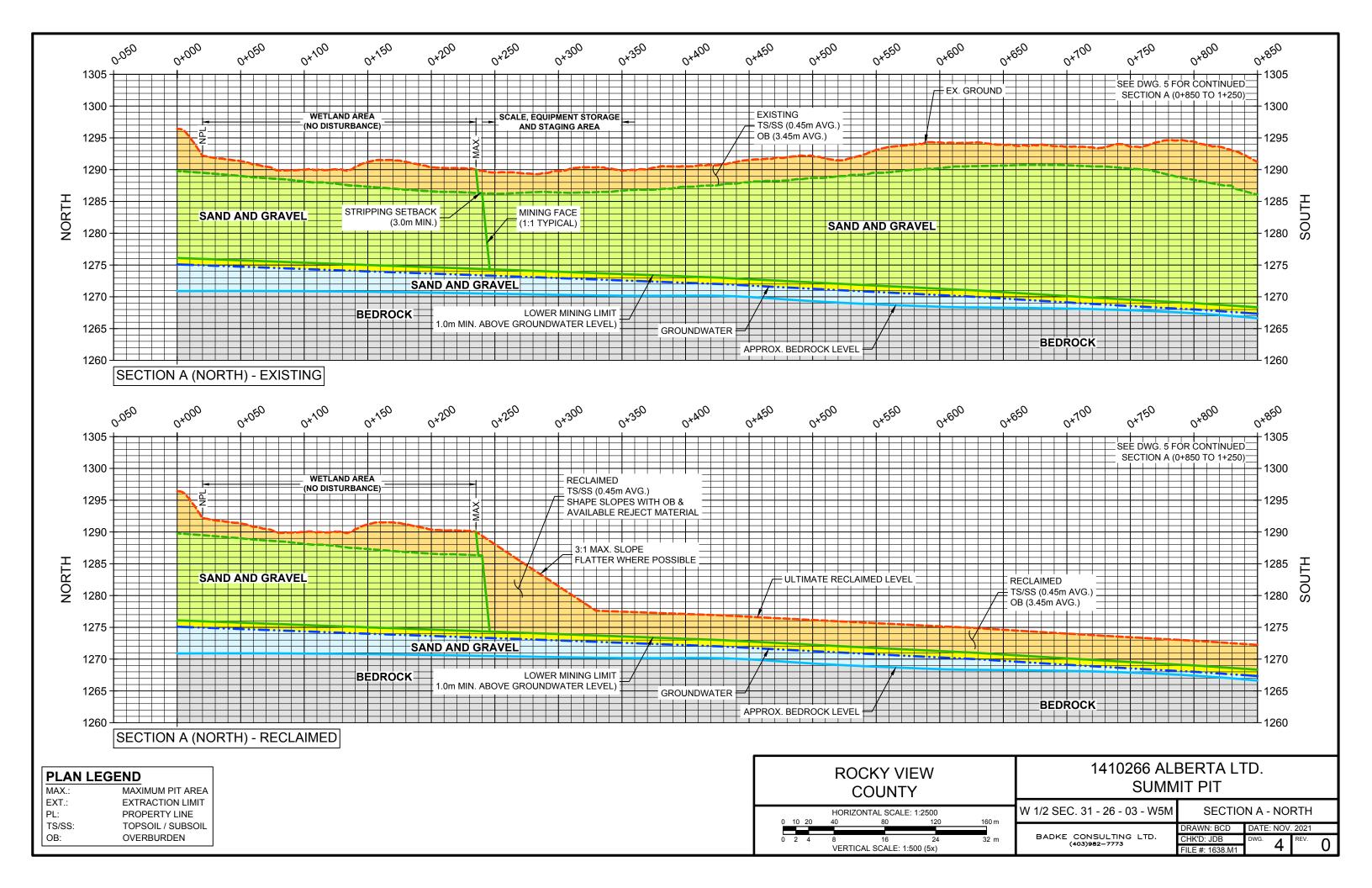
Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership

SLR Project No: 212.06650.00007/8


Appendix W


Original Code of Practice Drawing Set


Code of Practice for Pits in Alberta Application Mountain Ash Limited Partnership


SLR Project No: 212.06650.00007/8

