

SUMMIT RESOURCE DEVELOPMENT

TRANSPORTATION IMPACT ASSESSMENT



#310, 3016 – 5th Avenue NE Calgary, AB T2A 6K4 Phone: (403) 273-9001 Fax: (403) 273-3440 wattconsultinggroup.com

SUMMIT RESOURCE DEVELOPMENT

Transportation Impact Assessment

PERMIT TO PRACTICE
D. A. WATT CONSULTING GROUP LTD.
Signature

Date August 18, 2014

PERMIT NUMBER: P 3818

The Association of Professional Engineers,
Geologists and Geophysicists of Alberta

Prepared for: Summit Aggregates Ltd.

Prepared by: Watt Consulting Group

Our File: 3179.T01

Date: August 18, 2014

TABLE OF CONTENTS

1.0	BACK	GROUND	1
	1.1	Site Location	1
	1.2	Scope of Work	1
2.0	OPEN	ING DAY CONDITIONS	3
	2.1	Existing Road Network	3
	2.2	Intersection Performance Criteria	4
	2.3	Opening Day Traffic Volumes	4
	2.4	Opening Day Operating Conditions	5
3.0	POST	DEVELOPMENT 10 YEAR HORIZON	6
	3.1	Growth Rate	6
	3.2	Trip Generation	6
	3.3	Trip Distribution	6
	3.4	Post Development 10 Year Horizon Traffic Volumes	8
	3.5	Post Development 10 Year Horizon Operating Conditions	8
4.0	POST	DEVELOPMENT 20 YEAR HORIZON	9
	4.1	Post Development 20 Year Horizon Traffic Volumes	9
	4.2	Post Development 20 Year Horizon Operating Conditions	9
5.0	PROP	OSED INTERSECTION CONFIGURATION	10
	5.1	Left Turn Warrant	10
	5.2	Right Turn Warrant	11
	5.3	Warrant Summary	12
6.0	SITE	DISTANCE	14
7.0	CONC	LUSIONS	17
APPEN	NDIX A:	AT TRAFFIC COUNTS	
	NDIX B:	CORRESPONDENCE WITH SUMMIT AGGREGATES LTD.	
APPEN	NDIX C:	SYNCHRO OUTPUTS	
APPEN	NDIX D:	ALBERTA INFRASTRUCTURE - HIGHWAY GEOMETRIC DESIGN GUIDE	
		N TREATMENTS	
APPEN	NDIX E:	SCOPE CONFIRMATION	

LIST OF FIGURES

Figure 1:	Site Context	
Figure 2:	Existing Laning	3
Figure 3:	Opening Day Volumes	
Figure 4:	Trip Distribution	7
Figure 5:	Post Development 10 Year Horizon Traffic Volumes	8
Figure 6:	20 Year Horizon Traffic Volumes	9
Figure 7:	Left Turn Warrant	11
	LIST OF TABLES	
Table 1:	Level of Service Criteria	4
Table 2:	Opening Day Operating Conditions	5
Table 3:	Growth Rate	7
Table 4:	10 Year Horizon Operating Conditions	8
Table 5:	20 Year Horizon Operating Conditions	9
Table 6:	Warrant Summary	12
Table 7:	Opening Day Conditions – Improved Geometry	12
Table 8:	10 Year Horizon Conditions – Improved Geometry	
Table 9·	20 Year Horizon Conditions – Improved Geometry	13

1.0 BACKGROUND

1.1 Site Location

Watt Consulting Group (WCG) was retained by Summit Aggregates Ltd. to complete a Transportation Impact Assessment (TIA) for the proposed gravel pit located at NW 31-26-3-W5M south of Highway 567 and east of Highway 22. Access to the site will be provided via Range Road 40 directly west of the site. **Figure 1** illustrates the location of the site.

Figure 1: Site Context

1.2 Scope of Work

The study requirements were discussed with Alberta Transportation (AT) staff. The following scope of work was agreed on in order to address AT's requirements for the TIA:

- Site assessment of the sight distance at the intersection of Highway 567 and Range Road 40
- Traffic generation by the site

- Number of trucks expected during the a.m. and p.m. peak hours is to be provided by Summit Aggregates Ltd.
- Traffic analysis of the capacity and operational conditions at the intersection of Highway 567 and the access road for three conditions:
 - Opening day
 - o 10 year horizon
 - o 20 year horizon
- Identification of the improvements required at the access intersection to accommodate the gravel pit traffic

Correspondence with Alberta Transportation regarding the scope can be found in **Appendix E**.

2.0 OPENING DAY CONDITIONS

Opening Day conditions were assumed to take place in 2014, and therefore volumes used in this scenario reflect the existing volumes added to the site generated traffic.

As per discussions with Summit Aggregate Ltd., the gravel pit is expected to operate 12 hours per day. 40 tonnes of gravel per truck load is expected, with 2400 tonnes per day at opening day and 4320 tonnes per day at peak production. At peak production with the expected tonnage per day and per truck, 9 trucks per day are expected. However, to account for different truck sizes and loads, a peak hour volume of 12 trucks per hour was assumed in the analysis. Because the timing of peak production is unknown, the volume of 12 trucks per hour was used for all analysis scenarios.

2.1 Existing Road Network

The proposed development is located on the south side of Highway 567 between Highway 22 and Highway 766 (as shown in **Figure 1**). The site will be accessed via the Range Road 40 west of the proposed development. The analysis included one intersection; Highway 567 and Range Road 40.

- Highway 567 is a rural, undivided, two lane highway with a posted speed of 100km/hr
- The Range Road 40 is a rural, one lane, unpaved roadway

The opening day traffic analysis was evaluated using the existing lane configuration and traffic controls as shown in **Figure 2**.

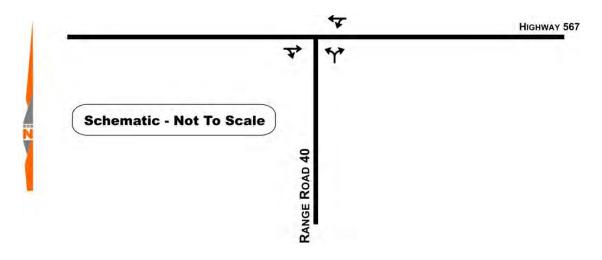


Figure 2: Existing Laning

2.2 Intersection Performance Criteria

The operating conditions during the peak hours at the study intersection were evaluated using the Synchro/SimTraffic 7.0 software package (which is based on the methodology outlined in the U.S. Highway Capacity Manual¹). For unsignalized (stop-controlled) intersections, the level-of-service (LOS) is based on the computed delays on each of the critical movements. LOS 'A' represents minimal delays for minor-street traffic movements, and LOS 'F' represents a scenario with an insufficient number of gaps on the major street for minor-street motorists to complete their movements without significant delays.

Table 1 illustrates the LOS criteria for unsignalized intersections, as summarized in the Highway Capacity Manual.

Level of Service (LOS)	Average Delay for UNSIGNALIZED Intersection Movements
Α	0 – 10 seconds per vehicle
В	> 10 – 15 seconds per vehicle
С	> 15 – 25 seconds per vehicle
D	> 25 – 35 seconds per vehicle
E	> 35 – 50 seconds per vehicle
F	> 50 seconds per vehicle

Table 1: Level of Service Criteria

The operating conditions for any type of intersection can also be expressed in terms of volume-to-capacity (v/c) ratio. Alberta Transportation TIA guidelines define acceptable operating conditions as LOS C in rural areas and LOS D in urban areas with a v/c ratio of 0.90 or less.

2.3 Opening Day Traffic Volumes

Through volumes on Highway 567 were obtained using AT counts at the intersection of Highway 567 and Highway 766.

The count at the intersection of Highway 567 and Highway 22 was initially analyzed for through volumes due to its close proximity to the study intersection. However, the through volumes on Highway 567 were considered unrepresentative of the through volumes at the site access because they include traffic destined to the gas station/RV park located at the NE corner of Highway 567 and Highway 22. Consequently, through volumes on Highway 567 recorded at the intersection of Highway 567 & Highway 766 were used in the analysis as there are no significant traffic generators between the site access and the intersection of Highway 567 & Highway 766

¹ Transportation Research Board, National Research Council. <u>Highway Capacity Manual 2000</u>. Washington, D.C. 2000.

Turning volumes into and out of the site were provided by Summit Aggregate's estimates of peak hour site traffic. The expected number of trucks at maximum production is 12 per hour. **Figure 3** summarizes the opening day volumes. Traffic counts from AT are attached in **Appendix A** and correspondence with Summit Aggregates regarding site traffic is attached in **Appendix B**.

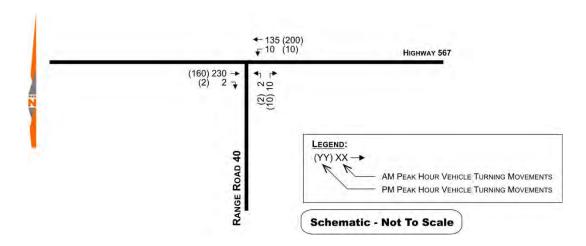


Figure 3: Opening Day Volumes

2.4 Opening Day Operating Conditions

The a.m. and p.m. peak hour traffic conditions for the opening day scenario were assessed in Synchro using the lane configurations and traffic controls shown in **Figure 2** and the traffic volumes shown in **Figure 3**. The results are shown in **Table 2** and full Synchro outputs are attached in **Appendix C**.

Table 2: Opening Day Operating Conditions

INTERSECTION / MOVEMENT		AM PEAK HOUR				PM PEAK HOUR				
INTERSECT	ION / I	VIO V EIVIEIN I	v/c Ratio	LOS	Delay (s)	Queue (m)	v/c Ratio	LOS	Delay (s)	Queue (m)
Highway 567 /	EB	Right/Through	0.15	Α	0.0	0.0	0.11	Α	0.0	0.0
Range Road 40	WB	Left/Through	0.01	Α	0.7	0.3	0.01	Α	0.5	0.3
(Unsignalized)	NB	Left/Right	0.02	В	11.6	0.6	0.02	В	11.0	0.5

Table 2 shows that all movements operate at a LOS B or better with all v/c ratios below the 0.90 threshold.

3.0 POST DEVELOPMENT 10 YEAR HORIZON

3.1 Growth Rate

A yearly growth rate was used to estimate the traffic volumes for the 10 and 20 year development horizons. This growth rate was obtained using permanent count stations available on AT's website. For comparison purposes, AADT's at three count stations were evaluated to estimate a growth rate:

- Highway 22 1.1km north of the intersection of Highway 22 & Highway 567
- Highway 567 East of Highway 22, north of Cochrane
- Highway 567 West of Highway 766, northeast of Cochrane

It was found that the two count stations closest to Highway 22 (Highway 22 – 1.1km north of the intersection of Highway 22 & Highway 567, and Highway 567 – East of Highway 22, north of Cochrane) had consistent growth in the past ten years, suggesting that growth in these areas within the foreseeable future would continue in this pattern (assuming no major development). However, the third count station experienced a sudden jump in the last recorded year (2013). For this reason the AADT recorded for this count station in 2013 was considered an outlier and the 10 year growth factor at this count station was calculated using AADT's from 2002-2012. This resulting growth factor (4%) was used in the 10 and 20 year horizon year analyses. AADT's for all three count stations and growth rate calculations can be found in **Appendix A**.

3.2 Trip Generation

As stated previously, a conservative site traffic volume of 12 trucks was used for the inbound and outbound volumes in the a.m. and p.m. peak periods, for all analysis scenarios. This volume is conservative as Summit Aggregates estimates that 9 trucks per hour during peak production.

3.3 Trip Distribution

Site traffic was distributed based on nearby major traffic destinations. It was assumed that most traffic would be either going to or coming from Calgary or Airdrie (east) and the rest would be going to or coming from Cochrane (west). **Figure 4** illustrates this distribution.

Table 3: Growth Rate

	Tv	wo Way AADT	
Voor	1.1km N of	E of 22 N of	W of 766 NE
Year	HWY 22 &567	Cochrane	of Cochrane
1997	3770	1810	1660
1998	3990	1910	1750
1999	4150	1980	1980
2000	4130	2130	2120
2001	4210	2170	2170
2002	4200	2170	2170
2003	4270	2200	2280
2004	4360	2390	2320
2005	4500	2590	2410
2006	4690	2720	2520
2007	4800	2810	2600
2008	4810	2830	3000
2009	4880	4440	3000
2010	4760	4440	3000
2011	4610	4320	3000
2012	4700	4380	3040
2013	4710	4420	3760
Growth rate (1997-2013)	1.56%	9.01%	7.91%
10 year GF	1.03%	10.09%	4.01%
5 year GF	-0.42%	11.24%	3.38%

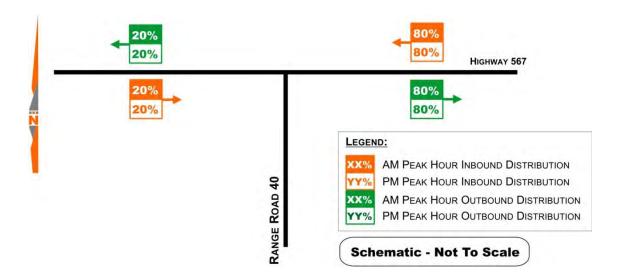


Figure 4: Trip Distribution

3.4 Post Development 10 Year Horizon Traffic Volumes

Applying the growth rate to the opening day volumes and adding the site generated traffic yielded the traffic volumes illustrated in **Figure 5**. It should be noted that all traffic entering and exiting the proposed development was assumed to be trucks.

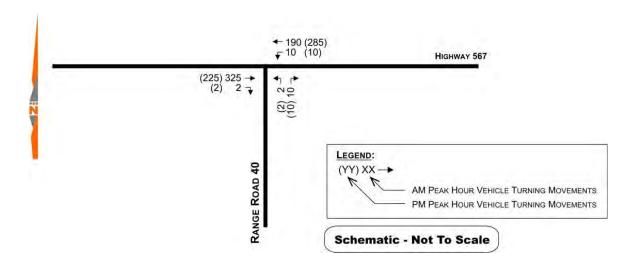


Figure 5: Post Development 10 Year Horizon Traffic Volumes

3.5 Post Development 10 Year Horizon Operating Conditions

The a.m. and p.m. peak hour traffic conditions for the 10 Year Horizon scenario were assessed in Synchro using the lane configurations and traffic controls shown in **Figure 2** and the traffic volumes shown in **Figure 5**. The results are shown in **Table 4** and full Synchro outputs are attached in **Appendix C**.

Table 4: 10 Year Horizon Operating Conditions

INTERSECTION / MOVEMENT		AM PEAK HOUR				PM PEAK HOUR				
INTERSECT	ION / I	VIOVEIVIENT	v/c Ratio	LOS	Delay (s)	Queue (m)	v/c Ratio	LOS	Delay (s)	Queue (m)
Highway 567 /	EB	Right/Through	0.21	Α	0.0	0.0	0.15	Α	0.0	0.0
Range Road 40	WB	Left/Through	0.01	Α	0.6	0.3	0.01	Α	0.4	0.3
(Unsignalized)	NB	Left/Right	0.03	В	12.9	0.7	0.03	В	12.0	0.6

Table 4 shows that all movements operate at a LOS B or better with all v/c ratios below the 0.90 threshold.

4.0 POST DEVELOPMENT 20 YEAR HORIZON

4.1 Post Development 20 Year Horizon Traffic Volumes

The same growth rate was used for the 20 year analysis horizon as was used for the 10 year analysis horizon (4%). As noted previously, the growth rate was only applied to the through volumes on Highway 567 and not the turning movements into and out of the proposed development. The resulting traffic volumes are illustrated in **Figure 6**.

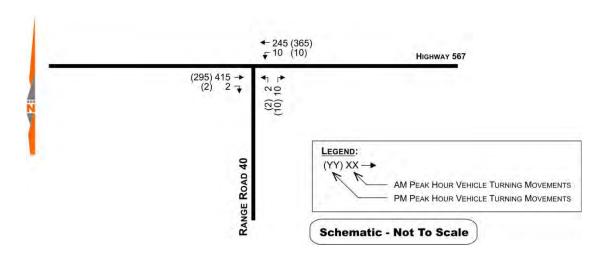


Figure 6: 20 Year Horizon Traffic Volumes

4.2 Post Development 20 Year Horizon Operating Conditions

The a.m. and p.m. peak hour traffic conditions for the 20 Year Horizon scenario were assessed in Synchro using the lane configurations and traffic controls shown in **Figure 2** and the traffic volumes shown in **Figure 6**. The results are shown in **Table 5** and full Synchro outputs are attached in **Appendix C**.

Table 5: 20 Year Horizon Operating Conditions

INTERSECT	INTERSECTION / MOVEMENT		AM PEAK HOUR				PM PEAK HOUR			
INTERSECT	ION / I	VIOVEIVIEIV I	v/c Ratio	LOS	Delay (s)	Queue (m)	v/c Ratio	LOS	Delay (s)	Queue (m)
Highway 567 /	EB	Right/Through	0.27	Α	0.0	0.0	0.19	Α	0.0	0.0
Range Road 40	WB	Left/Through	0.02	Α	0.6	0.4	0.01	Α	0.4	0.3
(Unsignalized)	NB	Left/Right	0.03	В	14.4	0.8	0.03	В	13.1	0.7

Table 5 shows that all movements operate at a LOS B or better with all v/c ratios below the 0.90 threshold.

5.0 PROPOSED INTERSECTION CONFIGURATION

All analyzed scenarios meet the LOS and v/c ratio requirements given by AT, however due to the type of traffic entering and exiting the site additional requirements need to be evaluated.

100% of the site traffic is expected to be heavy vehicles. The heavy vehicles leaving the site will be transporting large amounts of gravel, making them even heavier. Acceleration and deceleration for these trucks will require more time and space than would be required for passenger cars. Because of this, warrants for exclusive right turn lanes and left turn lanes needed to be analyzed. These geometric conditions were assessed using Alberta Infrastructure's Highway Geometric Design Guide.²

5.1 Left Turn Warrant

The left turn warrant procedure in the Highway Geometric Design Guide was followed for each scenario. The p.m. peak hour volumes were used in the analysis due to the higher estimated volumes. The results are shown in **Figure 7**.

² Alberta Infrastructure. Highway Geometric Design Guide 1995 Updated 1999.

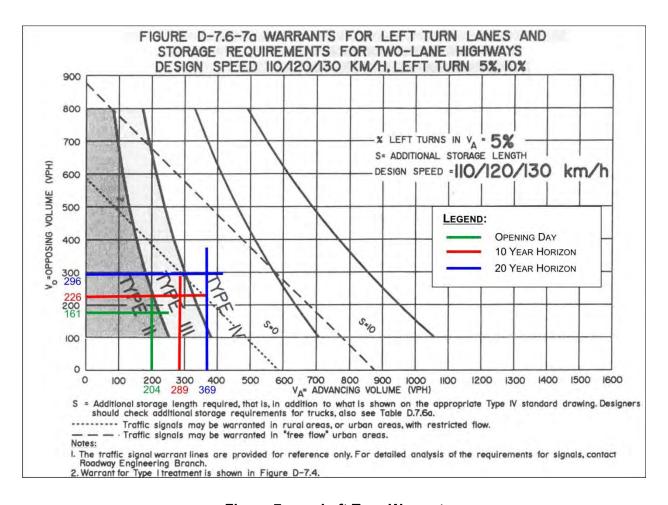


Figure 7: Left Turn Warrant

The results illustrated in Figure 7 indicate the following:

- a Type II intersection is required for Opening Day conditions,
- a Type III intersection is required for the 10 Year Horizon Conditions, and
- a Type IV intersection is required for the 20 Year Horizon Conditions.

Type II, Type III, and Type IV intersection treatments are illustrated, as per the Highway Geometric Design Guide, in **Appendix D**.

5.2 Right Turn Warrant

Three conditions must be met in order for an exclusive right turn to be warranted at a two-lane highway intersection:

- 1. Main (or through) road AADT should be equal to or greater than 1800
- 2. Intersecting road AADT should be equal to or greater than 900, and

3. Right turn daily traffic volume should be equal to or greater than 360 for the analyzed movement

For all scenarios the AADT on the Private Access Road (intersecting road) is less than 900 vehicles. Also, for all scenarios the daily traffic volume for the eastbound right turn movement into the development is less than 360. Therefore an exclusive right turn lane is not warranted for any of the analyzed scenarios.

5.3 Warrant Summary

Table 6 summarizes the geometric modifications required at the intersection of Highway 567 and the Gravel Pit Access for each scenario.

Table 6: Warrant Summary

Scenario	Warra	nt
Scenario	Left Turn Warrant	Right Turn Warrant
	Type II Intersection	
Ononing Day	Warranted - no exlusive left	Dight turn not warranted
Opening Day	turn lane see Figure E1 in	Right turn not warranted
	Appendix E for details	
	Type III Intersection	
10 Year Horizon	Warranted - no exlusive left	Dight turn not warranted
10 fear Horizon	turn lane see Figure E2 in	Right turn not warranted
	Appendix E for details	
20 Year Horizon	Type IV Intersection Warranted - exlusive left turn lane warranted see Figure E3 in Appendix E for details	Right turn not warranted

Due to modifications in geometric conditions being warranted, each scenario was evaluated once again in Synchro with the required geometric modifications implemented. **Table 7** summarizes the results for the Opening Day Scenario.

Table 7: Opening Day Conditions – Improved Geometry

INTERSECT	INTERSECTION / MOVEMENT		AM PEAK HOUR				PM PEAK HOUR			
INTERSECT	ION / I	VIOVEIVIENT	v/c Ratio	LOS	Delay (s)	Queue (m)	v/c Ratio	LOS	Delay (s)	Queue (m)
	EB	Through	0.15	Α	0.0	0.0	0.10	Α	0.0	0.0
Highway 567 /	ED	Through/Right	0.00	Α	0.0	0.0	0.00	Α	0.0	0.0
Range Road 40	WB	Left	0.01	Α	9.1	0.3	0.01	Α	8.7	0.3
(Unsignalized)	VVD	Through	0.09	Α	0.0	0.0	0.13	Α	0.0	0.0
	NB	Left/Right	0.02	В	11.6	0.6	0.02	В	11.0	0.5

As shown in **Table 7**, all intersection approaches operate at LOS B or better, and all v/c ratios are below the 0.90 threshold.

Table 8 summarizes the results for the 10 Year Horizon Scenario with the required improved geometry.

Table 8: 10 Year Horizon Conditions – Improved Geometry

INTERSECT	INTERSECTION / MOVEMENT			AM PE	AK HOUR		PM PEAK HOUR			
INTERSECT	ION / I	VIOVEIVIENT	v/c Ratio	LOS	Delay (s)	Queue (m)	v/c Ratio	LOS	Delay (s)	Queue (m)
	EB	Through	0.21	Α	0.0	0.0	0.15	Α	0.0	0.0
Highway 567 /	ED	Through/Right	0.00	Α	0.0	0.0	0.00	Α	0.0	0.0
Range Road 40	WB	Left	0.01	Α	9.5	0.3	0.01	Α	9.0	0.3
(Unsignalized)	VVD	Through	0.12	Α	0.0	0.0	0.19	Α	0.0	0.0
	NB	Left/Right	0.03	В	12.9	0.7	0.03	В	12.0	0.6

As shown in **Table 8**, all intersection approaches operate at LOS B or better, and all v/c ratios are below the 0.90 threshold.

Table 9 summarizes the results for the 20 Year Horizon Scenario with the required improved geometry.

Table 9: 20 Year Horizon Conditions – Improved Geometry

INTERSECT	INTERSECTION / MOVEMENT		AM PEAK HOUR				PM PEAK HOUR			
INTERSECT	ION / I	VIOVEIVIEIV I	v/c Ratio	LOS	Delay (s)	Queue (m)	v/c Ratio	LOS	Delay (s)	Queue (m)
	EB	Through	0.27	Α	0.0	0.0	0.19	Α	0.0	0.0
Highway 567 /	ED	Through/Right	0.00	Α	0.0	0.0	0.00	Α	0.0	0.0
Range Road 40	WB	Left	0.02	Α	10.0	0.4	0.01	Α	9.4	0.3
(Unsignalized)	WD	Through	0.16	Α	0.0	0.0	0.24	Α	0.0	0.0
	NB	Left/Right	0.03	В	14.5	0.8	0.03	В	13.1	0.7

As shown in **Table 9**, all intersection approaches operate at LOS B or better, and all v/c ratios are below the 0.90 threshold.

6.0 SITE DISTANCE

A site visit was conducted on August 7, 2014. From this site visit it was estimated that the grade of Highway 567 within the area of the proposed development is approximately 0%. Also confirmed was that there are no trees or buildings blocking the drivers' view of Highway 567. According to Figure D-4.2.2.2 in Al's Highway Geometric Design Guide, a maximum site distance of 560m is required for heavy vehicles turning left onto a highway with a 0% grade and a design speed of 110km/hr. This is illustrated in **Figure 8**.

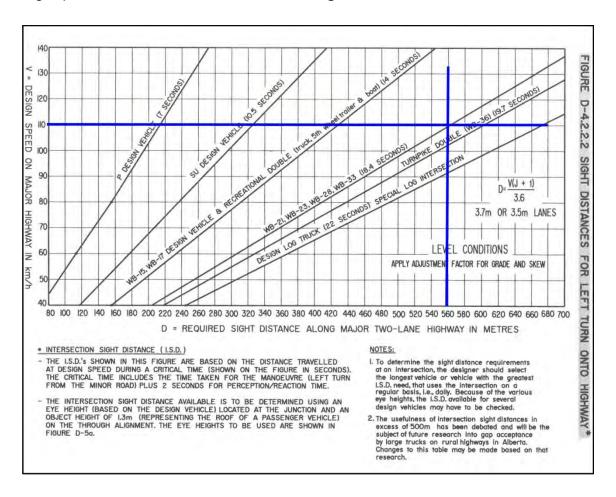


Figure 8: Sight Distance for Left Turn onto Highway

Photographs of the site distance looking both west and east were taken and are shown in **Figure 9** and **Figure 10**.

Figure 9: Site Distance Looking East

Figure 10: Site Distance Looking West

With the estimated 0% grade on Highway 567 and no trees or buildings within the area, a sight distance greater than 560m is provided for trucks leaving the site, travelling west. A similar sight distance is provided looking east. Because the sight distance required for stopped vehicles turning right onto a highway is less than for vehicles turning left (attributed to the turning vehicle crossing less travel lanes), sight distance for trucks leaving the proposed development turning right was not analyzed and was assumed to be sufficient.

7.0 CONCLUSIONS

Although all intersection approaches at the intersection of Highway 567 & Range Road 40 meet AT's operational requirements of LOS D or better and v/c below 0.90 with simple improvements (paved, two lane, undivided Range Road 40 with stop sign), further improvements are required to accommodate the high percentage of heavy vehicle traffic entering and exiting the site.

To meet all requirements the Opening Day Scenario requires a Type IIa intersection treatment, the 10 Year Horizon Scenario requires a Type IIIa intersection treatment, and the 20 Year Horizon Scenario requires a Type IVa intersection treatment.

The implementation of a Type IVa intersection upon opening of the proposed development would be ideal. However, this may not be desirable because a Type IVa intersection is not estimated to be required until after 10 years of operation of the Gravel Pit (more than half the life expectancy of the Gravel Pit). As the Type IVa intersection is not required upon opening of the Gravel Pit, it is recommended that a Type IIIa intersection be introduced immediately to address safety of the operation (acceleration/deceleration) of the heavy vehicles entering and exiting the site. A traffic monitoring program should be initiated in conjunction with the Type IIIa intersection to monitor the traffic growth in the area to establish if and when upgrades to the intersection will be required.

APPENDIX A: AT TRAFFIC COUNTS

Turning Movement Summary Diagram

Nort	th On 76	66	
Vehicle Ty	ре	Vol	%
A: Passenger Vehic	le	926	90.8
B: Recreational Veh	nicle	4	0.4
S: Bus	W11/2	11	1.1
D: Single Unit Truck	k	48	4.7
E: Tractor Trailer U	31	3.0	
ASDT 1220	AADT	1020	

В 32

C

E

В

CDE

A B 945

C

E 112

B

CDE

59

95

37

39

168

13

110

1140

190

1440

1440

East On

3460 AADT

Vehicle Type

A: Passenger Vehicle

D: Single Unit Truck

E: Tractor Trailer Unit

S: Bus

ASDT

B: Recreational Vehicle

567

Vol

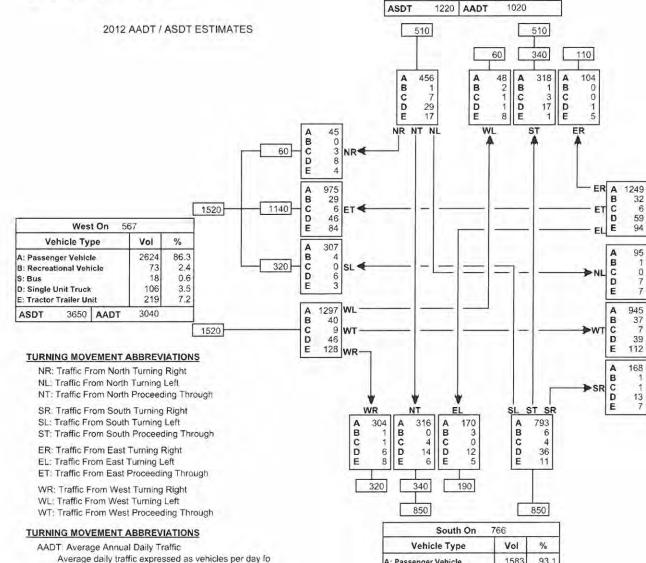
2457

71

14

118

220


2880

%

85.3

2.5 0.5

4.1 7.6

Reference No.: 66220 Intersection of:

567 & 766 NE OF COCHRANE

period of January 1 to December 31 (365 days)

Average daily traffic expressed as vehicles per day fo period of May 1 to September 30 (153 days)

ASDT: Average Summer Daily Traffic

	Sout	h On 7	66				
Ve	hicle Ty	pe	Vol	%			
A: Passen	ger Vehic	le	1583	93.1			
B: Recreat	ional Veh	icle	10	0.6			
S: Bus		7.3	9	0.5			
D: Single	Jnit Truck		68	4.0			
E: Tractor			30	1.8			
ASDT	1860	AADT	1700				
		22.4.0					

Turning Movement Summary Diagram

North	On 7	66	
Vehicle Type	9	Vol	%
A: Passenger Vehicle		100	90.1
B: Recreational Vehic	le	0	0.0
S: Bus		7	6.3
D: Single Unit Truck		0	0.0
E: Tractor Trailer Unit		4	3.6
	Total	111	

Reference No.: 66220 Intersection of:

567 & 766 NE OF COCHRANE 2012 a.m. 100th Highest Hour ESTIMATES 20 91 12 82 0 5 0 4 12 ABCDE ABCDE ABCDE BCDE 0 0 0 0 0 0 NR NT NL WL BC DE ER A B 104 89 ET C D EL E 99 116 137 0 DE East On 567 West On Vehicle Type % Vol **Vehicle Type** % Vol 29 ABC 17 A: Passenger Vehicle 287 90.5 В 339 91.4 A: Passenger Vehicle B: Recreational Vehicle 0.6 29 CD 0 SL 4 B: Recreational Vehicle 0.5 19 S: Bus 2 0.6 2.2 0 S: Bus DE 0 0 D: Single Unit Truck 1.9 D: Single Unit Truck 1.1 E: Tractor Trailer Unit 20 6.3 E: Tractor Trailer Unit 18 4.9 A B 216 WL 141 317 Total 371 Total CDE 234 CD 155 201 6 WT E 8 WR-**TURNING MOVEMENT ABBREVIATIONS** 25 0 B NR: Traffic From North Turning Right NL: Traffic From North Turning Left CDE 0 27 NT: Traffic From North Proceeding Through SR: Traffic From South Turning Right WR ST SR 72 0 2 0 0 12 0 0 2 0 ABCDE SL: Traffic From South Turning Left 60 66 ABCDE ABCDE ABCDE 0000 0 ST: Traffic From South Proceeding Through 3 ER: Traffic From East Turning Right 0 EL: Traffic From East Turning Left ET: Traffic From East Proceeding Through 74 63 WR: Traffic From West Turning Right WL: Traffic From West Turning Left 68 151 WT: Traffic From West Proceeding Through South On % Vehicle Type Vol 95.9 A: Passenger Vehicle 210 B: Recreational Vehicle 0.0

5

219

Total

2.3

0.9

0.9

S: Bus

D: Single Unit Truck

E: Tractor Trailer Unit

Turning Movement Summary Diagram

North	On 7	66	
Vehicle Typ	ое	Vol	%
A: Passenger Vehicle	e	128	97.7
B: Recreational Vehi		0	0.0
S: Bus		0	0.0
D: Single Unit Truck		2	1.5
E: Tractor Trailer Un	it	1	0.8
	Total	131	

99

Reference No.: 66220 Intersection of: 567 & 766 NE OF COCHRANE Total 2012 p.m. 100th Highest Hour ESTIMATES 32 32 ABCDE ABCDE 0 NR NT NL

E

B C

D

E

A B

CDE

144

W	est On 5	67	
Vehicle 1	Гуре	Vol	%
A: Passenger Veh	icle	339	91.6
B: Recreational V	ehicle	11	3.0
S: Bus		0	0.0
D: Single Unit Tru	ck	4	1.1
E: Tractor Trailer	Unit	16	4.3
	Total	370	

TURNING MOVEMENT ABBREVIATIONS

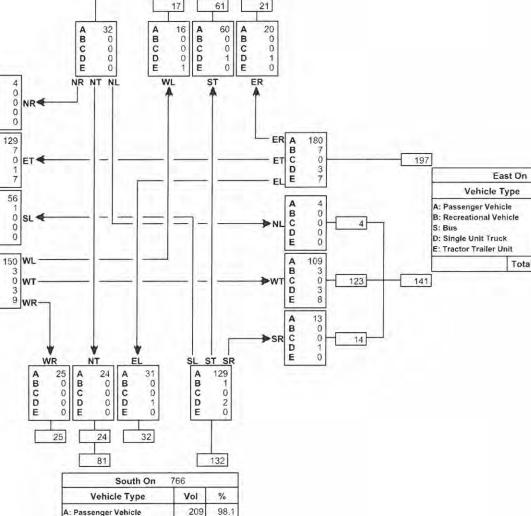
NR: Traffic From North Turning Right NL: Traffic From North Turning Left

NT: Traffic From North Proceeding Through

SR: Traffic From South Turning Right

SL: Traffic From South Turning Left

ST: Traffic From South Proceeding Through


ER: Traffic From East Turning Right

EL: Traffic From East Turning Left

ET: Traffic From East Proceeding Through

WR: Traffic From West Turning Right WL: Traffic From West Turning Left

WT: Traffic From West Proceeding Through

0.5

0.0

1.4

0.0

213

B: Recreational Vehicle

E: Tractor Trailer Unit

Total

S: Bus D: Single Unit Truck 567

Total

Vol

306

10

15

338

%

90.5

3.0

0.0

2.1

4.4

APPENDIX B: CORRESPONDENCE WITH SUMMIT AGGREGATES LTD.

Kayla Royce

From: Kayla Royce

Sent: August-18-14 2:36 PM

To: Kayla Royce **Subject:** FW: Draft TIA

Kayla Royce, B.Sc., E.I.T. Transportation Engineer T 403.273.9001 ext 272 www.wattconsultinggroup.com

From: Tige Brady [mailto:tige.brady@telus.net]

Sent: August-11-14 10:19 AM

To: Tomasz Kroman

Cc: 'Kim Wolkowski'; 'Mitch Schaufler'

Subject: RE: Draft TIA

Tomasz,

My comments are as follows:

- ➤ Change title page to read, "Proposed Aggregate Extraction and Development"
- Prepared for: Summit Aggregates Ltd.
- > There is no private access road. The proposed access road is via a county Right of Way which is Range Road 40.
- ➤ Please refer to the operator as Summit Aggregates Ltd. in all instances in the report. Summit is the legal corporation that will be applying for the permits and will be operating the site when all approvals are in place.
- ➤ Change the trip generation estimation to 9 trucks per hour or approximately 4320 tonnes per day using a 40 tonne average load. This would be peak production. Proposed hours of operation, 7 to 7 Monday through Friday; 7 to 5 on Saturdays and no hauling activity on Sundays or statutory holidays. Volume and distribution will most likely increase over the 10 and 20 year horizons. Opening day trip generation is estimated at 5 trucks per hour or 2400 tonnes per day assuming an average 40 tonne load and 12 hours per day of hauling activity.
- ➤ Could the access road to the east which provides access to the house on that quarter be considered as potential access instead of Range Road 40? Please provide commentary and your opinion and related treatments with respect to this option if at all possible?

If you have any questions or concerns, please contact me.

From: Tomasz Kroman [mailto:TKroman@wattconsultinggroup.com]

Sent: August 8, 2014 11:21 AM

To: Tige Brady (tige.brady@telus.net)

Cc: Kayla Royce Subject: Draft TIA

Tige;

Attached for your review and comments is a PDF file containing TIA Report. Once we receive your comments we will prepare final copy for submission to AT and RVC. Please note that technical appendixes have not been included to reduce file size.

Regards

Tomasz Kroman, M.Sc., P.Eng Senior Consultant

- P 403.273.9001 ext 721
- D 403.569.8721
- C 403.608.1696
- E TKroman@wattconsultinggroup.com

#310, 3016 - 5 Avenue NE Calgary, Alberta T2A 6K4

Take a look at the changes we've made at http://www.wattconsultinggroup.com

APPENDIX C: SYNCHRO OUTPUTS

	→	•	•	←	•	/
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1			4	¥	
Volume (veh/h)	230	2	10	135	2	10
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	256	2	11	150	2	11
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			258		429	257
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			258		429	257
tC, single (s)			5.1		7.4	7.2
tC, 2 stage (s)						
tF (s)			3.1		4.4	4.2
p0 queue free %			99		99	98
cM capacity (veh/h)			899		430	594
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	258	161	13			
Volume Left	0	11	2			
Volume Right	2	0	11			
cSH	1700	899	558			
Volume to Capacity	0.15	0.01	0.02			
Queue Length 95th (m)	0.0	0.3	0.6			
Control Delay (s)	0.0	0.7	11.6			
Lane LOS		Α	В			
Approach Delay (s)	0.0	0.7	11.6			
Approach LOS			В			
Intersection Summary						
Average Delay			0.6			
Intersection Capacity Utiliza	ation		25.3%	IC	U Level c	of Service
Analysis Period (min)			15			
,			-			

	-	•	•	•	•	~
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1			4	¥	
Volume (veh/h)	160	2	10	200	2	10
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	178	2	11	222	2	11
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			180		423	179
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			180		423	179
tC, single (s)			5.1		7.4	7.2
tC, 2 stage (s)						
tF (s)			3.1		4.4	4.2
p0 queue free %			99		99	98
cM capacity (veh/h)			971		434	664
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	180	233	13			
Volume Left	0	11	2			
Volume Right	2	0	11			
cSH	1700	971	610			
Volume to Capacity	0.11	0.01	0.02			
Queue Length 95th (m)	0.0	0.3	0.5			
Control Delay (s)	0.0	0.5	11.0			
Lane LOS		Α	В			
Approach Delay (s)	0.0	0.5	11.0			
Approach LOS			В			
Intersection Summary						
Average Delay			0.6			
Intersection Capacity Utiliza	tion		28.7%	IC	U Level c	of Service
Analysis Period (min)			15	,,,		
			. 3			

	→	\rightarrow	•	←	•	~
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4			4	¥	
Volume (veh/h)	325	2	10	190	2	10
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	361	2	11	211	2	11
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			363		596	362
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			363		596	362
tC, single (s)			5.1		7.4	7.2
tC, 2 stage (s)						
tF (s)			3.1		4.4	4.2
p0 queue free %			99		99	98
cM capacity (veh/h)			808		334	509
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	363	222	13			
Volume Left	0	11	2			
Volume Right	2	0	11			
cSH	1700	808	468			
Volume to Capacity	0.21	0.01	0.03			
Queue Length 95th (m)	0.0	0.3	0.7			
Control Delay (s)	0.0	0.6	12.9			
Lane LOS		А	В			
Approach Delay (s)	0.0	0.6	12.9			
Approach LOS			В			
Intersection Summary						
Average Delay			0.5			_
Intersection Capacity Utiliza	ation		28.2%	IC	U Level c	of Service
Analysis Period (min)			15			
, ,						

	→	\rightarrow	•	←	•	~
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	4			4	¥	
Volume (veh/h)	225	2	10	285	2	10
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	250	2	11	317	2	11
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			252		590	251
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			252		590	251
tC, single (s)			5.1		7.4	7.2
tC, 2 stage (s)						
tF (s)			3.1		4.4	4.2
p0 queue free %			99		99	98
cM capacity (veh/h)			904		337	598
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	252	328	13			
Volume Left	0	11	2			
Volume Right	2	0	11			
cSH	1700	904	530			
Volume to Capacity	0.15	0.01	0.03			
Queue Length 95th (m)	0.0	0.3	0.6			
Control Delay (s)	0.0	0.4	12.0			
Lane LOS		Α	В			
Approach Delay (s)	0.0	0.4	12.0			
Approach LOS			В			
Intersection Summary						
Average Delay			0.5			
Intersection Capacity Utiliza	ation		33.1%	IC	U Level c	of Service
Analysis Period (min)			15			
,						

	-	•	•	•	•	/
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	ĵ.			4	¥	
Volume (veh/h)	415	2	10	245	2	10
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	461	2	11	272	2	11
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			463		757	462
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			463		757	462
tC, single (s)			5.1		7.4	7.2
tC, 2 stage (s)						
tF (s)			3.1		4.4	4.2
p0 queue free %			98		99	97
cM capacity (veh/h)			731		261	440
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	463	283	13			
Volume Left	0	11	2			
Volume Right	2	0	11			
cSH	1700	731	395			
Volume to Capacity	0.27	0.02	0.03			
Queue Length 95th (m)	0.0	0.4	0.8			
Control Delay (s)	0.0	0.6	14.4			
Lane LOS		Α	В			
Approach Delay (s)	0.0	0.6	14.4			
Approach LOS			В			
Intersection Summary						
Average Delay			0.5			
Intersection Capacity Utiliza	ation		32.0%	IC	U Level c	f Service
Analysis Period (min)			15	70		. 50.7100
			10			

	-	•	•	←	4	~
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	1			4	W	
Volume (veh/h)	295	2	10	365	2	10
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	328	2	11	406	2	11
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			330		757	329
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			330		757	329
tC, single (s)			5.1		7.4	7.2
tC, 2 stage (s)						
tF (s)			3.1		4.4	4.2
p0 queue free %			99		99	98
cM capacity (veh/h)			836		261	535
Direction, Lane #	EB 1	WB 1	NB 1			
Volume Total	330	417	13			
Volume Left	0	11	2			
Volume Right	2	0	11			
cSH	1700	836	455			
Volume to Capacity	0.19	0.01	0.03			
Queue Length 95th (m)	0.0	0.3	0.7			
Control Delay (s)	0.0	0.4	13.1			
Lane LOS		Α	В			
Approach Delay (s)	0.0	0.4	13.1			
Approach LOS			В			
Intersection Summary						
Average Delay		•	0.5		_	
Intersection Capacity Utiliz	ation		37.3%	IC	CU Level c	of Service
Analysis Period (min)			15			
, ,			-			

	-	\rightarrow	•	←	•	/
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	7	*	†	W	
Volume (veh/h)	230	2	10	135	2	10
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	256	2	11	150	2	11
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			258		428	256
vC1, stage 1 conf vol			200		120	200
vC2, stage 2 conf vol						
vCu, unblocked vol			258		428	256
tC, single (s)			5.1		7.4	7.2
tC, 2 stage (s)			- 0.1			7.2
tF (s)			3.1		4.4	4.2
p0 queue free %			99		99	98
cM capacity (veh/h)			899		431	595
						070
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	
Volume Total	256	2	11	150	13	
Volume Left	0	0	11	0	2	
Volume Right	0	2	0	0	11	
cSH	1700	1700	899	1700	559	
Volume to Capacity	0.15	0.00	0.01	0.09	0.02	
Queue Length 95th (m)	0.0	0.0	0.3	0.0	0.6	
Control Delay (s)	0.0	0.0	9.1	0.0	11.6	
Lane LOS			Α		В	
Approach Delay (s)	0.0		0.6		11.6	
Approach LOS					В	
Intersection Summary						
Average Delay			0.6			
Intersection Capacity Utiliza	ation		22.1%	IC	U Level c	of Service
Analysis Period (min)			15			
J. 1. 2.2 ()						

	-	•	•	←	•	~
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	7	*	†	¥	
Volume (veh/h)	160	2	10	200	2	10
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	178	2	11	222	2	11
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			180		422	178
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			180		422	178
tC, single (s)			5.1		7.4	7.2
tC, 2 stage (s)						
tF (s)			3.1		4.4	4.2
p0 queue free %			99		99	98
cM capacity (veh/h)			971		435	665
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	
Volume Total	178	2	11	222	13	
Volume Left	0	0	11	0	2	
Volume Right	0	2	0	0	11	
cSH	1700	1700	971	1700	611	
Volume to Capacity	0.10	0.00	0.01	0.13	0.02	
Queue Length 95th (m)	0.0	0.0	0.3	0.0	0.5	
Control Delay (s)	0.0	0.0	8.7	0.0	11.0	
Lane LOS			Α		В	
Approach Delay (s)	0.0		0.4		11.0	
Approach LOS					В	
Intersection Summary						
Average Delay			0.6			
Intersection Capacity Utiliza	ation		20.5%	IC	U Level c	f Service
Analysis Period (min)			15			

	-	\rightarrow	•	←	•	~
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations		7	*		¥	
Volume (veh/h)	325	2	10	190	2	10
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	361	2	11	211	2	11
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			363		594	361
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			363		594	361
tC, single (s)			5.1		7.4	7.2
tC, 2 stage (s)						
tF (s)			3.1		4.4	4.2
p0 queue free %			99		99	98
cM capacity (veh/h)			808		335	510
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	
Volume Total	361	2	11	211	13	
Volume Left	0	0	11	0	2	
Volume Right	0	2	0	0	11	
cSH	1700	1700	808	1700	469	
Volume to Capacity	0.21	0.00	0.01	0.12	0.03	
Queue Length 95th (m)	0.0	0.0	0.3	0.0	0.7	
Control Delay (s)	0.0	0.0	9.5	0.0	12.9	
Lane LOS			Α		В	
Approach Delay (s)	0.0		0.5		12.9	
Approach LOS					В	
Intersection Summary						
Average Delay			0.5			
Intersection Capacity Utiliza	ation		27.1%	IC	U Level c	of Service
Analysis Period (min)			15			
J. 1. 1. 2. ()						

	-	\rightarrow	•	←	•	/
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	7	ች		¥	
Volume (veh/h)	225	2	10	285	2	10
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	250	2	11	317	2	11
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			252		589	250
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			252		589	250
tC, single (s)			5.1		7.4	7.2
tC, 2 stage (s)						
tF (s)			3.1		4.4	4.2
p0 queue free %			99		99	98
cM capacity (veh/h)			904		338	599
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	
Volume Total	250	2	11	317	13	
Volume Left	0	0	11	0	2	
Volume Right	0	2	0	0	11	
cSH	1700	1700	904	1700	531	
Volume to Capacity	0.15	0.00	0.01	0.19	0.03	
Queue Length 95th (m)	0.0	0.0	0.3	0.0	0.6	
Control Delay (s)	0.0	0.0	9.0	0.0	12.0	
Lane LOS			Α		В	
Approach Delay (s)	0.0		0.3		12.0	
Approach LOS					В	
Intersection Summary						
Average Delay			0.4			
Intersection Capacity Utiliza	ation		25.0%	IC	U Level c	of Service
Analysis Period (min)			15			

	-	\rightarrow	•	←	•	~
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	7	*	†	W	
Volume (veh/h)	418	2	10	243	2	10
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	464	2	11	270	2	11
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			467		757	464
vC1, stage 1 conf vol			107		, 0,	101
vC2, stage 2 conf vol						
vCu, unblocked vol			467		757	464
tC, single (s)			5.1		7.4	7.2
tC, 2 stage (s)			0.1		,,,	
tF (s)			3.1		4.4	4.2
p0 queue free %			98		99	97
cM capacity (veh/h)			728		261	439
						107
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	
Volume Total	464	2	11	270	13	
Volume Left	0	0	11	0	2	
Volume Right	0	2	0	0	11	
cSH	1700	1700	728	1700	394	
Volume to Capacity	0.27	0.00	0.02	0.16	0.03	
Queue Length 95th (m)	0.0	0.0	0.4	0.0	8.0	
Control Delay (s)	0.0	0.0	10.0	0.0	14.5	
Lane LOS			В		В	
Approach Delay (s)	0.0		0.4		14.5	
Approach LOS					В	
Intersection Summary						
Average Delay			0.4			
Intersection Capacity Utiliza	ation		32.0%	IC	U Level c	of Service
Analysis Period (min)			15			
J						

	-	•	•	←	•	~
Movement	EBT	EBR	WBL	WBT	NBL	NBR
Lane Configurations	†	7	ሻ		¥	
Volume (veh/h)	293	2	10	365	2	10
Sign Control	Free			Free	Stop	
Grade	0%			0%	0%	
Peak Hour Factor	0.90	0.90	0.90	0.90	0.90	0.90
Hourly flow rate (vph)	326	2	11	406	2	11
Pedestrians						
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type	None			None		
Median storage veh)						
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume			328		753	326
vC1, stage 1 conf vol						
vC2, stage 2 conf vol						
vCu, unblocked vol			328		753	326
tC, single (s)			5.1		7.4	7.2
tC, 2 stage (s)						
tF (s)			3.1		4.4	4.2
p0 queue free %			99		99	98
cM capacity (veh/h)			838		263	537
Direction, Lane #	EB 1	EB 2	WB 1	WB 2	NB 1	
Volume Total	326	2	11	406	13	
Volume Left	0	0	11	0	2	
Volume Right	0	2	0	0	11	
cSH	1700	1700	838	1700	457	
Volume to Capacity	0.19	0.00	0.01	0.24	0.03	
Queue Length 95th (m)	0.0	0.0	0.3	0.0	0.7	
Control Delay (s)	0.0	0.0	9.4	0.0	13.1	
Lane LOS			Α		В	
Approach Delay (s)	0.0		0.2		13.1	
Approach LOS					В	
Intersection Summary						
Average Delay			0.4		•	
Intersection Capacity Utilization	ation		29.2%	IC	U Level c	of Service
Analysis Period (min)			15			
, , ,			-			

APPENDIX D: ALBERTA INFRASTRUCTURE - HIGHWAY GEOMETRIC DESIGN GUIDE INTERSECTION TREATMENTS

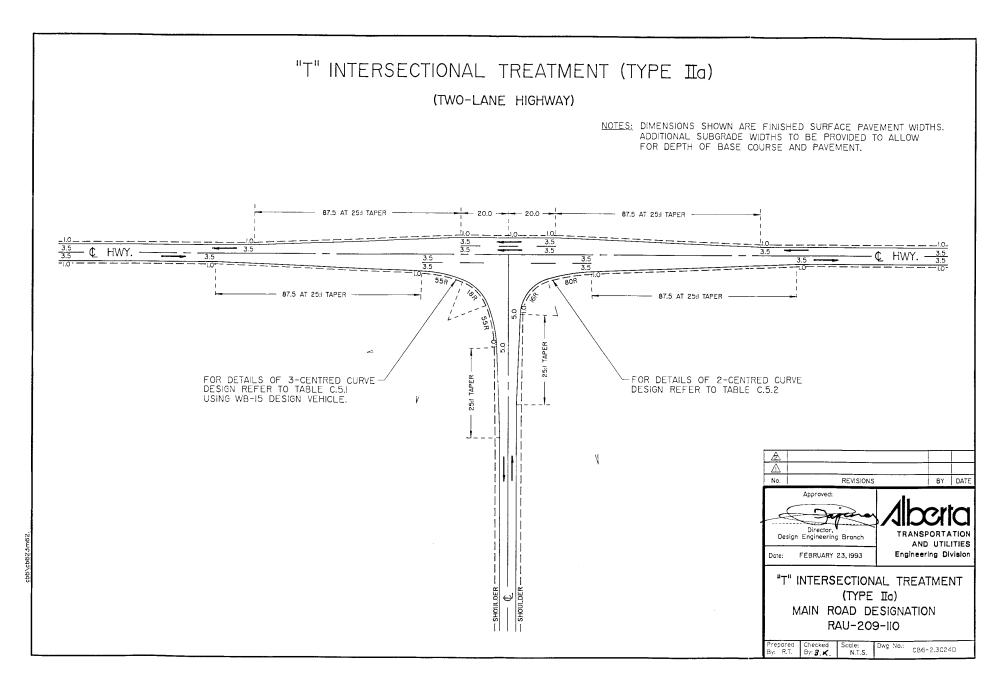
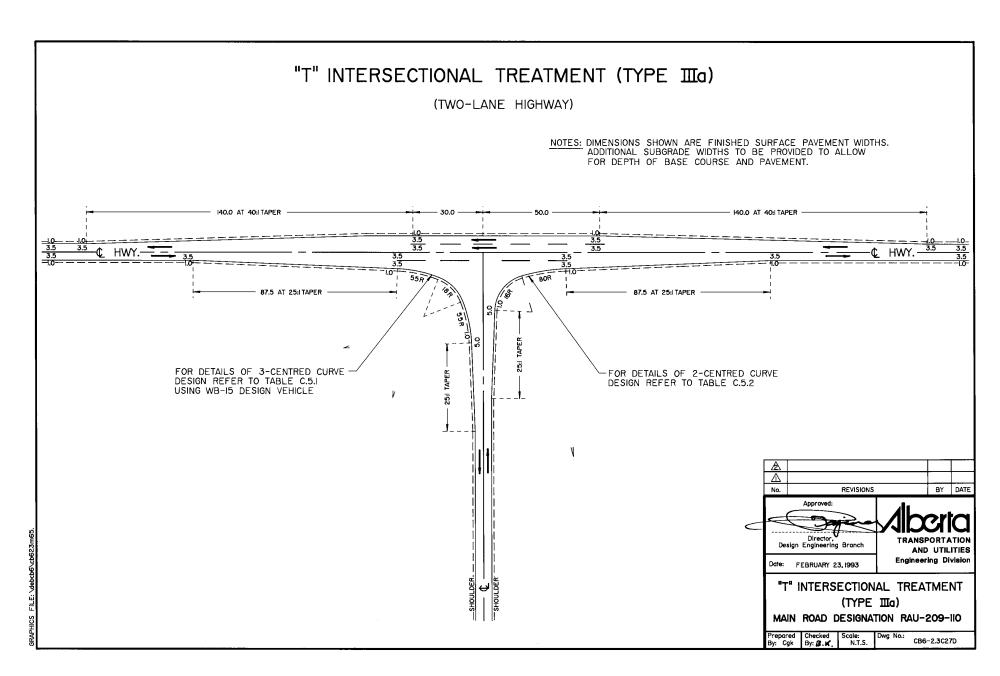



Figure E1

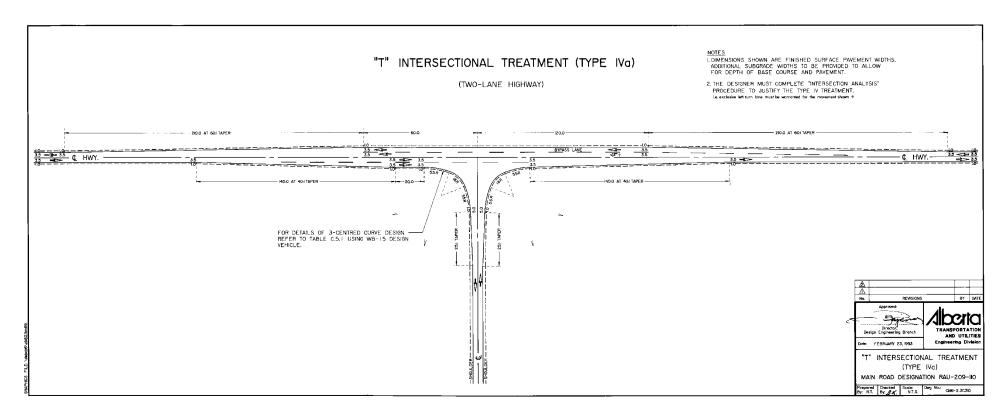


Figure E3

APPENDIX E: SCOPE CONFIRMATION

Kayla Royce

From: Kayla Royce

Sent: August-18-14 2:52 PM

To: Kayla Royce Subject: scope confirmation

From: Tige Brady [mailto:tige.brady@telus.net]

Sent: July-29-14 8:32 AM To: Tomasz Kroman

Cc: Mitch Schaufler; Kim Wolkowski

Subject: Re: PROPOSAL FOR PREPARATION OF THE TIA FOR THE PROPOSED GRAVEL PIT IN NW 31-26-3-W5M

Hi Tomasz,

Please proceed with TIA for the above.

Kim, Can you prepare a cheque for \$2,000 and have it sent to DA WATT for retainer of their services? Please see below.

Regards,

Tige Brady, C.E.T.

Sent from my BlackBerry 10 smartphone on the Rogers network.

From: Tomasz Kroman

Sent: Thursday, July 17, 2014 9:47 AM

To: Tige Brady

Cc: Mitch Schaufler: Kim Wolkowski

Subject: PROPOSAL FOR PREPARATION OF THE TIA FOR THE PROPOSED GRAVEL PIT IN NW 31-26-3-W5M

Tige;

This proposal was prepared in response to your e-mail request dated July 16, 2014 to prepare a Traffic Impact Assessment (TIA) for the proposed gravel pit located in NW 31-26-3-W5M south of Highway 567 and east of Highway 22. This proposal was prepared based on discussion with Alberta Transportation (AT) as the access of the proposed pit will be off of Highway 567 via the existing private road west of the site.

Based on my discussion with Mr. Trevor Richelhof (AT) the TIA should address following aspects;

- Confirmation of the site distance at the Highway 567 access point,
- Traffic generation by the site,
- Analysis of the capacity and operational conditions at the access intersection on Highway 567 at;
 - Opening day of the operation,
 - 10 and 20 year horizon or if exploration of the gravel is foreseen to be shorter than 20 years at the pit closure time,
 - o Identification of the improvements required at the access intersection to accommodate pit traffic.

Proposed Work Plan

To deliver the required TIA the following activities are required;

- 1. Site assessment of the sight distance at the Highway 567 access intersection,
- 2. Traffic analysis as per the AT requirements including a review of operation and capacities of the access intersection on Highway 567 and identification of required improvements.
- 3. Preparation of the TIA Report

Fee Estimate

Fees required to complete this project should not exceed \$9,900.- (GST not included). A detailed fee estimate attached. Please note that as per the company policy we will require a written confirmation to proceed and a \$2,000.- retainer which will be applied toward the last invoice.

Schedule

This standard time period to complete the above work is 6 to 8 weeks from receipt of the written confirmation and retainer.

Should you have any questions or require additional information please contact me at (403) 569-8721.

Regards

From: Tige Brady [mailto:tige.brady@telus.net]

Sent: July-16-14 9:16 AM **To:** Tomasz Kroman

Cc: Mitch Schaufler; Kim Wolkowski Subject: Site Context Plan for TIA

As per your request, please see the attached. Please provide a cost estimate to complete this work at your earliest convenience.

Regards,

Tige Brady, C.E.T.

Sent from my BlackBerry 10 smartphone on the Rogers network.

Tomasz Kroman, M.Sc., P.Eng Senior Consultant

P 403.273.9001 ext 721

D 403.569.8721

C 403.608.1696

E TKroman@wattconsultinggroup.com

#310, 3016 - 5 Avenue NE Calgary, Alberta T2A 6K4

Take a look at the changes we've made at http://www.wattconsultinggroup.com

Kayla Royce, B.Sc., E.I.T. Transportation Engineer

P 403.273.9001 ext 272 E KRoyce@wattconsultinggroup.com

#310, 3016 - 5 Avenue NE Calgary, Alberta T2A 6K4

Take a look at the changes we've made at http://www.wattconsultinggroup.com